
Citation: Wang, Y.; Li, X.; Chi, Y.;

Song, W.; Yan, Q.; Huang, J. Changes

of the Freshwater Microbial

Community Structure and Assembly

Processes during Different Sample

Storage Conditions. Microorganisms

2022, 10, 1176. https://doi.org/

10.3390/microorganisms10061176

Academic Editor: O. Roger Anderson

Received: 15 May 2022

Accepted: 6 June 2022

Published: 8 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

microorganisms

Article

Changes of the Freshwater Microbial Community Structure
and Assembly Processes during Different Sample
Storage Conditions
Yunfeng Wang 1,2, Xinghao Li 3, Yong Chi 1,2, Weibo Song 1,4 , Qingyun Yan 5 and Jie Huang 2,*

1 Institute of Evolution & Marine Biodiversity, College of Fisheries, Ocean University of China,
Qingdao 266003, China; yunfengwang1@126.com (Y.W.); yongchi94@foxmail.com (Y.C.);
wsong@ouc.edu.cn (W.S.)

2 Donghu Experimental Station of Lake Ecosystems, Key Laboratory of Aquatic Biodiversity and Conservation
of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences,
Wuhan 430072, China

3 Key Laboratory of Regional Development and Environmental Response, Hubei Engineering Research Center
for Rural Drinking Water Security, Hubei University, Wuhan 430062, China; li_xhao@163.com

4 Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and
Technology, Qingdao 266237, China

5 Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern
Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol,
Sun Yat-sen University, Guangzhou 510006, China; yanqy6@mail.sysu.edu.cn

* Correspondence: jhuang@ihb.ac.cn

Abstract: A long-standing dilemma for microbial analyses is how to handle and store samples, as
it is widely assumed that the microbial diversity and community patterns would be affected by
sample storage conditions. However, it is quite challenging to maintain consistency in field sampling,
especially for water sample collection and storage. To obtain a comprehensive understanding of
how sample storage conditions impact microbial community analyses and the magnitude of the
potential storage effects, freshwater samples were collected and stored in bottles with lid closed
and without lid at room temperature for up to 6 days. We revealed the dynamics of prokaryotic
and eukaryotic microbial communities under different storage conditions over time. The eukaryotic
microbial communities changed at a faster rate than the prokaryotic microbial communities during
storage. The alpha diversity of the eukaryotic microbial communities was not substantially influenced
by container status or storage time for up to 12 h, but the beta diversity differed significantly between
the control and all treatment samples. By contrast, no significant changes of either the alpha or beta
diversity of the prokaryotic microbial communities were observed within 12 h of room-temperature
storage, regardless of the container status. The potential interactions between microbial taxa were
more complex when samples were stored in sealed bottles, and the deterministic processes played
an increasingly important role in shaping the freshwater microbial communities with storage time.
Our results suggest that water samples collected and stored without refrigeration for no more than
12 h may still be useful for downstream analyses of prokaryotic microbial communities. If the
eukaryotic microbial communities are desired, storage of water samples should be limited to 3 h at
room temperature.

Keywords: prokaryotic microbial communities; eukaryotic microbial communities; freshwater;
storage conditions; community assembly

1. Introduction

Microorganisms are ubiquitous on earth and play crucial roles in the biogeochemi-
cal cycles of different ecosystems [1–3]. Advances in DNA sequencing technologies and
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bioinformatics have revolutionized the study of the diversity and dynamics of environ-
mental microbial communities [4–6]. However, biases can be introduced at almost all
stages (i.e., sampling, sample storage and processing, DNA extraction and sequencing)
of the experimental process and affect the perception and interpretation of the microbial
community [7–10]. Maintaining consistency in each processing step is therefore essential
during a study. A long-standing dilemma for microbial analyses is how to handle and
store samples, as microorganisms are highly sensitive and can respond rapidly to the
environmental changes [11–13]. Thus, it is reasonable to assume that the microbial diversity
and community patterns would be affected by sample storage conditions.

Although there are evidences showing that room-temperature storage even for a few
days would not strongly affect the overall bacterial community structure of soil or fecal
samples [14,15], the low temperature storage guidelines have been widely accepted and
followed to minimize the impact of storage conditions on the microbial communities. For
example, keeping samples frozen or using a preservative are considered the best alternative
solutions for sample storage during shipping, when it is not feasible to immediately process
samples after sampling [16–18]. But these methods cannot be uniformly applied to large
volumes of water samples, and thus water samples have to be stored at room temperature
for varying duration time in some cases (i.e., remote fieldwork). So far, however, how
and whether storage of water samples at room temperature impacts microbial community
analyses requires a comprehensive investigation.

