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Deep Learning-Based
adiomics Model for
ifferentiating Benign and
alignant Renal Tumors1
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Abstract
OBJECTIVES: To investigate the effect of transfer learning on computed tomography (CT) images for the benign and
malignant classification on renal tumors and to attempt to improve the classification accuracy by building patient-level
models. METHODS: One hundred ninety-two cases of renal tumors were collected and identified by pathologic
diagnosis within 15 days after enhanced CT examination (66% male, 70% malignant renal tumors, average age of
62.27 ± 12.26 years). The InceptionV3 model pretrained by the ImageNet dataset was cross-trained to perform this
classification. Five image-level models were established for each of the Slice, region of interest (ROI), and rectangular
box region (RBR) datasets. Then, two patient-level models were built based on the optimal image-level models. The
network's performance was evaluated through analysis of the receiver operating characteristic (ROC) and five-fold
cross-validation. RESULTS: In the image-level models, the test results of model trained on the Slice dataset [accuracy
(ACC) = 0.69 and Matthews correlation coefficient (MCC) = 0.45] were the worst. The corresponding results on the
ROI dataset (ACC = 0.97 and MCC = 0.93) were slightly better than those on the RBR dataset (ACC = 0.93 and
MCC = 0.85) when freezing the weights before the mixed6 layer. Compared with the image-level models, both
patient-level models could discriminate better (ACC increased by 2%-5%) on the RBR and Slice datasets.
CONCLUSIONS: Deep learning can be used to classify benign and malignant renal tumors from CT images. Our
patient-level models could benefit from 3D data to improve the accuracy.
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troduction
he widespread use of various imaging modalities has increased the
cidental detection of renal tumors, particularly computed tomography
T) [1,2]. Simultaneously, the incidence of benign histology in surgical
ecimens has also increased [3]. Small renal tumors accounted for 85%
renal cell carcinomas, and 20%-40%of these were benign pathological
dings such as cysts and angiomyolipoma(AMLs) [4]. At CT scans, it is
t difficult to be diagnosedwhenmacroscopic fat appears, but diagnosis
challenging for AMLs with minimal fat. The differential diagnosis of
nal tumors is the most important prognostic factor affecting patient
rvival and management.
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Table 1. General Information of Dataset

Characteristic Benign Malignant P Value

Patients
Number of samples (n %) 58 (30.21) 134 (69.79)

Tumor location .002
Exophytic (n %) 33 (42.31) 45 (57.69)
Mesophytic (n %) 21 (27.27) 56 (72.73)
Endophytic (n %) 4 (10.81) 33 (89.19)

Gender .432
Male (n %) 36 (28.35) 91 (71.65)
Female (n %) 22 (33.85) 43 (66.15)

