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The hypothalamic–pituitary–gonadal (HPG) axis comprises pulsatile GnRH from the hypo-
thalamus impacting on the anterior pituitary to induce expression and release of both LH
and FSH into the circulation. These in turn stimulate receptors on testicular Leydig and
Sertoli cells, respectively, to promote steroidogenesis and spermatogenesis. Both Ley-
dig and Sertoli cells exhibit negative feedback to the pituitary and/or hypothalamus via
their products testosterone and inhibin B, respectively, thereby allowing tight regulation
of the HPG axis. In particular, LH exerts both acute control on Leydig cells by influencing
steroidogenic enzyme activity, as well as chronic control by impacting on Leydig cell dif-
ferentiation and gene expression. Insulin-like peptide 3 (INSL3) represents an additional
and different endpoint of the HPG axis. This Leydig cell hormone interacts with specific
receptors, called RXFP2, on Leydig cells themselves to modulate steroidogenesis, and on
male germ cells, probably to synergize with androgen-dependent Sertoli cell products to
support spermatogenesis. Unlike testosterone, INSL3 is not acutely regulated by the HPG
axis, but is a constitutive product of Leydig cells, which reflects their number and/or dif-
ferentiation status and their ability therefore to produce various factors including steroids,
together this is referred to as Leydig cell functional capacity. Because INSL3 is not subject
to the acute episodic fluctuations inherent in the HPG axis itself, it serves as an excellent
marker for Leydig cell differentiation and functional capacity, as in puberty, or in monitoring
the treatment of hypogonadal patients, and at the same time buffering the HPG output.
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INTRODUCTION
Insulin-like factor 3 (INSL3) is a member of the peptide hor-
mone family, which also includes insulin, IGF1 and IGF2, and
relaxin, besides a small number of less well-known peptides (1,
2). There is insecurity about its precise structure in vivo. It
has a very similar structure to insulin or relaxin, being made
as a prepro-hormone, which after intracellular folding becomes
post-translationally processed, to give rise to either an A–B het-
erodimeric peptide, like insulin, or possibly to an uncleaved
B–C–A version, analogous to the IGFs. Why this is unclear is
that both forms have been identified in the circulation of male
mammals (3–5), and both forms are fully and equally bioac-
tive (4). In the male mammal, the major site of INSL3 syn-
thesis is the interstitial Leydig cells of both the fetal and the
adult testis [Ref. (6); Figure 1]. There may be other sites of
local synthesis in some peripheral tissues, but these do not
contribute to the circulating levels of the hormone, which are
exclusively derived from the testes, and could only have local
autocrine or paracrine effects. Leydig cells are known for their
production of androgenic steroids, of which testosterone (T),
androstenedione (A4), and the derivative dihydrotestosterone
(DHT) are the best characterized. However, besides contribut-
ing steroids to the circulation, Leydig cells also secrete large
amounts of INSL3, giving rise to circulating concentrations of
ca. 1 ng/ml in adult men (7–9), and higher levels in some other
mammals (10, 11).

Thus, we need to reconsider the complexity of the
hypothalamic–pituitary–gonadal (HPG) axis (Figure 2), since
the gonads produce not only androgens, but also a major pep-
tide hormone, INSL3. We still know very little about the func-
tions attributable to INSL3, except that unlike testosterone there
does not appear to be any negative feedback modulation of the
hypothalamo-pituitary axis, although this has still not been very
thoroughly investigated. Currently, INSL3 appears to have a sys-
temic effect as well as both autocrine and paracrine effects within
the testes themselves, in each case providing evidence for some
kind of modulation of or by the classical HPG informational
output, testosterone.

INSL3 IN THE MALE FETUS
Insulin-like factor 3 is a major product of fetal Leydig cells in all
mammals so far investigated [reviewed in Ref. (6)], beginning
its production shortly after sex determination and the expres-
sion of the key transcription factor SF-1 (steroidogenic factor-1).
This represents about embryonic day 12 in the mouse, or week
11–12 of human pregnancy, effectively concurrent with the first
detection of fetal androgens (12). In both the fetal testis as well
as the adult testis, the production of INSL3 occurs only fol-
lowing a certain maturational differentiation of the Leydig cells.
Whereas in the human fetus, as in the adults of all mammals,
this differentiation appears to be dependent on the gonadotropin
LH, but this is not the case for the mouse. In the fetal mouse,
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FIGURE 1 | Human tissue RNA profile based on Affymetrix microarrays (GEO profile database; GDS 3113/635630) probed for INSL3 gene expression.
Significant INSL3 mRNA is only evident for testes and ovary samples. All tissues are represented in triplicate.