In addition, water samples are routinely stored in bottles before subsequent processes,
but the storage conditions varied among cases and studies, such as the volume ratio of
enclosed water and the resulting headspace, with the lid closed or not. It is widely known
that microbial respiration will substantially reduce the dissolved oxygen, which may in
turn change the community structures [19,20], and thus keeping a large headspace in the
bottles or leaving the lids of sampling bottles open to ensure sufficient oxygen has become
a common practice in field sampling. However, detailed changes in microbial diversity,
structure and community assembly processes in response to these potential storage effects
on time scales of hours to days remain unclear. It should also be pointed out that the impacts
of bottle containment on microbial prokaryotic assemblages have long been recognized [21].
Significant changes in community composition, species abundance, and metabolic activity
of marine bacteria were frequently observed during bottle storage [22]. The effects of bottle
confinement on microbial eukaryotic assemblages can also be found. The community
structure of marine protist was dramatically changed in response to bottle containment
during a 3-day period [12,13]. In terms of the biomass, the rapid shifts from autotrophic to
heterotrophic marine picoplankton detected in the bottles may result from biased estimates
and do not take place in natural conditions [11,23]. The increasing evidence suggests
that bottle incubations may induce variations in microbial community structure that do
not reflect the initial community [13]. Nevertheless, very few studies have taken both
prokaryotic and eukaryotic microorganisms as a whole community into consideration,
especially in freshwater habitats.

In this study, freshwater samples were collected and stored in bottles with lid closed
and without lid at room temperature from 3 h to 6 days. The prokaryotic and eukaryotic
microbial diversity was then analyzed by high-throughput sequencing of 16S and 18S rRNA
genes. Specific aims were (i) to clarify how the freshwater microbial communities change
during storage in sampling bottles with lid closed and without lid at room temperature
and explore the dynamics of potential interactions between microbial taxa over time and
(ii) to investigate the ecological processes driving microbial community assembly under
different storage conditions.

2. Materials and Methods
2.1. Experimental Design and Sampling

Water samples were collected from the second largest urban lake of China, Lake
Donghu (30◦30′07′′ N, 114◦21′45′′ E), which was located less than 200 m from our laboratory.
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Within 15 min, a total of 60 L lake water were sampled, transported to the laboratory, and
thoroughly mixed. The water samples were aliquoted immediately (1 L per aliquot) and
stored in plastic bottles (1 L) with lid closed (CO) and without lid (UC) at room temperature
without direct sunlight for 3, 6, 12, 24, 48, 96 and 144 h. Each treatment, set up in triplicate,
was serially filtered through 20 µm pore-size nylon filters (Millipore, Ireland) and through
0.22 µm pore-size PVDF membranes (Millipore, Ireland). Another 3 samples were filtered
immediately after being aliquoted as control replicates (CN). All filters were immediately
stored at −80 ◦C until DNA extraction.

2.2. DNA Extraction, PCR Amplification and Sequencing

Total genomic DNA was extracted using the DNeasy PowerWater kit (Qiagen, Beverly,
MA, USA), according to the manufacturer’s instructions. The hypervariable V4 region of the
16S and 18S rRNA genes was amplified using the primers ArBa515F
(5′-GTGCCAGCMGCCGCGGTAA-3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′),
and EK-565F (5′-GCAGTTAAAAAGCTCGTAGT-3′) and EK-1134R (5′-TTTAAGTTTCAGC
CTTGCG-3′), respectively [24–26]. Triplicate PCR reactions were performed in 20 µL vol-
umes containing 0.2 µL of BSA, 0.4 µL of FastPfu Polymerase (TransGen AP221-02), 0.8 µL
of each primer (5 µM), 2 µL of dNTPs (2.5 mM), 4 µL of 5× FastPfu buffer (2.5 units/µL)
and 10 ng of template DNA. Cycling parameters of the 18S amplicon included an initial
denaturation at 95 ◦C for 3 min, followed by 35 cycles of 30 s at 95 ◦C, 30 s at 55 ◦C, 45 s at
72 ◦C and a final extension of 10 min at 72 ◦C. The same PCR program was used to obtain
the 16S amplicon, with the change of 27 cycles being set. PCR products were visualized
by 1% agarose gels and purified using the AxyPrep DNA Gel Extraction Kit (Axygen Bio-
sciences, Union City, CA, USA). Purified PCR products were pooled and sequenced using
2 × 300 bp paired-end sequencing approach on the Illumina MiSeq platform (Majorbio,
Shanghai, China), according to the manufacturer’s protocols.

