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Abstract: Cytokines play an important part in many pathobiological processes of chronic 

obstructive pulmonary disease (COPD), including the chronic inflammatory process, emphysema, 

and altered innate immune response. Proinflammatory cytokines of potential importance include 

tumor necrosis factor (TNF)-α, interferon-γ, interleukin (IL)-1β, IL-6, IL-17, IL-18, IL-32, and 

thymic stromal lymphopoietin (TSLP), and growth factors such as transforming growth factor-β. 

The current objectives of COPD treatment are to reduce symptoms, and to prevent and reduce 

the number of exacerbations. While current treatments achieve these goals to a certain extent, 

preventing the decline in lung function is not currently achievable. In addition, reversal of cor-

ticosteroid insensitivity and control of the fibrotic process while reducing the emphysematous 

process could also be controlled by specific cytokines. The abnormal pathobiological process 

of COPD may contribute to these fundamental characteristics of COPD, and therefore targeting 

cytokines involved may be a fruitful endeavor. Although there has been much work that has 

implicated various cytokines as potentially playing an important role in COPD, there have been 

very few studies that have examined the effect of specific cytokine blockade in COPD. The two 

largest studies that have been reported in the literature involve the use of blocking antibody to 

TNFα and CXCL8 (IL-8), and neither has provided benefit. Blocking the actions of CXCL8 

through its CXCR2 receptor blockade was not successful either. Studies of antibodies against 

IL-17, IL-18, IL-1β, and TSLP are currently either being undertaken or planned. There is a need 

to carefully phenotype COPD and discover good biomarkers of drug efficacy for each specific 

target. Specific groups of COPD patients should be targeted with specific anticytokine therapy 

if there is evidence of high expression of that cytokine and there are features of the clinical 

expression of COPD that will respond.
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Introduction
Chronic obstructive pulmonary disease (COPD) is defined as a:

… common preventable and treatable disease, characterized by persistent airflow limita-

tion that is usually progressive and associated with an enhanced chronic inflammatory 

response in the airways and the lung to noxious particles or gases. Exacerbations and 

comorbidities contribute to the overall severity in individual patients.1

COPD is currently one of the most important causes of morbidity and mortality 

worldwide, and is predicted to become the third-leading cause of death by 2020. The 

estimated annual costs of COPD in the US are ∼$50 billion, and most of these costs 

are related to exacerbations requiring hospitalization.
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The etiology of COPD appears to point to interactions 

between environmental factors (particularly cigarette smok-

ing) and genetic factors.2 Chronic cigarette smoking is 

currently the cause of more than 90% of cases of COPD in 

Westernized countries,1,3 but recent studies have described 

a significant prevalence of COPD amongst never-smokers. 

In some countries, such factors as environmental indoor 

pollution from the use of coal or biomass fuel consumption 

may be an important cause.4

The pathological hallmarks of COPD are destruction of the 

lung parenchyma with pulmonary emphysema,  inflammation 

of the small airways with respiratory bronchiolitis, and inflam-

mation of the central airways with chronic bronchitis.5–7 The 

progressive chronic airflow limitation in COPD is likely to 

result from two major pathological processes: remodeling 

and narrowing of small airways, and destruction of the lung 

parenchyma, with the consequent loss of the alveolar attach-

ments of these airways.8 Both small-airway remodeling and 

narrowing and pulmonary emphysema are associated with 

chronic inflammation in the lung periphery.8,9 Pulmonary 

emphysema usually only appears with increasing severity of 

COPD, and can also be present, even severe and diffuse, in 

subjects without airflow obstruction.10 When emphysema is 

moderate or severe, loss of elastic recoil becomes overwhelm-

ingly important, and thus may mask the effects of bronchiolar 

disease on chronic airflow limitation. By contrast, when 

emphysema is mild, the contribution of bronchiolar abnor-

malities to chronic airflow limitation is evident.11

Many patients with COPD have chronic bronchitis 

with increased sputum production. The presence of chronic 

bronchitis may be a predictor of COPD-related death, 

increased risk of pneumonia, and accelerated decline in 

lung function.12,13 The pathophysiological relationships 

between airway mucus secretion and COPD are complex. 

Mucus is the main component of sputum, and its specific 

viscoelastic and rheological properties are due to the pres-

ence of mucins, which are large high-molecular-weight 

oligomeric glycoproteins. Mucins are the main component of 

lower-airway mucus, and several mucins (including MUC2, 

MUC5AC, MUC5B, MUC6, and MUC8) are secreted in the 

lower airways.14–16 Airflow obstruction in COPD is caused 

by small (peripheral) airway lesions, and their intraluminal 

amount of mucus is increased17 and correlates with the degree 

of severity of stable COPD.9

Such comorbidities as cardiovascular disease, meta-

bolic syndrome, osteoporosis, depression, lung cancer, and 

skeletal muscle dysfunction are now recognized to have an 

 important negative impact on quality of life and survival.18 

Other  considerations in the pathophysiology of COPD include 

the development of pulmonary hypertension from hypoxic 

vasoconstriction and the emphysematous process, and the 

occurrence of exacerbations, the frequency of which is usually 

increased with disease severity and triggered mainly by infec-

tions, but also by other such factors as particulate pollution.19

Airway and lung inflammation is a predominant feature 

of COPD.2,8 Although cigarette smokers who do not have 

COPD have a degree of inflammation, those with COPD 

have a far greater degree of inflammation that progresses with 

advancing disease,9 sometimes accompanied by systemic 

inflammation, and inflammation in other nonpulmonary 

organs, such as the heart, blood vessels, and skeletal muscle.18 

Squamous dysplasia is a feature of cigarette smokers that 

may be a precursor to the development of non-small-cell lung 

cancer. Apoptosis remains a potential mechanism underlying 

alveolar destruction, with breakdown of extracellular matrix 

in lung parenchymal tissues. Conversely, there is an increase 

in extracellular matrix in the small airways.7

On the basis of currently available treatments and their 

effects, the objectives of treatment are to reduce symptoms 

and to prevent and reduce the number of exacerbations. 