FIGURE 2 | INSL3 and HPG axis. Scheme to show the relationship
between the INSL3/RXFP2 system and testosterone as endpoint effectors
of the HPG axis within the testis. Arrows are directed only to cells where
there are known to be specific cognate receptors.

Leydig cell differentiation is independent of LH production, but
rather appears to be regulated by the adrenocorticotropic hor-
mone ACTH (13), even though LH receptors may be present (14).
A good illustration of this is the observation that INSL3 levels in
fetal Leydig cells from hypogonadal (hpg, gnrh−/−) mice are indis-
tinguishable from those of wild type mice, even though LH levels
are very low (15).

The main function of INSL3 in the male fetus is to induce
the first, transabdominal phase of testicular descent, which ensues
shortly after sex determination and concomitant with the first
appearance of INSL3 or its mRNA in the fetus or in amniotic fluid
(12). INSL3 acts on its unique receptor RXFP2 (relaxin family
peptide receptor 2), which is a G-protein coupled receptor nor-
mally linked to Gs, activating adenylyl cyclase (1), and which in
the male fetus is expressed by the cells of the gubernacular bulb.

The gubernaculum is the ligament connecting the ventral aspect
of the developing testis with the inguinal region. Activation of
RXFP2 causes a thickening of the gubernacular bulb, which loses
elasticity, and effectively retains the once perirenal testis in the
inguinal region, at a time when other somatic development is
causing the kidney and neighboring organs to grow away in an
antero-dorsal direction. Although an active HPG axis is not essen-
tial for this process in mice, androgens act synergistically with
INSL3 to achieve this important developmental step (16). Partly,
it appears that androgens are required to induce the RXFP2 recep-
tors (17, 18), and partly it seems that both androgens and INSL3
share very similar effector signaling pathways (19). INSL3 is not
required for the subsequent inguino-scrotal migration of the testis,
which appears to require only androgens, or at least an active HPG
axis (20).

INSL3 AT PUBERTY AND IN THE ADULT
Following testicular descent at or after birth, the fetal Leydig
cells mostly involute. Apart from the so-called “minipuberty” in
humans at about 3 months of age, when Leydig cells appear to be
transiently active again (21), the testes remain steroidogenically
quiescent until puberty begins. The adult population of Leydig
cells represent a completely separate lineage of cells from the
fetal population, though presumably may share common Leydig
stem cells with these. Adult-type Leydig cells differentiate dur-
ing puberty in an LH-dependent manner, dependent both on the
increasing production and pulse frequency of pituitary LH, as well
as on the expression of full-length functional LH receptors by the
immature Leydig cells. This latter feature is important to empha-
size since early Leydig cell stages, at least in rodents, appear to
express large amounts of non-functional truncated LH receptor
gene transcripts (22–24).

During puberty, the HPG axis becomes hyperactivated, with
large and more frequent pulses of LH causing the synthesis and
secretion of large amounts of testosterone, which in turn feedback
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on the pituitary and hypothalamus to regulate LH pulsatility (25).
In rats, this is best illustrated less by changes in mean LH val-
ues, but rather by the range of LH concentration (Figure 3),
which reflects the strong episodic secretion of LH during early
puberty and becomes substantially reduced as puberty progresses
(26). The average circulating testosterone levels follow a simple
asymptotic curve as illustrated in Figure 3. This is the resultant
both of chronic LH-dependent Leydig cell differentiation, causing
long-term induction of appropriate steroidogenic genes, and acute
androgen-dependent feedback mechanisms regulating acute LH
pulse-dependent and consequent cAMP (PKA)-dependent regu-
lation of steroidogenic enzyme activity. This is different for what
happens to INSL3 (Figure 3). INSL3 production appears to fol-
low the anatomical differentiation of Leydig cells consequent upon
the massive pubertal LH pulsatility, and peaks at around day 40
in the rat, then subsequently declines to stabilize at a lower cir-
culating concentration as the HPG axis attains its stable adult
configuration, with the maximal testosterone output and negative
feedback.