2.3. Sequence Data Processing and Taxonomic Assignment

Paired-end reads were assembled with FLASH [27] and trimmed with Trimmo-
matic [28], and then the sequences were quality-filtered using QIIME v1.8 [29]. Chimeric
sequences were identified and removed using the Chimera UCHIME algorithm [30] before
downstream analysis. Quality-checked sequences were classified into operational taxo-
nomic units (OTUs) using UPARSE [31] with the 97% sequence similarity cutoff. OTU refer-
ence sequences were blasted against the Silva 16S rRNA database (http://www.arb-silva.de
(accessed on 1 December 2019)) and PR2 18S rRNA database [32]. Singletons and metazoan
OTUs were excluded prior to further analysis. Samples were rarefied to even sequencing
depth by random resampling prior to subsequent statistical analyses [33].

2.4. Network Analysis

Network analysis was performed to investigate the interactions among microbial
taxa using the phylogenetic Molecular Ecological Network Analysis (MENA) pipeline
(http://ieg4.rccc.ou.edu/mena (accessed on 15 January 2021)) based on the Random Matrix
Theory (RMT) [34]. Only the OTUs occurring in more than 50% samples were retained for
subsequent analysis, and the networks were constructed with an identical similarity thresh-
old (0.92). A positive correlation may indicate a mutualistic interaction, whereas a negative
correlation may imply predation or competition among the taxa [35,36]. The co-occurrence
networks were visualized using Gephi (0.9.2, Mathieu Bastian & Sebastien Heymann,
Paris, France) [37]. The connectivity of each node was confirmed by its within-module
connectivity (Zi) and among-module connectivity (Pi) [38,39]. The potential keystone OTUs
were identified by Zi and Pi [34], and one-way analysis of variance (ANOVA) was used to
determine differences in the relative abundance of potential keystone taxa between groups.

http://www.arb-silva.de
http://ieg4.rccc.ou.edu/mena
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2.5. Neutral Community Model

To evaluate the potential importance of stochastic processes on microbial community
assembly, the neutral community model (NCM) was applied to predict the relationship
between the occurrence frequency of OTUs and their relative abundance across the wider
metacommunity [40]. In this model, the OTUs were separated into three partitions ac-
cording to their occurrence frequency, i.e., more frequent (above partition), less frequent
(below partition) and within the 95% confidence interval (neutral partition), in which
the calculation of the 95% confidence interval is based on 1000 bootstrap replicates. The
parameter R2 quantifies the overall fit level to the NCM, and m describes immigration rate.
When R2 approaches 1, it indicates that the community assembly is completely determined
by the stochastic processes, while R2 ≤ 0 indicates the community assembly does not fit to
the NCM [41]. All computations for the NCM were performed in R (version 3.6.3).

2.6. Community Co-Occurrence Pattern

The checkerboard score (C-score) was calculated to explore the dominant co-occurrence
patterns during succession, given that the matrix is relatively unaffected by small changes
in data [42,43]. Firstly, the sequence table was converted into a binary matrix of presence
(1) and absence (0), and then an SIM9 randomization algorithm was used for C-score
calculation based on 30,000 simulations with a burn-in of 500 iterations and sequential
swap randomization algorithm from the R package “EcoSimR” in R (version 3.6.3) [44–46].
The standardized effect sizes (SES) for C-score were evaluated by the difference between
the observed index and the mean of the simulated index divided by the standard deviation
of the simulated index [47]. A positive SES value represents separation, whereas a negative
SES value suggests an overall aggregated pattern [48]. Furthermore, insignificant SES
values will be between −2 and 2, significantly greater than expected SES values will be >2
and significantly less than expected SES values will be <−2 [47,49].

2.7. Statistical Analyses

Statistical analyses were implemented using the R-Studio interface to R (version 3.6.3),
and visualized by the “ggplot2” package [50]. Alpha diversity indices, including OTU
richness and Shannon diversity index, were calculated based on the identified OTUs using
the “vegan” package, and the differences in alpha diversity indices were evaluated using
one-way analysis of variance (ANOVA) [51,52]. Significant differences of the relative
abundances at different taxonomic levels were performed by Welch’s t-test based on
STAMP [53]. Non-metric multidimensional scaling (NMDS) ordination was performed
based on the Bray–Curtis distances to investigate the overall dissimilarity of microbial
communities. Analysis of similarities (ANOSIM), permutational multivariate analysis of
variance (PERMANOVA) and multiple-response permutation procedure (MRPP) based
on Bray–Curtis distances were conducted to test the differences of microbial communities
between storage conditions. Mantel tests were performed to reveal the Spearman’s rank
correlation between the Bray–Curtis dissimilarity of microbial communities and the storage
time based on Euclidean distances. Principal component analysis (PCA) was carried out
using the “prcomp” function in R package “ggbiplot”.