These goals are achievable, but preventing decline in lung 

function can be more difficult and is probably not achievable 

currently. Bronchodilators form the backbone of symptom-

atic treatment, and the improved long-acting β
2
-agonists and 

anticholinergics, possibly in combination, provide the best 

form of bronchodilator therapy for COPD, with the additional 

effect of reducing the exacerbation rate.1 The addition of 

inhaled corticosteroids to bronchodilator therapy is advocated 

for patients with frequent exacerbations, particularly those 

with more advanced disease. There has been no other addition 

to current treatment options for COPD apart from the recent 

introduction of the phosphodiesterase-4 inhibitor roflumilast, 

which may be useful in reducing exacerbations in patients 

with severe airflow obstruction and chronic bronchitis.1 

Although current developments are focusing on improved 

once-daily combinations of bronchodilators and corticoster-

oids, perhaps the most promising approach to finding agents 

that will stop disease progression or even prevent the decline 

in lung function and reverse the disease process is to block 

aspects of the inflammatory and remodeling processes.20 

Targeting specific cytokines may be important in this.

Overview of inflammation  
in the pathogenesis of COPD
The cellular inflammation in stable COPD is  characterized 

by the presence of increased numbers of  macrophages, 
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 neutrophils, T lymphocytes, dendritic cells and B lympho-

cytes.5–8 Increased numbers of neutrophils and B lymphocytes 

are usually associated with the most severe COPD.5,8 Dur-

ing COPD exacerbations, there is also a recruitment of 

eosinophils, particularly during virus-induced severe COPD 

exacerbations.21 T lymphocytes in COPD are predominantly 

CD8+, but CD4+ cells are also increased. T-helper (Th)-1 and 

T-cytotoxic (Tc)-1 subtypes, characterized by production of 

interferon (IFN)-γ, predominate,5 although Th2 cytokines 

are also increased in stable COPD patients with increased 

interleukin (IL)-4 expression in CD8+ cells (Tc2 cells) from 

bronchoalveolar lavage (BAL).22 In the blood, there are 

increased proportions of IFNγ+ and TNFα+ CD8+ T-cells in 

stable COPD patients correlating with Global initiative for 

chronic Obstructive Lung Disease grades when compared 

with healthy never-smoking controls.23 An increased number 

of Th17 cells is also present in bronchial biopsies of patients 

with stable COPD.24

Many inflammatory cells and mediators are involved in 

the inflammatory process of COPD. It is clear that  cigarette 

smoke itself can directly activate many cells, such as epithelial 

cells or macrophages, to release cytokines and chemokines, 

leading to inflammatory cell recruitment and activation and 

to tissue destruction.2 TNFα, IL-1β, granulocyte- macrophage 

colony-stimulating factor (GM-CSF), and CXCL8 (IL-8) 

are released by airway epithelial cells exposed to cigarette 

smoke,2,25 in addition to transforming growth factor (TGF)-β1, 

which is implicated in the activation of myofibroblasts and 

airway smooth-muscle cells to cause proliferation and 

 fibrosis.26 Alveolar macrophages are also activated by ciga-

rette smoke extract to release a similar profile of cytokines as 

epithelial cells, including TNFα, CXCL8, CCL2 (monocyte 

chemoattractant protein [MCP]-1) in addition to leukotriene 

B
4
 and oxidants (reactive oxygen species).25,26 Alveolar mac-

rophages, like bronchial epithelial cells, can also release a 

number of other chemokines, including CXCL9 (monokine-

induced by IFNγ), CXCL10 (IFN-inducible  protein 10) and 

CXCL11 (IFN-inducible T-cell alpha chemoattractant), 

which are chemotactic for CD8 T cells through the CXCR3 

receptors.25 In addition, there is the synthesis of elastolytic 

enzymes, such as matrix metalloproteinase-2 (MMP-2), 

MMP-9, MMP-12, and  cathepsins.27 Regulation of these 

cytokines is likely to be under the control of nuclear factor 

(NF)-κB, which is activated in macrophages from COPD 

patients.28 An increased number of macrophages in the lungs 

is probably due to increased recruitment of blood monocytes 

to lungs or due to increased local proliferation and survival 

of lung macrophages.25

There are increased numbers of neutrophils in sputum 

and BAL in COPD, and their numbers correlate with disease 

severity.6 Chemotactic signals for neutrophil  recruitment 

include leukotriene B
4
, CXCL1 (previously known as 

growth-related oncogene [GRO]-α), CXCL2 (GROβ), 

CXCL3 (GROγ), CXCL5 (epithelial neutrophil-activating 

peptide 78), and CXCL8, the expression of which is increased 

in COPD, and likely to be derived from alveolar macrophages 

and epithelial cells.25 GM-CSF and granulocyte CSF may 

increase the survival of neutrophils.25

There is now increasing interest in the participation 

of the inflammasome in COPD, which could be the origin 

of some cytokines. The inflammasome’s primary role is 

defending against invading pathogens, including bacteria 

and viruses. The innate immune system is characterized 

by its ability to recognize and respond to an array of infec-

tious agents and endogenous molecules, such as double-

stranded deoxyribonucleic acid and extracellular adenosine 

 triphosphate released during cell and tissue injury. This is 

mediated through the detection of these pathogen-associated 

and danger-associated molecular patterns by receptors termed 

pattern-recognition receptors. These include the Toll-like 

receptors (TLRs), the intracellular retinoic acid-inducible 

gene-like helicases, and the intracellular nucleotide-binding 

oligomerization domain-like receptors (NLRs). NLRs are 

characterized by three domains, including an N-terminal 

interaction domain that mediates protein–protein  interactions 

with downstream signaling intermediates and that can be 

used to categorize the NLRs into five subfamilies: NLRA 

(containing an acidic transactivation domain), NLRB 

 (containing a baculovirus inhibitor of apoptosis protein 

repeat), NLRC (containing a caspase-recruitment domain), 

NLRP (containing a pyrin domain), and NLRX (containing 

an unknown domain). NLRs respond to pathogen-associated 

and danger-associated molecular patterns through the for-

mation of inflammasomes: multimeric cytoplasmic protein 

complexes that act as molecular platforms for the activation 

of inflammatory caspases following stimulation by foreign 

agonists. A typical inflammasome is composed of an NLR, 

an adaptor protein, such as apoptosis-associated speck-like 

protein containing a caspase-recruitment domain (ASC), and 

an effector caspase that activates proinflammatory cytokines, 

in particular IL-1β and IL-18. Three NLR proteins have been 

shown to form inflammasomes: NLRP1, NLRP3 (NALP3, 

also known as cryopyrin or pyrin-containing Apaf 1-like 

protein 1), and NLRC4 (also known as Ipaf). Stimulation of 

the NLRP3 leucine-rich repeat domain by a foreign  agonist 

is postulated to unfold the NLRP3 molecule, enabling 
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 recruitment of the ASC adaptor proteins and procaspase 1. 