Age (mean ± SD, years) 62.40 ± 13.83 62.22 ± 11.57 .926

The differences in patient tumor location, gender, and age between the two groups were assessed
using χ2 test, χ2 test, and one-way ANOVA, respectively.
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Radiomics has been proposed to extract quantitative features from
diographic images and build models relating image features to
thological results [5]. In the past few years, some radiomics models
ve been proposed to classify renal tumors. Hodgdon et al. [6] used
xture analysis to differentiate AMLs from renal cell carcinoma
CC). Raman et al. [7] applied a random forest to predict the
thology of renal tumors. Feng et al. [8] used machine-learning–
sed quantitative texture analysis of CT images to identify different
pes of small renal tumors. However, the features adopted for these
udies were explicitly designed or handcrafted, including their shape,
tensity, texture, and wavelet textures [9]. These low-throughput
atures were selected based on radiologists' expert knowledge, which
ight limit the potential of the radiomics model.
Recently, the advent of graphics processing units and large training
tasets has sparked tremendous advancement in computer vision
pabilities with convolutional neural networks (CNNs) [10]. When a
fficiently large training dataset is available, a CNN can automatically
tract high-throughput features and avoid the complicated process of
tificial feature extraction [11]. CNNs have shown strong perfor-
ances in medical fields. Esteva et al. [12] trained a CNN model with
00 dermatological images and the corresponding pathological results
d achieved the ability to classify benign and malignant skin cancers.
oreover, Arevalo et al. [13] applied a CNN to classify mammography
ass lesions and achieved excellent performance with results of 79.9%-
.0% in terms of area under the receiver operating characteristic
OC) curve (AUC). However, whether such an approach can assist in
curately differentiating benign frommalignant renal tumors based on
T images has not yet been fully explored.
Unfortunately, the labeled medical data are inadequate and not
sily available [14]; this is also the case for renal tumor data. Transfer
arning is often used to solve small dataset problems. However, most
searchers only trained the last fully connected (FC) layers [15,16].
hus, regulating the trainable layers in transfer learning is worthwhile
investigate which approach is best for renal tumor recognition.
oreover, applications of CNN models in the medical image field
ainly utilize 2D data, for example, chest radiograph classification
7] and mitotic detection of histological images [18]. These methods
nore the contexts of image sequences on the z-axis. A 3D CNN
odel was built for a special application [19]. However, there is a
arth of pretrained 3D models. Moreover, such models carry high
mputational costs, which restrict their application in medical fields.
In this study, we aimed to classify benign and malignant renal
mors from CT images by taking advantage of transfer learning. This
per also discussed the effects of freezing different weight layers
ring transfer learning and selecting one optimal image-level model.
n this basis, two patient-level models were established by merging
ultislice CT image features. We hypothesized that CNN transfer
arning (image-level model) can be used to classify renal tumor CT
ages and that comprehensive consideration of each patient's full set
images (patient-level model) can improve diagnostic accuracy.

aterials and Methods

eneral Information
From January 2013 to September 2018, a total of 192 cases of renal
mors (mean maximum diameter, 48.19 mm; range, 5-160 mm)
entified by enhanced CT examination were collected in our hospital.
he collection of this dataset was approved by the Institutional Review
oard, and we obtained waived written informed consent. Of these
ses, 127 were males, and 65 were females; their average age was
.27 ± 12.26 years. All the patients underwent surgery within
days after CT examination. The final pathological diagnosis

stinguished 134 cases of malignant renal tumors (98, 16, and 20
ses were of American Joint Committee on Cancer stage I, II, and III
0]), including 117 clear-cell RCCs (20, 68, 24, and 5 cases were of
hrman grade I, II, III, and IV [21]), 8 papillary RCCs, and 9 other
CC subtypes. The other 58 cases were benign; these included 50 renal
sts and 8 renal AMLs (Table 1).

cquisition of CT images
The data were collected from a Siemens Somatom Definition Flash
al-source CT and a Philips 128-slice spiral CT. The nonionic iodine
ntrast agent was bolus, injected into the anterior cubital vein at a dose
1.5-2 ml/kg and a speed of 2.5-3.0 ml/s by high-pressure syringe
ith the contrast agent automatic trigger technique. All the studies
volved at least one-phase scanning, including corticomedullary phase
ses (n = 192), nephrographic phase (n = 188) cases, and excretory
ase (n = 118) cases. The scanning parameters were as follows: voltage
0 kV, tube current 260 mAs, thickness of scan layer 5 mm, pitch 1,
ickness of reconstruction layer 1 mm, and a matrix of 512 × 512.