3. Results
3.1. Effect of Sample Storage on Community Composition

A total of 1,922,491 and 1,612,295 high-quality prokaryotic and eukaryotic sequences
were obtained from 45 samples, which clustered into 3553 and 905 OTUs at the 97% simi-
larity level, respectively. After filtering, each sample was rarified to the same sequencing
depth (n = 27,744 for 16S; n = 22,420 for 18S). Good’s coverage values ranged from 0.983 to
0.998 for each sample, indicating that the majority of the microbial taxa had been recovered.

In the control group (CN), Actinobacteria was the most abundant phylum (in terms
of sequencing reads), accounting for 37.13% (±0.40%) of the total bacteria abundance, fol-
lowed by Proteobacteria (27.47 ± 4.28%), Bacteroidetes (14.73 ± 1.45%) and Cyanobacteria
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(10.71 ± 5.56%) (Figure S1A). The relative abundances of Actinobacteria, Bacteroidetes,
Chlorobi and Firmicutes decreased with the increase of storage time, whereas those
of Proteobacteria, Cyanobacteria, Verrucomicrobia, Chloroflexi and Planctomycetes in-
creased (Figure S1A). At the genus level, the relative abundance of Pseudomonas, My-
cobacterium and norank_c_Cyanobacteria increased with storage time, while the opposite
trend was observed for the genera hgcI_clade, CL500-29_marine_group, Fluviicola, MWH-
UniP1_aquatic_group and Polynucleobacter (Figure 1A).
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During the first 12 h, the relative abundances of top 15 prokaryotic taxa (at phylum
and genus levels) were not significantly different between the two storage conditions,
except for the phylum Planctomycetes (Figure 2A,B). During 24–144 h, the proportion of
Proteobacteria (Pseudomonas and unclassified Comamonadaceae) was statistically lower
in the group with lid closed (CO) compared to the samples without a lid (UC), whereas
Actinobacteria (hgcI_clade, CL500-29_marine_group and Mycobacterium), Bacteroidetes
(Fluviicola), Chloroflexi, Planctomycetes, Gemmatimonadetes, Firmicutes and Spirochaetae
exhibited the opposite trend (p < 0.05, Figure 2C,D). Additionally, the relative abundances
of Synechococcus and MWH-UniP1_aquatic_group were also significantly higher in the CO
group (p < 0.05, Figure 2D).

Ciliophora, Chlorophyta and Ochrophyta were the most prevalent eukaryotic phyla
in the control group, accounting for 57.15 ± 3.44%, 20.37 ± 5.93% and 16.51 ± 4.37% of the
total reads, respectively (Figure S1B). The relative abundances of Ciliophora (Tokophrya,
Frontonia, Tintinnidium and Stokesia) and Chlorophyta (Chlamydomonas) declined with
increasing storage time, while the proportions of Ochrophyta (Cyclotella and Nitzschia) and
Centroheliozoa (Sphaerastrum) increased over time (Figures 1B and S1B).
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During the first 12 h, the relative abundances of all top 15 eukaryotic taxa were
not statistically different between the CO and UC groups, except for the phylum Stra-
menopiles_X and two genera, Nitzschia and Chrysophyceae_Clade-C_X. (p < 0.05, Figure
S2A,B). After samples were stored for 24 h, the relative abundances of the phyla Ciliophora,
Stramenopiles_X, Mesomycetozoa, and unclassified_k_Alveolata and the genera Stokesia
and unclassified_d_Eukaryota were significantly lower in samples with lid closed (CO)
than in the UC group; however, the opposite trend was observed for Fungi, Cercozoa,
Centroheliozoa, Lobosa, Streptophyta, unclassified_k_Opisthokonta and Frontonia (p < 0.05,
Figure S2C,D).

3.2. Effect of Sample Storage on Microbial Diversity

No significant changes in richness and Shannon diversity were observed for either
prokaryotes or eukaryotes during storage for up to 12 h, regardless of the storage conditions
(Figure 3). With increasing storage time (24–144 h), the alpha diversity indices of prokary-
otes were significantly higher in the group with lid (CO) than in the UC group (p < 0.05,
Figure 3A,C), whereas the opposite pattern was observed in the eukaryotic microorganisms,
as indicated by the Shannon index (p < 0.05, Figure 3D).