Thus, the inflammasome acts as a platform for the autoprote-

olytic cleavage of procaspase 1 to produce active caspase 1, 

which in turn cleaves pro-IL-1β and pro-IL-18 to promote 

their secretion in conjunction with the alarmin high-mobility 

group box 1.29 In COPD, there is evidence of an increase in 

the number of CD8 T-cells expressing TLRs 1, 2, 4, 6, and 

TLR2/1, with only TLR2/1 increased on lung CD4 T-cells 

and TLR2 on CD8 natural killer T-cells.30 There is evidence 

that TLRs are involved in the release of cytokines, such as 

IL-12 and IL-17 from T-cells.

There is a very long list of cytokines and chemokines that 

have been implicated in the many facets of the pathogenesis of 

COPD. Some of these have been supported through genome-

wide association studies on COPD, lung function, and COPD 

complications.31 Proinflammatory cytokines of importance 

include TNFα, IFNγ, IL-1β, IL-6, IL-17, IL-18, IL-32, and 

thymic stromal lymphopoietin (TSLP). Several chemokines 

are also involved, but these have been recently reviewed24 

and so will not be reviewed here, outside of CXCL8, which 

has traditionally been considered as a cytokine. Among the 

growth factors, we will review the role of TGFβ superfamily 

and other profibrotic growth factors with more published data 

on their potential role in the pathogenesis of COPD.

Individual cytokines involved  
in the pathogenesis of COPD
IL-1
Both IL-1α and -β bind to a single IL-1 receptor (named 

IL-1R1), and are proinflammatory cytokines produced 

mainly by monocytes, macrophages, and fibroblasts.32,33 

Mice lacking IL-1R1 have reduced neutrophilic inflamma-

tory response to cell death, but not to a bacterial infection, 

and decreased  tissue damage from inflammation, whereas the 

acute monocyte response to cell death, important for tissue 

repair, is much less reduced,34 suggesting that blocking the 

IL-1 pathway will not affect the host response to microbial 

pathogens. The IL-1 receptor antagonist (IL-1RN or IL-1RA) 

binds to IL-1R and inhibits the binding of both IL-1α and -β, 

neutralizing their activity, and thus acting as an endogenous 

counterregulatory mechanism.35

Cells immunoreactive for IL-1α and -β are increased 

in bronchial biopsies from patients with stable COPD 

 compared to non-COPD controls,36 even though this finding 

for IL-1β was not recently confirmed.29 There are increased 

levels of serum, sputum, and BAL IL-1β37–40 in patients with 

stable COPD. Animal models of COPD provide discordant 

data on the role of the NLRP3 inflammasome in driving 

IL-1β-modulated smoke-induced lung inflammation.38,41,42 

Originally, it was suggested that IL-1β played a role in 

smoke-induced emphysema and airway remodelling,41 but 

more recent data in mice favor a role for inflammasome-

independent induction of IL-1β in driving smoke-induced 

inflammation.38,42 This is in line with a recent unpublished 

clinical trial showing that canakinumab, a monoclonal anti-

body neutralizing IL-1β, was ineffective in the  treatment of 

stable COPD.43 Another IL-1β blocking antibody, MEDI8986, 

is currently undergoing a clinical trial in COPD.44

IL-5
IL-5 is a cytokine produced by the Th2 lymphocytes usually 

associated with asthmatic airway inflammation, but may 

also be involved in the pathogenesis of COPD, particularly 

during exacerbations. Sputum levels of IL-5 protein, BAL 

T-cell IL-5 expression, bronchial mucosal IL-5 messenger 

ribonucleic acid (mRNA) and peripheral lung IL-5 protein 

expression in patients with stable COPD are low/absent and 

not different from control subjects.45–48 Similarly, the number 

of IL-5+ immunoreactive cells is not significantly different 

in the bronchial mucosa (including submucosal glands) of 

patients with chronic bronchitis, with or without COPD, 

when compared with control subjects, and interestingly, other 

cells (mainly plasma cells) outside of T lymphocytes are the 

major sites of IL-5 production.49–51 Sputum levels of IL-5 

in patients with stable COPD correlate with the degree of 

eosinophilia and response to glucocorticoids of these patients, 

suggesting that these subjects have an overlap syndrome 

asthma/COPD.52,53 In addition, soluble IL-5Rα is increased 

during virus-induced COPD exacerbations,54 but in patients 

with mild/moderate COPD during an exacerbation of the 

disease, IL-4 and IL-5 expression was not changed compared 

to stable disease.50,55

GM-CSF
GM-CSF is released in the COPD lung mainly from infiltrat-

ing cells.56 Proinflammatory cytokines, such as TNFα, IL-17, 

and bacterial lipopolysaccharide can induce in vitro the 

release of GM-CSF from cells. In vitro exposure to  cigarette 

smoke extract decreases the release of GM-CSF from bron-

chial epithelial cell lines,57 and in line with this effect, a single 

exposure to cigarette smoke decreased lung GM-CSF mRNA 

in animals,58 but in animal models, repeated cigarette smoke 

exposure increased lung GM-CSF expression.59,60 In mouse 

models of cigarette smoke and lipopolysaccharide exposure, 

treatment with a neutralizing anti-GM-CSF monoclonal 

antibody reduced the number of BAL macrophages and 
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neutrophils and the lung expression of many inflammatory 

mediators.61–64 In vitro stimulation of CD8+ T-cells isolated 

from the lungs of patients with stable COPD using anti-

CD3-ε antibodies activating the T-cell receptor induced the 

secretion of GM-CSF.65 There are no published studies com-

paring if these cells isolated from the lungs of age-matched 

control smokers with normal lung function released different 

amounts of GM-CSF compared with those isolated from the 

lungs of patients with COPD. Sputum levels of GM-CSF, 

but not peripheral lung GM-CSF expression, were increased 

in patients with stable COPD compared to control subjects 

in some studies56,66 and decreased in others.67 There are no 

published studies using GM-CSF blockers in patients with 

COPD. MOR103 is a fully human monoclonal antibody that 

selectively neutralizes human GM-CSF, and is being devel-

oped in the area of inflammatory diseases, ie, rheumatoid 

arthritis (http://www.morphosys.com/node/2563).