age Preprocessing
Gomes et al. [22] found that the accuracy of RCC subtype
fferentiation with single-phase corticomedullary contrast-enhanced
T was comparable to that of multiphasic imaging. Yan et al. [23]
served a better tumor classification with corticomedullary phase for
ear cell RCC versus papillary RCC. In this study, deep learning was
rformed on the corticomedullary phase CT images. The CNN
odel used for transfer learning was Inception V3 [24] pretrained on
ageNet. Bar et al. [25] migrated a CNN model trained on natural
ages to process tasks using medical images.
Gao et al. [26] also confirmed that images using different CT
tenuation channels obtain better classification results than images
ing a single channel. Therefore, to make full use of the three RGB
put channels in Inception V3, we changed the image according to
ree CT attenuation ranges: normal renal attenuation range (−110 to
0 HU), high attenuation range (20-120 HU), and low attenuation
nge (−40 to 60 HU). The low attenuation range was used to capture
gh-intensity patterns such as those from clear-cell RCC and papillary
CC. The normal renal attenuation range was the most commonly
ed one for the imaging diagnosis of renal regions, as the attenuation
lue was different between various tissues. The high attenuation range
cilitated revealing low-intensity tissue such as cysts and AMLs. The
age preprocessing flow was shown in Figure 1A.
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Figure 1. Flowchart of image preprocessing and datasets setting. A (blue lines) was the flow of image preprocessing. An example of renal/
high-attenuation/low-attenuation CT windowing for an axis renal CT slice. We encode the renal/high-attenuation/low-attenuation CT
windowing into red/green/blue channels. B (green lines) was the flow of datasets setting. The Slice dataset was made up of axial
multichannel renal CT slices. The ROI mask was drawn manually by two experienced radiologists on each image of the Slice dataset. The
RBRmask was generated from the bounding box of ROI mask's contour. The ROI/RBR dataset consisted of ROI/RBR images which were
gotten from slice images and corresponding ROI/RBR masks.
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atasets Setting
In this study, we created three datasets: Slice, region of interest (ROI),
d rectangular box region (RBR). The Slice dataset was composed of
ial CT images selected based on the maximum lesion diameter and
timal representation of the largest lesion area. The ROI dataset
nsisted of region-of-interest images manually indicated by two
perienced radiologists on each image of the Slice dataset. The RBR
taset consisted of rectangular images generated from the bounding box
tumor's contour in each image of ROI dataset. Some other researchers
ve also selected the bounding box approach to confirm tumor areas
9,27]. The flow to create these datasets is shown in Figure 1B.

stablishment of Model
Image-Level Model. To achieve classification of benign and
alignant renal tumors from CT images, we set two nodes (benign/
alignant) in the softmax layer of Inception V3. The other structures
the model remained the same and were initialized by the weights
ained on ImageNet. To explore the effect of freezing different layers
ring transfer learning, we chose the mixed0, mixed3, mixed6,
ixed9, and mixed10 layers as the dividing points. The layers prior to
e dividing point were frozen, which meant that the weights of these
yers were not updated but others could be trained during iteration.
Patient-Level Model. We established two patient-level models to
ake use of the 3D data (Figure 2).
(a) Model one (FC model): For this model, the feature vectors
(1024 × 1 × N) were extracted from all the tumor images
(N images) of a given patient using the optimal image-level
model. Then, we merged them into a one-dimensional vector
(1024 × 1) to form the input tensor of the patient-level model
with Max pooling layer. This layer was used to uniform
the different image sequence lengths. At the end of the model,
we added two FC layers (the first one has 1024 nodes, and the
second one has two nodes for benign/malignant) and the
softmax activation to achieve diagnosis at the patient level.

(b) Model two [gated recurrent unit (GRU) [28] model]: In the
GRU model, the feature vectors (1024 × 1 × N) of each
patient were extracted in the same way as described above;
however, the feature vectors should be concatenated into a 2D
array(1024 × N) as the input image sequence. After two GRU
layers of this model, softmax activation function was used to
achieve the patient-level classification result. This model
considered not only all of a given patient's images but also the
order of the images.

raining Details
The three datasets were divided into training (80%) and testing
taset (20%), respectively. One hundred fifty-three cases (benign/
alignant = 109/44) were assigned to the training dataset. The