Cell culture studies using either MA10 mouse tumor or pri-
mary adult rat Leydig cells show that INSL3 is largely a con-
stitutive secretory product of Leydig cells, and is not acutely
regulated by cAMP or LH (hCG) in the short-term (hours),
unlike steroidogenic enzyme activity (10, 28). However, if Leydig
cells are subjected to differentiation processes, by being allowed
to dedifferentiate in culture, or by collecting cells from imma-
ture testes, then LH or hCG have a markedly stimulatory effect
on INSL3 production (Figure 4), because the gonadotropins can
induce both Leydig cell proliferation and augment differentiation,
and hence increase INSL3 production, which is a chronic (days)
differentiation-dependent process. It should be noted that in vivo
INSL3 is a biomarker for late Leydig cell differentiation (6). In
Figure 4, immature Leydig cells prepared from rats at post-natal
day 10 initially express no INSL3, as in vivo. Without additional
gonadotropin, there is already some differentiation and INSL3
expression. However, with regular addition of hCG (as a surrogate
for LH), these immature Leydig cells first proliferate until about
day 8 of culture, equivalent to about day 18 in vivo, and then start
to differentiate, with some cells also dying in culture, as reflected
by the WST-1 assay (Figure 4B). Once differentiated, the Leydig
cells cease further multiplication.

The difference between LH-dependent testosterone produc-
tion and LH-dependent INSL3 production is well illustrated by
Figure 3, because here we see that during puberty in rats, INSL3
first overshoots in response to the massive bursts of LH produc-
tion (without feedback regulation), unlike testosterone which is
acutely regulated at the level of enzyme activity. As androgen feed-
back leads progressively to a stabilization of the HPG axis (after
day 60 in the rat) at a more moderate LH level (the “thermostat”
model), and a correspondingly reduced level of Leydig cell metab-
olism (differentiation status), then so are the circulating INSL3
levels reduced to reflect that stable Leydig cell functional capac-
ity. This situation is made a little more complex because not only
do Leydig cells differentiate under chronic LH influence, but also
immature Leydig cells can proliferate in an LH-dependent man-
ner. What INSL3 as a constitutive biomarker is measuring is the
sum of both differentiation status (individual cell maturity) and

FIGURE 3 | Profiles through rat post-natal development for key
circulating hormones of the HPG axis. LH (upper panel) is given as range
to indicate the high degree of episodic secretion during early puberty,
which is not represented in simple mean values (26). Testosterone (T;
middle panel) concentrations are derived from Bartlett et al. (27) based on
simple radioimmunassay. The profile for circulating INSL3 [lower panel; Ref.
(10)] indicates the marked “overshoot” during early puberty, corresponding
to the high LH variance (upper panel). Note that INSL3 values reduce to a
stable lower concentration, concomitant with the asymptotic testosterone
maximum, and the reduction in LH episodic fluctuation.

cell number, which together is captured by the term Leydig cell
“functional capacity.”

We have emphasized these important distinctions because the
literature, particularly concerning INSL3 in hypothalamic hypog-
onadal men, is confusing [e.g., Ref. (29)]. Where such men are
treated with hCG/LH for periods of less than a few days, there
may be an acute increase in peripheral testosterone production,
but there will be no change in circulating INSL3 (8). This is dif-
ferent where the hCG stimulus is chronic, for periods of weeks
or months [e.g., Ref. (7, 29)]. The gonadotropin thereby induces
the differentiation of the Leydig cells, thereby increasing their
functional capacity, and concomitantly therefore increases also
the levels of circulating INSL3. INSL3 is still being constitutively
generated (in an acute sense) by those individual Leydig cells.
Another example to illustrate this point is observed in uni-orchid
men, who have one testis removed because of testicular cancer,
but are otherwise healthy (9). Their Leydig cell functional capac-
ity is obviously reduced compared to intact men, although those
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FIGURE 4 | Differentiation in vitro of post-natal day (PND) 10 rat Leydig
cells in the absence (open bars) or presence (filled bars) of hCG.
(A) Cells were purified from the abdominal testes of PND10 male Sprague
Dawley rats by mechanical dispersion followed by unit sedimentation, then
cultured in serum-free medium at 400,000 cells per well of 12-well plates at
37°C. Medium was changed every 2–3 days, with aliquots collected exactly
48 h after the last medium change, for measurement of INSL3 using rat
INSL3-specific TRFIA (10). (B) Cells prepared as above were seeded in
parallel at 30,000 cells per well into 96-well plates and subjected to the
WST-1 (4-[3-(4-Iodophenyl)-2-(4-nitro-phenyl)-2H-5-tetrazolio]-1,3-benzene
disulfonate) assay to measure cell numbers, as described by the
manufacturers (Roche Applied Science (Castle Hill, NSW, Australia). The
inset in the upper panel indicates the fold-increase in INSL3 secretion
calculated on a per cell basis for key times relative to basal expression on
day 1, thus representing the differentiation of the individual Leydig cells,
discrete from any effects on cell proliferation or cell death. This shows that
while hCG has a marked effect on Leydig cell proliferation and/or survival, it
is not essential for cell differentiation, though it does augment it. Animal
experimentation was conducted under the terms of permit S-2010-102 of
the Animal Ethics Committee, University of Adelaide.