IL-6
IL-6 may play an important role in the progression of COPD 

severity.68 IL-6 may also contribute to the pathogenesis of the 

autoimmune response observed in the lungs of the patients 

with more severe stable COPD.69 IL-6 is a potent inductor 

of C-reactive protein (CRP) production in the liver, and 

increased IL-6 plasma levels are associated with increased 

CRP levels in patients with stable COPD.70,71 Plasma levels 

of IL-6 are increased in patients with stable COPD compared 

to controls,72 are persistent in their duration, and may con-

tribute to the increased risk of depression associated with 

COPD and also to its mortality.73–77 However, other studies 

suggest that increased plasma levels of IL-6 are limited to 

patients with stable COPD and concomitant cardiovascu-

lar  comorbidities.78 IL-6 levels are also increased in the 

sputum of patients with stable COPD compared to control 

subjects.79,80 Several anti-IL6 blocking antibodies have been 

developed and have been used in clinical trials of rheumatoid 

arthritis and several cancers with some efficacy,81 but there 

are no data on patients with COPD. Interestingly, COPD 

patients who walked the most had the lowest plasma CRP 

and IL-6, suggesting that an intervention to promote walking 

may reduce systemic inflammation in COPD.82

Thymic stromal lymphopoietin (TSLP)
TSLP is a cytokine of the IL-7 family, is produced mainly 

by stromal cells, including mast cells,83–86 and is involved in 

the activation, expansion, and survival of T lymphocytes and 

dendritic cells. TSLP expression in the airway epithelium is 

inducible through a NF-κB-dependent pathway.87,88 Its action 

is mediated by a heterodimeric receptor composed of IL-7Rα 

and TSLP receptor (TSLPR). Some functions of TSLP and its 

receptor overlap that of IL-7 and its receptor, despite signal-

ing predominantly through signal transducer and activator of 

transcription (STAT)-5 at variance with IL-7Rα, and thus this 

represents an alternative pathway to the IL-7/IL-7Rα axis. 

In human airway smooth-muscle cells, TSLPR signaling is 

mainly mediated by STAT3.89

In vitro TSLP and TSLP-R expression in human airway 

smooth-muscle cells is increased after chronic exposure to 

cigarette smoke extract,90 and TSLP is a mediator of cross 

talk between airway smooth-muscle and mast cells.91 TSLP 

and TSLP-R-blocking antibodies neutralize the increased 

contraction of airway smooth-muscle cells induced by ciga-

rette smoke extract,90 suggesting a role for this pathway in 

bronchoconstriction. TSLP has also been implicated in the 

induction of glucocorticoid resistance in Th cells during 

airway inflammation by controlling the phosphorylation 

of STAT5.92 In addition, TSLP may amplify alternatively 

activated airway macrophage polarization and chemokine 

production.93 An increased number of cells expressing TSLP 

mRNA has been reported in the bronchi of stable COPD 

patients and control smokers with normal lung function,94 

and increased TSLP immunostaining has been shown in the 

smooth muscle of patients with stable COPD compared to 

nonsmoking subjects.95 Blocking antibodies have been devel-

oped (http://www.freepatentsonline.com/8232372.html),96 

but there have been no studies on COPD so far.

CXCL8
CXCL8 levels are markedly elevated in the sputum of patients 

with stable COPD, and are correlated with disease severity.97,98 

Blocking antibodies to CXCL8 and related chemokines inhib-

its certain types of neutrophilic  inflammation in experimental 

animals.99 The neutralization of CXCL8 with a blocking 

antibody significantly reduces the neutrophil chemotactic 

activity of sputum from patients with stable COPD;100,101 

however, this reduction is only partial, indicating that other 

neutrophil chemotactic factors, such as leukotriene B
4
 and 

the activated complement factor C5a, are also involved.99 

However, CXCL8 plays a major role in neutrophil chemotaxis 

caused by alveolar macrophage-derived conditioned media, 

and this is most effectively inhibited by dual antagonism of 

CXCR1 and CXCR2 receptors.102

The mean sputum levels of CXCL8 are significantly 

higher in α
1
-antitrypsin-deficient patients than in patients 

with COPD with normal levels of α
1
-antitrypsin,103 and 

enhanced CXCL8 expression is associated with increased 
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neutrophil chemotactic activity of sputum from patients. 

In addition, there is an increase in BAL levels of CXCL8 in 

current smokers with pulmonary emphysema and in stable 

COPD.104,105 A slight, albeit significant, increase of CXCL8 

protein epithelial expression is present in the bronchial 

mucosa of severe stable COPD patients compared to control 

healthy smokers.106 In contrast, no significant differences 

are observed in the submucosa of stable COPD and control 

subjects at both mRNA and protein level,106 suggesting a 

minor role of this chemokine in the bronchial mucosa of 

stable COPD patients.

The expression of CXCL8 mRNA and protein is increased 

1.5-fold in the bronchiolar epithelium of patients with COPD 

compared to control subjects.107,108 There is also increased 

expression of CXCR2 mRNA, a CXCL8 receptor, in the 

bronchiolar epithelium of COPD patients compared to con-

trol subjects, suggesting that this axis may be relevant in the 

recruitment of neutrophils to the small airways.109 A mono-

clonal antibody against CXCL8 improved dyspnea in patients 

with COPD, but had no effect on lung function, health sta-

tus, or 6-minute walking distance.110 A CXCR2 antagonist 

(navarixin, formerly CH527123) reduced sputum neutrophils 

in patients with stable COPD, but has not shown any clinical 

benefit.111 Another CXCR2 antagonist (AZD5069) reduced 

blood neutrophils in patients with stable COPD without any 

clinical benefit.112 The efficacy of the oral CXCR2 antago-

nist danirixin (formerly GSK1325756B) is currently being 

investigated in a 1-year clinical trial of patients with mild-

to-moderate COPD (http://www.gsk-clinicalstudyregister.

com/study/200163#ps).