Image of Figure 1
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Figure 2. An overview of two patient-level models (model one: FCmethod, model two: GRUmethod). Our approach included three steps.
The first step was learning intraimage features (1024 × 1) from one patient's N renal tumor image based on optimal image-level model
and concatenating features into two-dimensional vectors(1024 × N) as the input tensors of the patient-level model. In the second step,
there were differences between the two models. Model 1 added one Max pooling layer to merge the image sequences into a one-
dimensional vector and FC layers to learn interimage features, while model 2 only added GRU layers. In the third step, the softmax
activation containing two nodes (benign/malignant) was used to realize the diagnosis on the patient-level.
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odel parameter exploration was performed by five-fold cross-
lidation on training dataset. The remaining 39 cases (benign/
alignant = 25/14) were assigned to the testing dataset.
The training dataset were randomly split into five groups in order
perform a five-fold cross-validation. However, because lesion sizes
ried, the number of images differed between patients. If the data
ere divided according to the number of patients, image numbers
tween groups would have been prone to serious imbalance. If equal
vision were performed according to the average number of images
stead, the image sequences of some patients might be truncated. It
ight cause that images of the same patient would appear in both the
aining and validation set, thus ignoring the individual differences.
herefore, we proposed a new approximate equalization method.
rstly, according to the total number of images, we evaluated the
erage image number of each group. Then, based on the principle of
t truncating a patient's image sequence, when the number of
ages of the patient who would be divided across two groups
ceeded twice the space of the current group, all the images of that
tient were assigned to the next group; otherwise, they were added to
e end of the current group.
Having fewer pathological samples of rare cases or benign tumors
uld easily cause data imbalance and cause the recognition result to
nd toward the class with more samples [29,30]. This study had the
milar risk that the number of the patient with malignant tumors
gnificantly higher than that with benign tumors. We reduced the
sk in two ways. On one hand, during the training process, the
nign dataset was dynamically oversampled on patient level and
age level, respectively, to get a balance between malignant and
nign dataset. On the other hand, we selected the optimal threshold
ROC analysis to determine the classification labels.
The server used in this study was equipped with Intel(R) Xeon
) E5-2650 v4 CPUs @ 2.20 GHz (2 CPUs, 24 cores, 2 threads/
re, 128 GB of memory) and an NVIDIA-SMI 384.81. Using
e KERAS deep learning framework, based on numerous
eliminary experiments, we set the number of iterations to 150 in
e image-level model, 100 in the FC model, and 300 in the GRU
odel. In addition, the learning rate was 0.01, and the momentum
as 0.9. At the same time, 2-norm regularization was added to the
RU model.

valuation Methods
To eliminate contingencies in the classification results and evaluate
e performance of the renal tumor classification model, the results
ere compared with pathological findings and evaluated by several
etrics, including accuracy (ACC), sensitivity (SEN), specificity
PEC), negative predictive value (NPV), positive predictive value
PV), Matthews correlation coefficient (MCC), ROC curves, and
UC.
In validation phase, all the metrics were calculated based on the
erage five-fold cross-validation results. In test phase, the final
assification was determined by the majority (≥3) of models with
ve groups of weights, which were trained from five-fold cross
lidation. It could make full use of all the weights to obtain higher
curate.

Image of Figure 2
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Figure 3. Traces of training loss and validation loss (blue solid and dash lines) and validation accuracy (orange lines). A, B, and C columns
were trained on the ROI dataset, RBR dataset, and Slice dataset, respectively. −1, −2, −3, −4, and − 5 denoted freezing the weights of
CNN before mixed0, mixed3, mixed6, mixed9, and mixed10 layers, respectively.
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esults

erformances with Different Depth Transfer Learnings
As presented in Figure 3, for the models trained on the ROI, RBR,
d Slice datasets, the convergence ranges of validation loss were 0.4-
5, 0.5-0.7, and 1.2-1.7, and the averaged validation accuracies after
0 epochs were 89%-94%, 81%-91%, and 70-83%, respectively. It
n also be observed that the ROCs of the ROI and RBR datasets were
milar but steeper than that of the Slice dataset in Figure 4, A-C. The

Image of Figure 3
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Figure 4. ROC averaged on five-fold cross-validation of the transfer learning with freezing different layers for (A) Slice, (B) ROI, and (C) RBR
datasets. (D) The plot of AUC calculated from ROCwith freezing different layers for three datasets. ROI and RBR datasets had larger AUCs
than Slice dataset with statistical significant (P = .001 and .008, respectively), while the differences between ROI and RBR datasets of
AUCs did not reach statistical significant (P = .101).
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nal tumor image-level model trained on the ROI dataset was best; its
lidation loss converged to a smaller value and achieved high validation
curacy. The same model achieved the worst training results on the
ice dataset.
For all the datasets, the validation results of AUCs from freezing the
ixed 0, 3, and 6 layers (corresponding to freezing fewer layers) were
rger in Figure 4D. Other metrics such as SEN, SPEC, PPV, NPV,
CC, and ACC in Figure 5 presented the same trends as the AUCs in
gure 4D. As shown in Figure 5, the above indices remained stable and
high levels until the dividing layer exceeded a critical point. Therefore,
e selected the image-level model created by freezing the weights before
e mixed6, mixed6, and mixed3 layers, respectively, as the optimal
ansfer learning model for the ROI, RBR, and Slice datasets.
We employed corresponding model parameters and thresholds
hich yielded better performance in five-fold cross-validation on our
sting dataset. The results were listed in Table 3. The selected image-
vel model obtained good performance on these datasets, particularly
ROI dataset (ACC = 97%).