Nonmetric multidimensional scaling (NMDS) ordination exhibited a clear aggrega-
tion for samples stored for 12 h or less (Figure 4), which was further confirmed by the
dissimilarity tests (ANOSIM, PERMANOVA and MRPP) (Table 1). Meanwhile, an obvious
segregation of the microbial communities was observed in samples after 24 h storage. As
storage time increased, the microbial communities were clearly separated along the first
NMDS axis (Figure 4). Mantel test analysis showed that there were significant positive
relationships between the Bray–Curtis dissimilarity of microbial communities and storage
time in both CO and UC groups (r ≥ 0.789, p < 0.001, Figure S3). In addition, compared
to the control group, the eukaryotic microbial communities varied significantly after 3 h
of storage, whereas the prokaryotic microbial communities did not change significantly
within 12 h of storage (Figure 4, Table 1).
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The biotic factors that may affect the microbial communities were further investigated
by principal component analysis (PCA), which indicated that the microbial communities
under different storage conditions were correlated with different taxa (Figure S4). Specif-
ically, the microbial community within 12 h was mainly associated with Actinobacteria,
Ciliophora and Bacteroidetes, whereas it correlated with Chloroflexi, Cyanobacteria, Planc-
tomycetes and Verrucomicrobia in samples in sealed containers after storage of 24 h, and
Proteobacteria may hold the influential positions in samples without lid over time. The
first two principal components accounted for 52.6% of the microbial community variation
(34.4% and 18.2% for PC1 and PC2, respectively).



Microorganisms 2022, 10, 1176 8 of 16

Table 1. Dissimilarity tests showing the differences of microbial communities under different storage
conditions based on the Bray–Curtis distances.

Groups
ANOSIM PERMANOVA MRPP

R p R2 p Delta p

Prokaryotes

3–12 h
CO vs. UC −0.085 0.900 0.024 0.861 0.316 0.924
CO vs. CN −0.066 0.578 0.118 0.216 0.302 0.097
UC vs. CN −0.126 0.746 0.103 0.324 0.315 0.155

24–144 h
CO vs. UC 0.571 0.001 0.245 0.001 0.504 0.001
CO vs. CN 0.670 0.004 0.320 0.004 0.447 0.005
UC vs. CN 0.883 0.001 0.347 0.002 0.535 0.002

Eukaryotes

3–12 h
CO vs. UC 0.048 0.245 0.066 0.330 0.302 0.256
CO vs. CN 0.464 0.011 0.276 0.009 0.311 0.005
UC vs. CN 0.479 0.006 0.281 0.006 0.325 0.006

24–144 h
CO vs. UC 0.175 0.030 0.123 0.024 0.540 0.014
CO vs. CN 0.433 0.013 0.299 0.008 0.510 0.001
UC vs. CN 0.367 0.038 0.265 0.003 0.571 0.005

ANOSIM: analysis of similarities; PERMANOVA: permutational multivariate analysis of variance; MRPP: multiple-
response permutation procedure. Significant differences (p < 0.05) are shown in bold. CN: control group, CO:
with lid closed, UC: without lid.

3.3. Effect of Sample Storage on Microbial Networks

To explore the potential influence of storage conditions on microbial interactions,
co-occurrence networks were constructed based on OTU relative abundance (Figure 5).
During the first 12 h, the network of CO samples had more nodes (667 vs. 639), more edges
(1435 vs. 1120) and a higher average connectivity (4.303 vs. 3.505) as compared with the
UC group (Table 2). Similarly, the network of the CO group after 24 h also had more nodes
(596 vs. 494), more edges (2372 vs. 1883) and were more complex, with the higher average
connectivity (7.960 vs. 7.623) and higher average clustering coefficient (0.165 vs. 0.150),
compared with the UC network (Table 2). In addition, a higher proportion of positive
correlations was observed in samples stored for up to 12 h, whereas negative correlations
increased over time (Table 2).

Table 2. Network topological properties of CO and UC networks.

Network Topological Properties
3–12 h 24–144 h

CO UC CO UC

Nodes 667 639 596 494
Edges 1435 1120 2372 1883

R2 of power law 0.918 0.905 0.780 0.799
Average clustering coefficient (avgCC) 0.204 0.204 0.165 0.150

Average connectivity (avgK) 4.303 3.505 7.960 7.623
Average geodesic distance (GD) 7.616 7.100 5.625 4.960

Geodesic efficiency I 0.185 0.181 0.237 0.264
Positive edges 0.815 0.828 0.536 0.492

CO: with lid closed, UC: without lid.