individual Leydig cells will be metabolically highly stimulated.
Whereas, as expected, compensatory feedback to the HPG axis has
caused a significant increase in LH and an almost normalization
of testosterone levels, circulating INSL3 concentration remains
significantly reduced (9), and in fact there is an inverse relation-
ship between circulating LH and INSL3 concentrations (9). This is
because where the number of Leydig cells is limiting, the number
of Leydig cells will be simply reflected by the INSL3 concentration
which will be independent of LH. However, the more Leydig cells
present, the less LH is required to maintain normal testosterone

levels according to the “thermostat” model, and hence the inverse
relationship.

A further example to illustrate this point is seen in aging men.
When men become old, their circulating testosterone declines at
approximately 6% per decade after the age of 40. However, this
is continually being compensated by increasing LH, reflecting the
continued acute feedback regulation via the HPG axis. For INSL3,
produced by the same Leydig cells, the reduction is much greater
(ca. 12% per decade) because this acute feedback compensation
does not occur (9).

This concept of Leydig cell functional capacity is otherwise
best captured only by the ratio of T/LH (30, 31), which of course,
unlike a constitutive marker such as INSL3, is subject to the tech-
nical variation of being able to reliably measure both T and LH
(32, 33). Another feature which reflects this notion of INSL3 as a
constitutive biomarker is its technical consistency. We have mea-
sured INSL3 in repeated blood samples from young men and have
found <10% variation over periods of several months (Anand-Ivell
and Ivell, unpublished). Not only is it a technically more robust
parameter to measure, but because it is constitutively measuring
Leydig cell functional capacity, and is thus not subject to acute
feedback fluctuations, as are testosterone and LH, it represents a
valuable biomarker, particularly to follow treatments to remediate
hypogonadism (29), or to map the progression of puberty (34).

ACTIONS OF INSL3 IN THE TESTIS
Besides the two known endocrine functions of INSL3, to induce
the first transabdominal stage of testicular descent (35, 36), and
to support bone metabolism and horn growth (37, 38), INSL3
appears to exert functions within the testis, thereby supplementing
the conventional role of the HPG axis. The unique INSL3 recep-
tor, RXFP2, has been identified at mRNA and at protein levels on
both Leydig cells themselves (39), and also on germ cells within the
seminiferous compartment (2, 39–41), but not on other testicular
cell types.

Considering an autocrine/paracrine role within the interstitial
compartment of the testis, it is important to recognize that under
normal circumstances, the adult interstitial fluid will have consti-
tutively high concentrations of INSL3 [in the rat, ca. 400 ng/ml;
(10)], such that any surface RXFP2 receptors present are likely to
be saturated and most likely desensitized [K d <1 nM or <6 ng/ml;
(1)]. Thus, any role for INSL3 in this compartment is likely to be
relevant only in early puberty prior to the completion of Leydig
cell differentiation, or similarly during early embryonic develop-
ment for the fetal population of Leydig cells, or in equivalent
disease states such as hypogonadism. In support of this, an inter-
esting study by Pathirana and colleagues showed that INSL3 had
a significant stimulatory effect upon Leydig cell steroidogenesis
in vitro, but only where the cell density in culture was very low,
and presumably endogenous INSL3 production was also low (42).
Recent studies in the ovary using follicular theca cells, which are
the female equivalent of Leydig cells, showed a similar stimulatory
effect of INSL3 on theca cell steroidogenesis (18). This effect was
absolutely dependent on RXFP2 expression, and could be reduced
by transfecting cells with an RXFP2-specific siRNA (18). Thus,
INSL3 appears to be part of a feed-forward mechanism buffering
the production of steroids consequent upon LH stimulation, and
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may have most impact during the first spermatogenic wave before
Leydig cells have fully differentiated.

RXFP2 is also expressed by male germ cells (39, 40). In par-
ticular, the INSL3 receptor is found modestly expressed by sper-
matocytes, and to a greater amount on post-meiotic germ cells
(39). Experiments in rats show that ca. 20 ng/ml of INSL3 can
reach the seminiferous compartment across the blood–testis bar-
rier by mechanisms, which are still unclear (10). This is sufficient
to have a modulatory role on male germ cells. Several pieces of
evidence support a survival factor/anti-apoptotic role for INSL3
in regard to germ cells, thus effectively abetting the role of FSH
acting via Sertoli cells (Figure 2). First, in rats, it was shown that
INSL3 was able to reduce the amount of germ cell death by apop-
tosis following GnRH antagonist treatment (40). Second, injection
of an INSL3 antagonist into rat testes led to a significant reduc-
tion in testis weight (43), presumably resulting from germ cell
death. Third, in men subjected to a steroidal contraceptive regi-
men to suppress the HPG axis, it was found that men retained most
residual spermatogenesis when their circulating INSL3 levels were
highest (44).