omparisons of Patient-Level Models
The two patient-level models based on the selected image-level
odel and 3D contexts were trained with the iteration stopping
iteria (FC model: 100 iterations, GRU model: 300 iterations),
hich were decided by monitoring the average AUC on validation
taset. The evaluation of the five-fold cross-validation on three
tasets was listed in Table 2, which indicated that the training of
age-level and two patient-level models on these datasets did not
ffer from overfitting.
In the test phrase, we employed the five-fold model parameters and
resholds, and the final results were determined by majority vote of
em. The evaluation of test results was depicted in Table 3. The
assification performance improved more obviously on the RBR and
ice datasets than on the ROI dataset. On the RBR dataset, the
provements of the two patient-level models were similar (ACC and
CC increased by 2% and 4%) between the two patient-level models
mpared with the image-level model (Table 3). However, on the
ice dataset, the FC model (ACC increases of 5%) achieved better
rformance than the GRU model (ACC increases of 3%) (Table 3).
In addition, we did a patient-level classification test with small
aximum diameter b4 cm) and large masses on our testing dataset
rge:small = 23:16), respectively. In our training dataset, the number
the larger renal masses was bigger than that of the small renal
asses (98 vs. 55). Therefore, we performed the data balancing
ring training process. All of the patient models had the same
curacy for small (0.94) and large (0.96) renal masses, respectively,
gardless of the models consisting of FC or GRU layers, or trained
ith the ROI or RBR datasets. It meant that our models had almost
e same performance to the different size masses generally.

raining Time
As listed in Table 4, the running times of the transfer learning
odels for renal tumor classification were not significantly different

Image of Figure 4


be
tu

D
In
la

to
ha
di
su
w
kn

Figure 5. The plot of SEN, SPEC, PPV, NPV, MCC, and ACC with freezing different layers for three datasets.

Ta
of

RO

RB

Sli

Im
m
co

298 A Radiomics Model for Differentiating Renal Tumors Zhou et al. Translational Oncology Vol. 12, No. 2, 2019
tween the three datasets. However, it took more time to train the
mor classification CNN, which included more trainable layers.

iscussion
this study, we explored the effects of freezing different numbers of
yers during transfer learning and proposed two patient-level models
ble 2. Validation Result on These Models Trained by ROI, RBR, and Slice Dataset with Weight
CNN Before Mixed6, Mixed6, and Mixed3 Layers Were Fixed, Respectively

AUC ACC SEN SPEC MCC

I dataset
Image-level model 0.98 ± 0.01 0.95 ± 0.01 0.96 ± 0.03 0.94 ± 0.04 0.90 ± 0.02
FC model 0.97 ± 0.02 0.96 ± 0.03 0.96 ± 0.05 0.96 ± 0.06 0.91 ± 0.06
GRU model 0.95 ± 0.04 0.95 ± 0.02 0.96 ± 0.04 0.91 ± 0.09 0.87 ± 0.05

R dataset
Image-level model 0.96 ± 0.04 0.91 ± 0.03 0.93 ± 0.04 0.90 ± 0.09 0.82 ± 0.06
FC model 0.97 ± 0.04 0.95 ± 0.03 0.96 ± 0.04 0.91 ± 0.09 0.88 ± 0.06
GRU model 0.97 ± 0.04 0.97 ± 0.02 0.99 ± 0.02 0.91 ± 0.09 0.92 ± 0.05

ce dataset
Image-level model 0.87 ± 0.09 0.83 ± 0.08 0.86 ± 0.07 0.78 ± 0.13 0.63 ± 0.17
FC model 0.89 ± 0.10 0.86 ± 0.10 0.86 ± 0.13 0.86 ± 0.05 0.70 ± 0.18
GRU model 0.81 ± 0.19 0.86 ± 0.09 0.87 ± 0.13 0.81 ± 0.11 0.70 ± 0.14

age-levelmodel was trained byRBR dataset with weight of CNNbeforemixed6 layer was frozen. FC
odel and GRU model were both based on the image-level model. The former was made up of fully
nnected layers, while the latter consisted of gated recurrent unit layers. Shown in mean ± SD form.