The topological roles of nodes in the network were classified into four categories (i.e.,
network hubs, module hubs, connectors, and peripherals) based on their within-module
connectivity (Zi) and among-module connectivity (Pi) values (Figure S5). The majority
of OTUs were peripherals in both the CO and UC groups. In the early period (3–12 h),
the proportion of module hubs was higher in the CO group compared to the UC group
(11 vs. 5, Table S1), whereas the latter group had more connectors (6 vs. 1, Table S1),
indicating that more interactions between OTUs occurred within their own modules in
samples with closed lids, and more connections among taxa occurred in the group without
a lid. A similar result was obtained for the later period (24–144 h, Figure S5). The top three
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keystone taxa (including module hubs and connectors) under different storage conditions
are shown in Figure S6. The relative abundance of OTU_794 (Chrysophyceae_Clade-C_X)
and OTU_5218 (unclassified_f_Comamonadaceae) was significantly higher in samples
stored for 12 h compared to samples stored for 3 or 6 h (p < 0.05). After storage for 24 h,
the relative abundances of four taxa, i.e., OTU_5218 (unclassified_f_Comamonadaceae),
OTU_714 (unclassified_f_Chytridiomycetes), OTU_4441 (unclassified_f_Rhodocyclaceae)
and OTU_713 (unclassified_f_Sphaeropleales_X), decreased significantly with storage time
(p < 0.05), whereas there was a significant increase in the proportions of the other two OTUs,
OTU_2770 (Aphanizomenon) and OTU_4879 (Methylotenera) (p < 0.05).
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Figure 5. The networks visualizing the OTUs interactions in different groups ((A) 3–12 h in CO group;
(B) 3–12 h in UC group; (C) 24–144 h in CO group; (D) 24–144 h in UC group). The nodes are colored
according to the phylum classification, and the size of each node represents the node degree. Each
node corresponds to an OTU, and the edges between nodes correspond to positive (red) or negative
(green) correlations. CO: with lid closed, UC: without lid.

3.4. Effect of Sample Storage on the Microbial Community Assembly

The neutral community model (NCM) and checkerboard score (C-score) were used to
quantify the effect of sample storage on the microbial community assembly (Figures 6 and S7).
The relative contribution of stochastic processes to the prokaryotic and eukaryotic microbial
communities increased during the early period (3–12 h), which then decreased over time.
Notably, the role of stochastic processes in shaping the eukaryotic microbial community
dramatically decreased after storage for 24 h. The proportion of the variation in the oc-
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currence frequency of the eukaryotic microbial communities in the CO group was always
slightly higher than that in the UC group, whereas the opposite situation occurred in the
prokaryotic microbial communities (Figures 6 and S7). Moreover, the estimated immigra-
tion rate decreased gradually with storage time, and it was higher for the CO communities
than for the UC samples, indicating that the dispersal ability was probably more active in
the closed-lid samples. In addition, the checkerboard score (C-score) results showed that
the observed C-score values (C-scoreobs) were slightly higher than the simulated values
(C-scoresim), regardless of the storage conditions (Figures 6 and S7, Table S2). Overall, the
standardized effect size (SES) increased with storage time, suggesting that deterministic
processes were becoming more important in shaping the microbial communities over time.
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Figure 6. Fit of the occurrence frequency of eukaryotic OTUs as a function of mean relative abun-
dances based on the neutral community model for the microbial communities under different storage
conditions (A–E). The solid black line indicates the best fit to the model, and the dashed black line
represents 95% confidence intervals around the model prediction. OTUs that occur within prediction
are shown in green, and OTUs that occur more or less frequently than predicted are shown in blue
and purple, respectively. R2 indicates the fit to the model, and m indicates the immigration rate.
C-score metric based on null models (F). The values of observed C-score (C-scoreobs) > simulated
C-score (C-scoresim) indicate non-random co-occurrence patterns. Standardized effect size (SES) > 2
and <−2 represent significant segregation and aggregation, respectively. CN: control group, CO: with
lid closed, UC: without lid.

4. Discussion

Keeping samples frozen or using a preservative are considered the best alternative
solutions for sample storage during shipping, although it has been shown that room-
temperature storage for a few days would not strongly affect the overall bacterial commu-
nity structure of soil or fecal samples in some cases [17,18]. However, it is quite challenging
to store large-volume-of-water samples at low temperature during remote fieldwork. To
obtain a comprehensive understanding of how storage conditions impact the whole micro-
bial community of water samples, we revealed the detailed changes of both prokaryotic
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and eukaryotic microbial communities under different storage conditions over time. We
further explored the potential microbial interactions and the ecological processes in driving
the microbial communities during storage.