IL-17
IL-17, also known as IL-17A, is produced predominantly 

by CD4 and CD8 T-cells,113 known respectively as Th17 and 

Tc17 cells, and can be induced in vitro by different combi-

nations of TGF-β, IL-1 β, IL-2, IL-6, IL-15, IL-18, IL-21, 

and IL-23.114 Human regulatory T-cells can differentiate into 

IL-17-producing cells when stimulated by monocytes in the 

presence of IL-2/IL-15.115 Th17 cells in addition to IL-17A 

also release IL-17F, IL-21, IL-22, GM-CSF, and CCL20, and 

are critical for the clearance of extracellular pathogens, but 

under certain conditions are associated with the pathogenesis 

of several autoimmune and inflammatory diseases.116 IL-17A 

induces the release of CXCL1, CXCL8 and GM-CSF from 

airway epithelial cells and smooth-muscle cells, and thereby 

may orchestrate neutrophilic inflammation.117–119 IL-17A 

can induce IL-6 expression in bronchial epithelial cells and 

fibroblasts,117 and IL-17A, in conjunction with IL-6, is able to 

induce MUC5AC and MUC5B production in primary human 

tracheobronchial epithelial cells.120 IL-17A is also involved 

in human airway smooth-muscle contraction.121

Serum IL-17A levels are increased in patients with 

stable COPD compared to healthy smokers and nonsmok-

ers, increase with COPD stage, and are inversely correlated 

with predicted forced expiratory volume in 1 second (FEV
1
) 

percentage.122 IL-17+ neutrophils are present in induced spu-

tum from patients with stable COPD, but it remains unclear 

whether the sputum levels of IL-17A are increased in patients 

with stable COPD.122,123 There is a significant increase in the 

number of IL-17A+ immunoreactive cells in the bronchial 

submucosa of mild/moderate and severe COPD patients 

compared to control nonsmokers,24,124 and in the peripheral 

lungs of stable COPD patients compared to smokers with 

normal lung function and nonsmoking subjects.122,125

Anti-IL-17 antibody in cigarette smoke-exposed mice 

reduced IL-17 levels in lung homogenates, and reduced 

neutrophil response in BAL and the degree of small-airway 

inflammation.126 Th17 cells have been shown to mediate glu-

cocorticoid-resistant airway inflammation and airway hyper-

responsiveness in mice.127 In IL-17–/– mice exposed to cigarette 

smoke, neutrophil inflammation and the number of apoptotic 

type 2 alveolar cells were decreased.128 IL-17RA is required for 

CCL12 expression, macrophage recruitment, and pulmonary 

emphysema secondary to cigarette smoke,129 and also for the 

development of elastase-induced pulmonary emphysema,130 

but not oxidant-induced emphysema.131 IL-17 neutralizing, as 

well as anti-human IL-17R (such as brodalumab) antibodies 

are currently available for clinical studies in COPD, having 

recently been reported in a study of patients with asthma.132

IL-18
IL-18 (previously termed IFNγ-inducing factor) is produced 

by alveolar macrophages and the airway epithelium. IL-18 

binds to its receptor (IL-18R) subunit-α (IL-18R1),133 but 

the signaling activity requires also the presence of the 

β-subunit (also termed IL-18R accessory protein or acces-

sory  protein-like).134,135 In the presence of IL-12, IL-18 has 

an important role in Th1/Tc1 polarization. In fact, IL-12 

increases IL-18R expression by Th1 cells, promoting Th1-

cell polarization and proliferation, secretion of IFNγ, and 

macrophage and neutrophil accumulation.135,136 However, 

in the absence of IL-12, IL-18 induces the release of Th2 

and Th17 cytokines (eg, IL-4, IL-5, IL-9, and IL-13). IL-18 

can also act as a cofactor for Th2-cell development and 

immunoglobulin (Ig)-E production, and also plays an impor-

tant role in the differentiation of Th17 cells.135,136 Within the 
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NRLP3 inflammasome complex, autocatalytic cleavage of 

procaspase 1 to active caspase 1 enables removal of IL-1β 

and IL-18 prosequences, resulting in biologically active 

forms of IL-18.137,138

IL-18 may represent a novel master cytokine regulator 

that can drive all of the key pathologies found in stable 

COPD.139 IL-18R1 plays a critical role in the pathogenesis of 

cigarette smoke-induced pulmonary emphysema and inflam-

mation.140–142 IL-18-mediated alveolar endothelial cell death 

may also contribute to vascular destruction and disappearance 

in chronic secondhand smoke exposure-induced pulmonary 

emphysema.143,144 Furthermore, transgenic mice overex-

pressing IL-18 in the mature lung show lung inflammation 

with increased numbers of CD4+, CD8+, CD19+, and natural 

killer 1.1+ cells, pulmonary emphysema, mucus metaplasia, 

airway fibrosis, vascular remodeling, and right ventricle 

cardiac hypertrophy.145 There are increased levels of plasma 

and sputum IL-18146–149 in patients with stable COPD com-

pared to control smokers and nonsmokers. There is also an 

increased percentage of IL-18Rα-expressing T lymphocytes 

and CD8+ T-cells in stable COPD patients compared with 

control subjects.149 IL-18R protein expression is higher on 

alveolar macrophages in peripheral lungs from stable very 

severe COPD patients compared to control subjects.150

The safety of MEDI2338, a monoclonal IgG
1
 anti-

body blocking human IL-18 (http://www.ncats.nih.gov/

files/MEDI2338.pdf), in stable COPD patients has been 

evaluated,151 but apparently its development has been 

discontinued.