Ta
CN
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fu
differentiate benign from malignant renal tumors. Previous studies
ve demonstrated that renal tumors in CT images can be
fferentiated using texture analysis. Feng et al. [8] established a
pport vector machine classifier based on texture features, which
ere low throughput and predefined by radiologists' expert
owledge, to different small renal tumors, achieving an accuracy
ble 3. Test Result on These Models Trained by ROI, RBR, and Slice Dataset with Weight of
N Before Mixed6, Mixed6, and Mixed3 Layers Were Fixed, Respectively

ACC SEN SPEC PPV NPV MCC

I dataset
Image-level model 0.97 0.95 0.97 0.95 0.97 0.93
FC model 0.95 0.93 0.86 0.93 1.00 0.89
GRU model 0.95 0.96 0.93 0.96 0.93 0.89

R dataset
Image-level model 0.93 0.87 0.91 0.87 0.97 0.85
FC model 0.95 0.93 0.86 0.93 1.00 0.89
GRU model 0.95 0.93 0.86 0.93 1.00 0.89

ce dataset
Image-level model 0.69 0.61 0.42 0.61 0.93 0.45
FC model 0.74 0.76 0.50 0.76 0.70 0.42
GRU model 0.72 0.73 0.43 0.73 0.67 0.35

age-level model was trained by RBR dataset with weight of CNN before mixed6 layer was frozen.
model and GRU model were both based on the image-level model. The former was made up of

lly connected layers, while the latter consisted of gated recurrent unit layers.
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Table 4. Training Time of Different Transfer Learning Models on Three Datasets (min)

Mixed0 Mixed3 Mixed6 Mixed9 Mixed10

ROI dataset 97.30 83.10 67.80 58.50 56.00
RBR dataset 94.20 80.20 66.30 54.60 51.60
Slice dataset 95.40 80.30 65.00 55.00 54.80

Mixed0, mixed3, mixed6, mixed9, and mixed10 layers were dividing points and represented five
different transfer learning models. In these models, the layers before dividing point were frozen, but
others could be trained. ROI dataset consisted of region-of-interest images. RBR dataset consisted
of rectangular images which were generated from the bounding box of lesion's contour. Slice dataset
was made up of CT cross-sectional images containing target area.