The alpha diversity of both prokaryotes and eukaryotes are not expected to increase
over storage time, as some inactive or dead species may not be detected in the later period
of sample storage [13]. Surprisingly, however, the prokaryotic diversity in the samples
with lid closed increased significantly after 24 h storage compared to the control group
(Figure 3). In contrast to previous reports [12], the eukaryotic richness in the 24–144 h group
was also remarkably higher than in the initial community, irrespective of lid status. The
micro-environmental change during storage may benefit the growth of some dormant/rare
species and contribute to the detection of higher diversity in the samples after 24 h storage,
indicating that the microbial diversity changed rapidly under different environmental
conditions [22,54,55]. The NMDS analysis showed that the microbial communities were
affected by both closed lid and storage time, especially when samples were stored for
more than 12 h (Figure 4). The dissimilarity tests further suggested that samples should be
processed immediately (within 3 h) if the eukaryotic microorganisms are the target taxa,
whereas a dramatic change of the prokaryotic microbial community was found after 12 h
storage (Table 1). This is consistent with the fact that eukaryotes are more sensitive to
environmental changes [56,57].

Uneven or non-specific PCR amplification efficiencies and the differential gene copy
number per cell/individual are known to be inherent biases of PCR-based sequencing
technology [58,59]. Thus, the observed changes in relative abundances do not necessar-
ily reflect a true change in the absolute abundance. In this study, triplicate PCRs were
performed to minimize the PCR bias effects, which are supposed to apply equally to all
samples within a specific environment [60,61]. With the increase of storage time, it was
presumed that sealed bottles created a hypoxic environment, which would be unsuitable
for aerobic microorganisms to thrive [62,63]. After 12 h of storage, the relative abundance of
aerobic Proteobacteria (Pseudomonas and unclassified Comamonadaceae) were dramatically
lower in the low-oxygen habitat (CO) than in the UC group (Figure 2D). By contrast, a
micro-aerobic environment was maintained for the samples stored without lid by allowing
gas exchange across the air–water interface, which may inhibit the growth and propagation
of anaerobic microorganisms [64]. The proportions of Synechococcus, hgcI_clade, CL500-
29_marine_group, LD12 and MWH-UniP1_aquatic_group were significantly higher under
the low-oxygen conditions in the CO group than in the UC group (Figure 2D), which is
consistent with previous results that anaerobic microorganisms were negatively correlated
with the oxygen level [65,66]. Interestingly, a member of aerobic or facultative anaerobic
bacteria, Planctomycetes (Phycisphaeraceae and Planctomycetaceae) [67], was observed
with higher abundance under conditions of hypoxia (CO), supporting the idea that aerobic
bacteria may still function under anoxic conditions [68].

The effects of nutrient variation on microorganisms under different storage conditions
should also be taken into account. The dramatic decrease of Chlamydomonas, hgcI_clade,
CL500-29_marine_group, norank_f__LD12_freshwater_group and Synechococcus over stor-
age time could be partially attributed to nitrogen or phosphorus consumption and defi-
ciency, as previously shown [66,69]. This could further influence the ciliate community as
the proportion of their potential prey (i.e., small phytoplankton and bacteria) may decrease
over time. Previous studies showed that the tintinnids community can be strongly affected
by the resource availability [70], which may explain the significant decrease in this group
after 12 h of storage. Conversely, as observed in this study, the lack of nutrients may benefit
the growth of Ochrophyta, which are frequently dominant in oligotrophic lakes [71,72].

This study highlighted the effect of possible interactions between microorganisms on
microbial community patterns. Co-occurrence network analysis revealed more frequent
interactions between Cyanobacteria and other microorganisms, which may be ascribed
to the influence of the dissolved organic matter from cyanobacterial debris on microbial
community structure [73]. Compared to the later period of storage, co-occurrence positive
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correlations between Cyanobacteria taxa were much stronger during the first 12 h (Figure 5).
One explanation is that the consumption of nutrients with the growth of Cyanobacteria
resulted in nutrient deficiency in the later period, which in turn increased inter-phylum
competition between Cyanobacterial taxa [74]. It has been reported that once the environ-
ment was suitable, the number of Cyanobacteria would dramatically increase, as most
Cyanobacteria taxa share a similar niche [75]. Meanwhile, dormant microorganisms may
revive following environmental change, which could produce more complex interactions
in the network [54]. Moreover, the conspicuous co-occurrence pattern between aerobic mi-
croorganisms (e.g., Actinobacteria, Bacteroidetes and Proteobacteria nodes in Figure 5A,B)
suggests that the aerobic microorganisms had strong positive correlations in the early
period of storage. A remarkable positive correlation between two photosynthetic phyla,
Chlorophyta and Ochrophyta, was also observed during the first 12 h storage in the group
without adequate light (CO), which reminds us that the light transparency of the sampling
bottles is also a major consideration for sample storage. In addition, the decrease of oxygen
levels over time may change the interspecific interactions and the co-occurrence pattern be-
tween aerobic microorganisms (e.g., more Ciliophora and less Bacteroidetes, Actinobacteria
nodes in Figure 5C,D).