IL-22
IL-22 is expressed predominantly in Th1 and Th17 cells, 

particularly in the presence of IL-23,152 which is also 

increased in the epithelium and submucosa of stable COPD 

patients.24 In animal models, IL-22 is a crucial effector 

molecule in host defense against Gram-negative bacterial 

pneumonia.153 Serum and sputum IL-22 are significantly 

increased in the sputum of stable COPD patients, particu-

larly in advanced grades, and of control smokers with nor-

mal lung function compared with nonsmoking subjects.122 In 

the bronchial mucosa, immunostaining for IL-22 is localized 

to endothelial cells, inflammatory cells, and fibroblasts, and 

the number of IL-22+ immunoreactive cells was increased 

significantly in the bronchial epithelium of severe and mild/

moderate stable COPD compared to control nonsmokers, 

but did not differ in comparison with control smokers with 

normal lung  function.24 The number of IL-22+ cells in the 

bronchial submucosa was significantly higher in severe and 

mild/moderate COPD compared to control nonsmokers, but 

did not differ in comparison with control smokers with nor-

mal lung function.24 The proportions of blood IL-22+ cells in 

the CD4+ memory (CD45RA–CD45RO+) T-cell population 

were significantly increased in COPD active smokers, when 

compared with ex-smokers.23 Human bronchial epithelial 

cells also express IL-22R and IL-17, and IL-22 increases 

the expression of antimicrobial proteins, such as lipocalin-2, 

in airway epithelial cells,154 even though in animal models 

neither administration of IL-22 nor of IL-22 blocking 

 antibodies has any effect on lung neutrophilia.155

IL-23
In animal models, chronic cigarette smoke exposure increases 

the expression of IL-23 in the lungs.156,157 In bronchial 

mucosa, immunostaining for IL-23 is localized in endothelial 

cells, inflammatory cells, and fibroblasts, and the number 

of IL-23+ immunoreactive cells is increased in the bronchial 

epithelium of stable COPD patients compared with control 

groups,24 but in the human lung there is no significant dif-

ference in the expression of IL-23R between COPD and 

control groups.158 In contrast, the number of IL-23+ cells in 

the bronchial submucosa was significantly higher in severe 

stable COPD patients compared to control nonsmokers, but 

did not differ in comparison with control smokers or mild/

moderate stable COPD.24 These findings are in line with a 

previous demonstration of increased expression of IFNγ and 

of STAT4, its downstream transcription factor, in bronchial 

biopsies from patients with stable COPD.159 IL-23 induces 

the proliferation of memory T-cells and the secretion of IFNγ, 

and in animal models cigarette smoking increases the lung 

expression of IL-23.156,157 IL-17A production by Th17 cells is 

induced by IL-23.160,161 In vitro, the COPD-associated patho-

genic bacteria Haemophilus and Moraxella spp. provoke a 

3-5-fold higher production of IL-23 from human monocyte-

derived dendritic cells compared to lung commensal bacte-

ria,162 suggesting a potential link between chronic bacterial 

colonization of the lower airways, often present in COPD,163 

and the development of lung cancer in COPD patients, eg, 

by amplification/perpetuation of airway inflammation, which 

has been linked with multiple molecular mechanisms in the 

promotion of lung cancer.164 Blocking anti-IL-23 antibodies 

are effective against neutrophilic inflammation in several 

diseases and in animal models.165

IL-33
IL-33 is another member of the IL-1 family, and is local-

ized to the chromatin in the cell nucleus.166 The cytokines of 
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the IL-1 family – IL-1α/β, IL-1Ra, and IL-18 – have been 