Taken together, these results strongly suggest that INSL3 is
acting as an intratesticular autocrine/paracrine system to buffer
the conventional output from the male HPG axis, thereby reduc-
ing unnecessary fluctuations induced by extrinsic influences (e.g.,
stress) or excessive pulsatility within the HPG axis, and modulating
both LH and FSH actions.

INSL3 SYNERGY WITH ANDROGEN ACTION
Insulin-like factor 3 has been described as a “neohormone” (45,
46), i.e., as a hormone which has evolved specifically to address
functions uniquely linked to the mammalian phenotype and evo-
lution. One of the most obvious of these roles is the promotion
of testicular descent and a scrotal testis. But also its role to pro-
mote horn and bone growth in the male (38) is closely linked to
male reproductive behavior, another typical neohormone para-
meter (46). Inspection of the mechanisms of INSL3 action both
as an endocrine, as well as a paracrine/autocrine hormone, indi-
cates that INSL3 is mostly synergizing directly or indirectly with
gonadotropin-induced androgen action, for example in bone and
horn growth, in maturation of the male tract in the embryo, and
in supporting germ cell survival within the seminiferous tubules.
Also in the female, where INSL3 is not a highly expressed circulat-
ing hormone, it acts in concert with LH, FSH, and androstenedione
to promote follicle growth and steroid production (18, 47). The
precise molecular details of this synergy are not yet clear, although
there is a good evidence to suggest that androgen receptor acti-
vation is required for RXFP2 expression (17, 18), and that, at
least in the action of INSL3 on the gubernaculum, signaling
pathways are induced very similar to those induced by androgen
action (19).

INSL3 AND PATHOLOGY
Since INSL3 is part of a synergistic network modulating
gonadotropin action, highly specific effects of INSL3 alteration
are not to be expected. A complete loss of function of INSL3
or its receptor in mice or humans is associated with osteope-
nia/osteoporosis (37) and cryptorchidism (35, 36). Whilst a loss

of INSL3 in the ovary appears to be linked to a reduction in antral
follicle growth and maturation (48), no such gross aberration is
evident for the adult testis, even when the receptor knockout is
specifically targeted to the testis to avoid any repercussions caused
by cryptorchidism (49). However, this latter study did not look
at those phases of development such as puberty or during insult
situations when the buffering or modulatory effect of INSL3 is
likely to be most evident. A reduced INSL3 production by fetal
Leydig cells appears to be instrumental in some aspects of the tes-
ticular dysgenesis syndrome induced by intra-uterine exposure to
endocrine disrupting agents, such as phthalates in rats [reviewed
in Ref. (12)]. It is also useful as a monitor to measure effects on
Leydig cell development and functional capacity [reviewed in Ref.
(6)], being less subject to random fluctuation than androgens. A
recent observation resulting from a study of 1200 normal men
in Australia also needs to be pursued. It was shown in this study
that even young healthy men showed substantial variation (>4-
fold) in their circulating levels of INSL3, presumably reflecting a
very varied Leydig cell functional capacity (9). Whilst the absolute
levels of this hormone are probably still sufficient to support nor-
mal physiology, it poses the question as to the causes of such
variation, and the long-term impacts, for example, in terms of
supporting gonadotropin-induced androgen action later in life.
Leydig cell numbers once established in puberty do not appear
to change substantially during the remainder of life, there being
very little evidence for Leydig cell loss or proliferation in the adult
(50). Whilst in the human it has been reported that there is a
loss of Leydig cells in old age (51), only recognizably mature cells
were counted here, excluding cells which may have dedifferenti-
ated. Longitudinal studies are needed here to explore these aspects
further.

CONCLUSION
Insulin-like factor 3 is an important new downstream effector
of the HPG axis, which in the male, unlike androgens, does not
appear to be subject to acute fluctuation, but through positive
feed-forward mechanisms, rather acts to buffer the stimulus of LH
(directly via Leydig cells) and of FSH (indirectly via Sertoli cells)
on both steroidogenesis as well as germ cell production, respec-
tively (Figure 2). Moreover, as a constitutive measure of Leydig cell
functional capacity, it also acts as a kind of “memory” for historical
insults which may during development, and possibly also in later
life, have impacted on the final capacity of the testes to produce
androgens.
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