Although the contribution of the ecological processes to microbial community as-
sembly varied slightly under different storage conditions, the relative contribution of
deterministic processes played an increasingly important role in the assembly of microbial
communities (Figure 6 and Figure S7). The continuously decreasing concentration of dis-
solved oxygen in the sample caused by microbial activity and respiration may impose a
strong selective environmental filter on the community structure [19,20,63]. On the other
hand, microbial interactions contributed to deterministic community assembly [76], as
indicated by the complex co-occurrence networks, where the percentage of negative edges
gradually increased over time. Moreover, the value of the standardized effect size (SES)
increased notably with the storage time, indicating that the roles of deterministic processes
become increasingly important in the community assembly, especially in the eukaryotic
microbial community [47].

5. Conclusions

This study underlined the importance of the effects of sample storage conditions on
both prokaryotic and eukaryotic microorganisms. Our results indicated that the eukaryotic
microbial community of freshwater samples changed at a faster rate than the bacterial
community during room-temperature storage, regardless of the storage conditions. The
eukaryotic beta diversity changed significantly between the control and treatment samples
stored for more than 3 h, whereas the bacterial community was largely unaffected by
container status or storage time within 12 h of storage at room temperature. The potential
interactions between microbial taxa were more complex when samples were stored in
bottles with lids. The deterministic processes played an increasingly important role in
shaping the freshwater microbial communities with storage time. These results suggest
that water samples collected and stored without refrigeration for no more than 12 h may
still be useful for bacterial community analyses. If the eukaryotic microbial communities
are desired, storage of water samples should be limited to 3 h at room temperature.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms10061176/s1, Figure S1. Stacked bar charts of the
relative abundance of the prokaryotes (A) and eukaryotes (B) at the phylum level. Shown are the
averages from n = 3. CN: control group, CO: with lid closed, UC: without lid. Figure S2. Significant
differences analysis for eukaryotes between CO (with lid closed) and UC (without lid) at phylum
level (A,C) and genus level (B,D) (the top 15). Shown are the averages from n = 3. *: 0.01 < p ≤ 0.05,
**: 0.001 < p ≤ 0.01, ***: p ≤ 0.001. Figure S3. Mantel tests between Bray-Curtis dissimilarity of
prokaryotic (A,B) and eukaryotic (C,D) microbial communities and storage time. The solid black line
indicates the best fit, and the grey shaded area around the lines represents 95% confidence intervals.
p value and r refer to Mantel tests of Spearman’s rank correlation. CO: with lid closed, UC: without
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lid. Figure S4. Principal component analysis (PCA) biplots for microbial community samples. Arrows
indicate important taxa (top 15) with regard to sample clusters at the phylum level. CN: control group,
CO: with lid closed, UC: without lid. Figure S5. The network nodes were classified by within-module
connectivity (Zi) and among-module connectivity (Pi), with the threshold values of 2.5 and 0.62
to categorize OTUs. CO: with lid closed, UC: without lid. Figure S6. The relative abundance of
potential keystone taxa (top 3) under different storage conditions (A: CO, 3–12 h, B: UC, 3–12 h, C: CO,
24–144 h, D: UC, 24–144 h). Data are presented as mean ± SD. Different letters indicate a statistical
difference (p < 0.05, ANOVA) between groups. CO: with lid closed, UC: without lid, E: Eukaryotes,
P: Prokaryotes. 1: photoheterotrophs, 2: aerobes or facultative anaerobes, 3: aerobes, 4: unknown,
5: anaerobes, 6: photoheterotrophs, aerobes, anaerobes or facultative anaerobes. Figure S7. Fit of the
occurrence frequency of prokaryotic OTUs as a function of mean relative abundances based on the
neutral community model for the microbial communities under different storage conditions (A–E).
The solid black line indicates the best fit to the model, and the dashed black line represents 95%
confidence intervals around the model prediction. OTUs that occur within prediction are shown in
green, and OTUs that occur more or less frequently than predicted are shown in blue and purple,
respectively. R2 indicates the fit to the model, and m indicates the immigration rate. C-score metric
based on null models (F). The values of observed C-score (C-scoreobs) > simulated C-score (C-scoresim)
indicate non-random co-occurrence patterns. Standardized effect size (SES) > 2 and <−2 represent
significant segregation and aggregation, respectively. CN: control group, CO: with lid closed, UC:
without lid. Table S1. The topological characteristics of nodes (OTUs) in the networks. Table S2.
Observed C-scores, simulated C-scores, and standardized effect sizes for microbial communities
under different storage conditions.
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