matched to their respective receptor complexes, but the ligand 

for the most prominent orphan IL-1R, ST2,167 is IL-33.166 

Three distinct types of ST2 (also termed IL-33R, IL-1RL1, 

T1, Fit-1, and DER4) exist; a soluble secreted form (ST2), 

a transmembrane receptor form (ST2L), and a variant form 

(ST2V). There is constitutive expression of IL-33 mRNA in 

bronchial smooth-muscle cells, bronchial epithelial cells, and 

high endothelial venule endothelial cells.167,168 The expres-

sion of IL-33 may also be enhanced through activation of 

the inflammasome.169

IL-33R (or ST2) is selectively expressed on Th2 cells (where 

it stimulates the production of IL-4) and on mast cells.167,170 

Soluble ST2 receptor is considered anti- inflammatory in 

animal models,171 and its plasma level is increased in mild/ 

moderate stable COPD compared to control smokers with 

normal lung function.172 In animal models after exposure to 

tobacco smoking, the lung expression of IL-33 and ST2 is 

markedly enhanced and associated with neutrophil and mac-

rophage infiltration and expression of inflammatory cytokines 

(IL-1β, TNFα, IL-17), chemokines (CCL2), and MUC5AC in 

the lower airways. These changes are all significantly prevented 

by treatment with neutralizing anti-IL-33 antibody.173

TNFα
TNFα is an important chemotactic protein for neutrophils; in 

fact, the inhalation of TNFα induces sputum neutrophilia and 

airway hyperresponsiveness in normal subjects.174 In vitro, 

TNFα also induces CCL13 (monocyte chemoattractant 

protein 4) expression, a chemokine with potent chemotactic 

activities for eosinophils, monocytes, T lymphocytes, and 

basophils. TNFα may also activate structural (such as epi-

thelial and smooth-muscle cells) and inflammatory cells of 

the airways to release inflammatory mediators (such as oxi-

dants).175,176 TNFα stimulates the secretion of MUC5AC from 

bronchial epithelial cells,177 upregulates adhesion–molecule 

expression on inflammatory, epithelial, and endothelial cells, 

facilitates the migration of inflammatory cells into the lower 

airways, and activates profibrotic mechanisms involved in 

airway remodeling.175,176

TNFα levels are increased in the blood and sputum of 

COPD patients.72,97 They also have significantly higher levels 

of soluble TNFR1 in sputum and TNFR2 in blood. In addi-

tion, sputum sTNF receptors, but not blood sTNF receptors, 

are inversely related to FEV
1
 in patients with COPD.178 COPD 

patients also show an increased TNFA gene expression in 

their skeletal muscles.179 The severe weight loss present in 

some patients with advanced COPD might also be due to 

skeletal muscle-cell apoptosis (muscle cachexia), as a result 

of increased levels of circulating TNFα.175,180

Glucocorticoids, low-dose theophylline, phosphodiesterase-4 

inhibitors, and p38 mitogen-activated protein-kinase inhibi-

tors potently inhibit TNFα production in vitro and/or in 

vivo.181 Selective TNFα inhibitors in clinical development 

include nonhuman or chimeric antibodies (infliximab, 

afelimomab, and CytoTab), humanized antibodies (adali-

mumab and certolizumab pegol [CDP870]), human TNFR 

(onercept), or TNFR fusion protein (etanercept). TNFα-

converting enzyme (ADAM17) is an MMP-related enzyme 

that is required for the release of soluble TNFα, and might be 

another attractive target. Small-molecule TNFα-converting 

enzyme inhibitors, some of which are also MMP inhibitors, 

are in development as oral TNFα inhibitors.175,182

Three studies of infliximab in patients with mild-to-

severe COPD have reported no beneficial effects on various 

clinical parameters, including exacerbations, dyspnea, and 

FEV
1
.183–185 However, in a study of 157 patients with COPD, 

infliximab increased the incidence of pneumonia and malig-

nancy, and more patients receiving infliximab had to discon-

tinue therapy due to adverse events.183 Systemic blockade 

of TNFα can lead to increased risk of infection, recurrence 

of tuberculosis, and reactivation of hepatitis B, as well as 

worsening of congestive heart failure. It has been proposed 

that anti-TNFα therapy may be more beneficial for COPD 

exacerbations than as maintenance therapy, but the TNFα 

blocker etanercept was found to be no more effective than 

prednisone in the treatment of COPD exacerbations.186

TGFβ superfamily and other  
profibrotic growth factors
The TGFβ superfamily consists of secreted growth factors 

involved in the regulation of different cellular processes, 

such as cell growth, development, differentiation, prolifera-

tion, motility, adhesion, and apoptosis.187 Increased levels of 

TGFβ1 have been reported in such lung diseases as COPD, 

asthma, and pulmonary fibrosis.26 TGFβ1 is highly expressed 

in the epithelium and macrophages of small airways in 

patients with COPD, but it is still not known whether this is an 

expression of COPD or the effect of cigarette smoking.188–190 

The bone morphogenic protein and activin membrane-bound 

inhibitor (BAMBI) is a membrane-spanning glycoprotein that 

acts as a negative regulator of TGFβ signaling.191 BAMBI 

is induced by members of the TGF family – β-catenin, 

SMAD3, and SMAD4191 – and acts as a pseudoreceptor.192 

In the peripheral lungs of patients with stable COPD com-

pared with control subjects and in vitro there is a marked 
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upregulation of BAMBI expression (alveolar macrophages 

and alveolar epithelial cells) after infection ex vivo of the 

lung tissue with nontypable Haemophilus influenzae that 

is present in the peripheral lung tissue in around a third of 

patients with stable COPD, but absent in the controls.193 

Connective tissue growth factor is a cysteine-rich peptide 

involved in cell proliferation, migration, and extracellular 

matrix production.194 Conflicting results have been reported 

in peripheral lung tissue from patients with stable COPD 

showing downregulation195 or upregulation196 of mRNA for 

connective tissue growth factor compared with control smok-

ers with normal lung function.

There is increased cytoplasmic expression of fibroblast 

growth factor (FGF)-2 in bronchiolar epithelium and its 

nuclear localization in bronchiolar smooth-muscle cells 

in COPD patients compared with controls. In addition, 

increased FGFR-1 expression in bronchiolar smooth-muscle 

cells and increased FGF-1 and FGFR-1 are seen in the bron-

chiolar epithelium from COPD patients.197 In COPD patients, 

an increase in FGF-2 expression is also observed in vascular 

smooth-muscle cells and the endothelium of small pulmonary 

vessels. In contrast, vascular smooth-muscle cells of large 

pulmonary vessels show increased staining for FGF-1 and 

FGFR-1 compared to controls.198

Cytokines in COPD exacerbations
IL-1β, IL-6, CXCL8, IL-10, and TNFα levels are increased 