Translational Oncology Vol. 12, No. 2, 2019 A Radiomics Model for Differentiating Renal Tumors Zhou et al. 299
93.9%. In contrast, our image-level model automatically extracted
gh-throughput features, avoiding the complicated feature extraction
ocess and obtaining higher accuracy (97% in the model trained on
e ROI dataset when the CNN weights prior to mixed6 layer were
ed). CNNs have demonstrated strong performances in medical
lds [31], but few applications have focused on renal CT images.
ecently, Lee et al. [32] used the deep learning method AlexNet [33]
classify AMLs and renal cell carcinoma, achieving an accuracy of
.6%. They confirmed that deep features outperformed handcrafted
atures. However, their method ignored the 3D context, which
stricted the recognition performance for renal tumors. Our patient-
vel models made better use of 3D data, thus improving the accuracy.
Our image-level models for renal tumor classification were separately
ained on three different datasets. Both of the average ROC/AUC plots
igure 4) of validation and metrics on testing dataset (Table 3)
monstrate that the classification ability of the model trained on the
ice dataset was the worst. This was not consistent with a previous
udy, which reported that chest radiograph or mammogram
assification models trained with unclipped images can also achieve
od results [17,25]. This discrepancy may have occurred because the
dominal CT Slice images contained multiple organs (e.g., liver,
omach and renal) with weak contrast [34]. The best classification
rformance was achieved when the models were trained on the ROI
taset because this type of preprocessing eliminates interference from
her organs or lesions to the greatest extent. However, drawing the
OI manually involved considerable manual labor, and it was easy to
se details around the boundary regions. Compared with the ROI
proach, generating the RBR dataset was much simpler.
Some researchers have demonstrated that classification of small sample
e medical image data can be achieved by transfer learning [15,16,29].
o improve the transfer learning performance, we experimented with
rying the number of trainable layers. As Figure 4 showed, for the
odels trained on theROI andRBR datasets, the classification ability for
nal tumors remained at similarly high levels but declined significantly
hen the weights of more layers were frozen. This phenomenon
ustrated that common transfer learning methods (which trained only
e last FC layers) [15,16] was not an optimal approach in our study. The
use might be that features extracted directly from the pretrained model
ere unsuitable and insufficient for renal tumor classification.
onsidering the validation loss, accuracy (Figure 3), and training time
able 4), we concluded that the image-level models trained on the ROI
d RBR dataset were most appropriate for discriminating between
nign and malignant renal tumors when with the weights were frozen
fore the mixed6 layer. Meanwhile, for the Slice dataset, the optimal
assification results were obtained by freezing the weights before the
ixed3 layer. In the test, the selected image-level model could obtain
ate-of-the-art performance on the ROI and RBR dataset (ACC: 97%,
%; MCC: 93%, 85%).
In clinical diagnoses, an experienced radiologist usually observes
d detects tumors based on many slices along the z-axis. To make
ll use of 3D CT images, we established two patient-level models
sed on the optimal image-level model. By fusing the learning of
traslice and interslice features, the detection performance for
nal tumors has obviously been improved except for the model
ained on the ROI dataset. These results demonstrate the
fectiveness of our patient-level model. Especially, it was inspiring
at the performance of our model achieved substantial growth on
e RBR and Slice dataset, particularly on RBR dataset approxi-
ately caught up with the model trained on the ROI dataset
ables 2 and 3). The GRU layers could use all the features from the
tire series of one patient's images while referring to the order of
age sequence [35]. The FC layers also could use all the features
ter unifying the different image sequence lengths with Max
oling layer. Our patient-level models considered the 3D contexts
ficiently and should be improved as greater numbers of 3D images
e accumulated.
Our study had several limitations related to the specific application of
nal tumor classification as well as to general aspects of deep learning.
rst, our models could not detect specific subtypes of lesions that
diological experts might diagnose from images, such as clear-cell RCC
d papillary RC. In future work, we will collect more data concerning
e different subtypes and further investigate fine-grained recognition
6] of renal tumors. Second, the number of renal cases used here was
latively small, which easily caused data distribution imbalance. In our
tasets, the number of the low–nuclear grade tumors was significantly
gger than that of the high–nuclear grade tumors. Therefore, although
l of them could be classified correctly, it was hard to conclude whether
r models had different performance for various nuclear grade tumors
cause of the small test dataset (low vs. high = 22 vs. 3). Three
cations (exophytic, mesophytic, and endophytic) of tumors also had
e same problem.We can use data balance and augmentation to reduce
ese risks, but the amount of data is still the essential reason. In the
ture, larger-scale and multicenter samples will be acquired to improve
e generalization ability of the CNN model for renal tumor
assification. Finally, we found that the model trained on the RBR
taset obtained similar on the ROI datasets. However, our RBR
taset was based on the ROI dataset, which was generated by manual
awing. Thus, we plan to perform more work to explore automatic
BR recognition by regions with CNN features (R-CNN) [37].
In conclusion, CNN transfer learning can be used to classify
nign and malignant renal tumors from CT images. On our datasets,
aining layers of approximately half the initially trained model
rformed better than previous transfer-learning studies in which
ly the last layer was trained. In addition, our patient-level models
tably improved the classification accuracy. Almost all the patients
ith malignant renal tumors were recognized. Such a recognition
ility could eliminate the need for patients identified as benign to
dergo invasive procedures. We believe that as the available datasets
pand and models are further optimized, CNNs will be able to
pport clinicians and reduce human errors.
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