in sputum supernatants during COPD exacerbations.53,199–204 

Elevated levels of IL-1β in exhaled breath condensate and 

sputum during COPD exacerbations, particularly when associ-

ated with bacterial infections, have been reported.205 Bacterial 

exacerbation has also been associated with higher levels of 

sputum CXCL8 and TNFα, leading to enhanced neutrophil 

recruitment and activation.186,204 Increased sputum CD8+ T 

lymphocytes have been reported during COPD exacerbations, 

with a relative reduction in the ratio of IFNγ/IL-4-expressing 

CD8+ T lymphocytes.204 Therefore, a switch toward a Tc2-like 

immunophenotype during COPD exacerbations could trigger 

recruitment of eosinophils, and might be activated by the 

immune response to some microbial pathogens. However BAL 

CD4 T-cells from patients with COPD exacerbations exhibited 

a Th1 (IFNγ release) and Th2 (IL-4 release) cell–cytokine 

phenotype during acute infection with rhinovirus.206

However soluble, IL-5RA is increased during virus-

induced COPD exacerbations,54 and in animal models 

of COPD after exposure to rhinovirus, there is increased 

lung expression of IL-5.207 In addition, patients with mild/ 

moderate COPD during an exacerbation of the disease show 

an increased number of TNFα mRNA-producing cells in 

their bronchial mucosa in comparison with stable COPD 

patients,50,208 but mRNAs for IL-4 and IL-5 were not changed 

during COPD exacerbations compared to stable disease.50,55 

Severe exacerbations of COPD are associated with increased 

neutrophilia and upregulation of epithelial mRNA for CXCL5 

(epithelial neutrophil-activating peptide 78), CXCL8 (IL-8), 

CXCR1, and CXCR-2 in comparison with stable disease.209 

Systemic inflammation is now increasingly recognized as a 

feature of COPD, and increased serum levels of IL-6 during 

COPD exacerbations have been described.210

Bacterial and virus infection can synergistically interact 

to increase the severity of inflammatory response. Indeed, it 

has been shown that rhinovirus and H. influenzae coinfection 

at COPD exacerbations is associated with increased levels 

of serum IL-6 compared with those exacerbations without 

both pathogens.211 Similarly, levels of endothelin 1, a potent 

vasoconstrictor and bronchoconstrictor peptide with impor-

tant proinflammatory activities in the airways, tend to be 

higher during COPD exacerbation associated with viral 

or chlamydial infection, both in sputum and in plasma.212 

Virus-induced COPD exacerbations are also associated 

with increased plasma levels of IL-10, IL-12, and IL-15,213 

whereas all COPD exacerbations (with or without respira-

tory virus isolation) are characterized by increased plasma 

levels of IL-2, IL-13, and vascular endothelial growth 

factor.213

Plasma levels of IL-21, a cytokine important for B-cell 

development and antibody synthesis,214 are decreased during 

COPD exacerbations compared with stable COPD patients, 

but without statistically significant association between IL-21 

levels and antiviral capsid protein (VP1) of rhinovirus IgG
1
 

antibody concentrations that have shown cross-neutralizing 

activity across different rhinovirus strains.215,216 This deficient 

synthesis of IL-21 might be linked to the susceptibility to 

COPD exacerbations via other mechanisms, eg, IL-21 is also 

critical for CD8 T-cell memory.217

Plasma levels of IL-19 and IL-22 have been shown to be 

decreased during COPD exacerbations.218 IL-19, a proinflam-

matory cytokine, belongs to the IL-10 family, and is expressed 

in epithelial cells, endothelial cells, and  macrophages.219 

Plasma adiponectin concentrations increase during COPD 

exacerbations and return to baseline several days to weeks 

later; the clinical relevance of this is unknown.220

Although many cytokines are potentially involved both at 

the lung level and in terms of systemic inflammation, there 

has only been one study of anticytokine therapy with the 

TNFα blocker etanercept for COPD exacerbations.186
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Inhibiting cytokines  
in COPD: current knowledge  
and future strategies
There is clear evidence for a heightened inflammatory 

response in COPD associated with enhanced expression of a 

number of key cytokines. Although many of these have been 

proposed to play a role in COPD pathophysiology, there have 

been very few trials of agents that block cyto kines, usually 

with blocking antibody approaches. And yet inhibiting cytok-

ines looks like a most promising way of inhibiting the inflam-

matory process that is likely to underpin the progressive nature 

of this disease. So far, clinical experience has been mainly 

limited to the use of anti-TNFα and anti-CXCL8 (IL-8), where 

the effects observed have not been encouraging. The lack of 

effect of an anti-TNFα approach in COPD is in stark contrast 

to the positive beneficial effect of this approach in rheumatoid 

arthritis. This particular experience would beg the question as 

to whether blocking of the other cytokines listed earlier would 

be of ultimate benefit in the treatment of COPD.

Just because the levels of a cytokine or chemokine are 

elevated in COPD does not mean that suppressing its actions 

will necessarily be effective as an anti-inflammatory therapy. 

For example, although the levels of TNFα and CXCL8 are 

both elevated in COPD, and anticytokine approaches proved 

effective in animal models of disease, inhibiting these media-

tors has not been effective in clinical trials of COPD patients. 

Indeed, despite TNFα levels being increased in COPD patient 

sputum and serum and it being known as a major driver of the 

inflammatory response, 6 months’ treatment with infliximab 

showed no clinical benefit, with increased risk of lung cancer 

and pneumonia being observed.185 CXCL8 is chemotactic 

for neutrophils and monocytes, and its levels are increased 

in COPD; however, treatment with an anti-CXCL8 antibody 

was ineffective in COPD, and despite early optimism, more 

than one CXCR2 antagonist has not proved effective in 

large clinical trials either.110,111 Furthermore, canakinumab, 

an anti-IL-1β-specific antibody, has no clinical efficacy in 

COPD either. As listed earlier, other drugs in development 

include antibodies directed against IL-5 (mepolizumab), IL-6 

(eg, tocilizumab), IL-17 (eg, ixekizumab, brodalumab, and 

ustekinumab), IL-18, IL-22, IL-23, IL-33, TSLP, and GM-

CSF. Studies in mouse models may predict the clinical success 

of inhibiting these cytokines selectively, but it is only going 

to be possible to determine whether this approach will work 

by trying these approaches in COPD itself. Compared with 

chemokines, the functional redundancy between different 

cytokines in the pathogenesis of COPD is much less clear, but 

need for targeting groups of cytokines cannot be excluded.

One potential area that may improve success of anticy-

tokine therapies is in the careful selection of patients with 

COPD for these clinical trial studies of specific antimonoclonal 

antibodies. COPD is a mixture of various diseases with distinct 

phenotypes independent of genetic background.221 The clinical 

manifestations of COPD are highly variable between patients, 

and the level of chronic airflow obstruction is not enough to 

encompass the diversity of presentation of COPD.222 Other 

clinical aspects of COPD that contribute to this diversity 

include the degree of pulmonary emphysema and chronic 

bronchitis and the frequency of exacerbations. While defining 

clinical phenotypes of COPD to link with disease outcomes 

is an important outcome of this exercise for both the clinician 

and patient, it is as important to link clinical phenotype to the 

pathophysiological mechanisms that have been delineated so 

far for COPD. Therefore, the identification of the inflammatory 

biomarkers CRP, IL-6, CXCL8, fibrinogen, and TNFα linked 

to mortality indicates the potential importance of these cytok-

ines as targets for COPD treatment. In addition, the COPD 

patient with evidence of eosinophilic biomarkers either in 

blood or sputum may respond to eosinophil-targeted cytokines, 

such as anti-IL-5 antibody, as has been demonstrated in asthma 

patients with evidence of eosinophilic inflammation. At the end 

of the day, it should be possible to define specifically the type 

of inflammation in a particular COPD patient by the expression 

of key cytokines or chemokines. In addition, it makes sense 

to target patients with specific anticytokine therapy if there is 

high expression of that cytokine, and thus direct and indirect 

biomarkers of abnormal cytokine expression will be needed.

The effects of anti-IL-5 and anti-IL-13 antibodies in 

severe asthma223,224 clearly demonstrate the need for both care-

ful patient phenotyping and the need for good biomarkers of 

patient phenotypes and of drug efficacy, so that patients can be 

taken off a treatment if it is ineffective to reduce the risk of any 

possible side effects and to enable a change in drug treatment 

in an adaptive design clinical study or in real life.
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