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Despite more than a decade of research on adiabatic quantum computation (AQC), its decoherence
properties are still poorly understood. Many theoretical works have suggested that AQC is more robust
against decoherence, but a quantitative relation between its performance and the qubits’ coherence
properties, such as decoherence time, is still lacking. While the thermal excitations are known to be
important sources of errors, they are predominantly dependent on temperature but rather insensitive to the
qubits’ coherence. Less understood is the role of virtual excitations, which can also reduce the ground state
probability even at zero temperature. Here, we introduce normalized ground state fidelity as a measure of
the decoherence-induced deformation of the ground state due to virtual transitions. We calculate the
normalized fidelity perturbatively at finite temperatures and discuss its relation to the qubits’ relaxation and
dephasing times, as well as its projected scaling properties.

A
diabatic quantum computation (AQC)1,2, either in its universal form3,4, or in the form of adiabatic
quantum optimization5,6, or quantum simulations7, presents a viable alternative to gate-model quantum
computation (GMQC). Although a part of the original motivation for introduction of the AQC2 was the

promise of the increased stability against decoherence due to the energy gap between the ground and excited
states, the question of the role of decoherence in AQC remains an open one. This uncertainty makes it important
to quantify more precisely the decoherence properties of AQC. A crucial step towards this would be to define a
quantitative characteristic of the decoherence strength in AQC, that plays a role similar to the decoherence time
for GMQC. However, in the case of AQC, decoherence has qualitatively different, static effect on the qubits, not
limiting the operation time of an algorithm8.

In AQC, adiabatic evolution of the ground state of a qubit system realizes the solution of a computational
problem represented by an appropriately designed Hamiltonian, which is typically written as

HS~A sð ÞHDzB sð ÞHP, ð1Þ

where s 5 t/tf with tf being the total evolution time. At s 5 0, one has A(0) 5 1, B(0) 5 0, and the system is
initialized in the ground state of the initial (driver) Hamiltonian HD, which usually consists of the uniform
superposition of all computational basis states. The energy scales A(s) and B(s) are then varied monotonically so
that at s 5 1, A(1) 5 0 and B(1) 5 1. If the evolution is slow enough, an isolated qubit system stays in the ground
state with high fidelity throughout the evolution, and at s 5 1 reaches the ground state of the final (problem)
Hamiltonian HP, which provides a solution to a computational problem.

If the qubit system is weakly coupled to a dissipative environment, two effects are expected. First, the low-
frequency part of the environmental noise moves the system energy levels relative to each other. This results in a
dephasing of the energy eigenstates that eventually suppresses all off-diagonal elements of the qubit density
matrix in the energy basis. However, since the population of the ground state is the only important part of the
computation and the relative phases of the energy eigenstates do not carry any information, this does not affect
AQC. The second effect of the coupling to environment is that it induces thermal transitions between the qubit
energy levels pushing the qubit system towards thermal equilibrium at a temperature T. In the limit of large tf, the
instantaneous probability to be in the ground state asymptotically approaches the Boltzmann distribution, and so
the qubit system loses some of the ground state probability due to thermal occupation of the excited states. Such a
thermal loss of probability can be compensated by multiple iterations of an AQC algorithm as long as it does not

SUBJECT AREAS:
QUANTUM

INFORMATION

QUBITS

THEORETICAL PHYSICS

SUPERCONDUCTING DEVICES

Received
3 October 2012

Accepted
4 March 2013

Published
26 March 2013

Correspondence and
requests for materials

should be addressed to
D.V.A. (dmitri.averin@

stonybrook.edu)

SCIENTIFIC REPORTS | 3 : 1479 | DOI: 10.1038/srep01479 1



scale exponentially with the size of the system, i.e., as long as the
number of excited states within roughly the energy kBT above the
ground state does not grow exponentially.

The preceding arguments provide an intuitive explanation for the
predicted robustness of AQC against local environmental noise in
the limit of weak coupling8–15. When the strength of the coupling
to the environment is increased without changing either the
Hamiltonian or the temperature, the qubit system’s Boltzmann dis-
tribution is still not directly affected. However, it is known that the
decoherence time of the qubits decreases with increased coupling,
and strong coupling to the environment eventually makes the qubits
completely incoherent, rendering them useless for quantum com-
putation. In GMQC, qubit decoherence leads to computation errors
which, without error correction, completely destroy the computation
process. This is why the qubits’ quality factor, which is the ratio of the
decoherence time and the gate operation time, provides a good mea-
sure of the qubit performance in GMQC. It is, however, unclear how
an increase in coupling to the environment, or equivalently decrease
in qubit quality factor, affects AQC.

In this paper, we look closely at what happens to the eigenstates of
the qubit system in AQC when coupling to the environment is non-
negligible but still small enough to allow perturbation expansion. We
introduce the normalized ground state fidelity, defined as the dis-
tance between the open and closed system reduced density matrices
normalized to the Boltzmann ground state probability, as a quant-
itative measure of decoherence-induced deformation of the ground
state in AQC, analogous to the decoherence time for GMQC. We
calculate the fidelity perturbatively and express it through the same
environmental noise correlators that determine the decoherence
times in GMQC. Such an equilibrium calculation of the normalized
ground state fidelity is accurate in the long tf limit, but becomes
approximate when the evolution is too fast for the system to reach
local equilibrium. However, the deviation from the equilibrium dis-
tribution is largest when the rate of relaxation between the eigen-
states becomes extremely small (e.g., near the end of the evolution in
adiabatic quantum optimization). As we shall see, the normalized
ground state fidelity is closely related to the relaxation rate and
becomes close to 1, independent of the detailed probability distri-
bution, when the relaxation is very slow. Therefore, our calculation of
the normalized fidelity can provide a good approximation in all
regions as long as the evolution time is not too short.

Results
Normalized ground state fidelity-definition. We first provide a
definition for the normalized ground state fidelity based on the
notion of fidelity between two density matrices. To ensure
consistent notation throughout this paper, symbols with (without)
‘‘,’’ denote quantities related to the coupled (uncoupled) qubit
system and environment. We use letters m, n to enumerate the
eigenstates and eigenvalues of the qubit system (e.g., jnæ, En),
letters n, m to enumerate the eigenstates and eigenvalues of the
environmental degrees of freedom, and letters a, b to enumerate
the eigenstates and eigenvalues of the total system (qubits 1

environment). The total Hamiltonian is ~H~HSzHBzHI , where
HB and HI are the environment and interaction Hamiltonians,
respectively. In the absence of coupling, HI 5 0, and the
eigenstates of the total system are jaæ 5 jnæfljnæ with eigenvalues
Ea 5 En 1 En. When HI ? 0, the new eigenstates are ~aj i, which
typically are entangled superpositions of the unperturbed states jaæ.
For weak coupling, ~aj i is very close to jaæ and the effect of the
environment is thermalization of the qubit system. Once the
environment is averaged out, the equilibrium of the total system
gives the Boltzmann distribution for the qubits:

Pn~
X

n

e{ EnzEnð Þ=T

ZSZB
~

e{En=T

ZS
, ð2Þ

where ZS~
P

n e{En=T and ZB~
P

n e{En=T are the partition
functions of the qubit system and the environment.

As the coupling strength increases, the deviation of ~aj i from jaæ
grows. In equilibrium, the density matrix of the total system still has
the Boltzmann form ~rSB~

P
a

~Pa ~aj i ~ah j, where ~Pa~e{~Ea=T
.

~ZSB,
with ~ZSB~

X
a

e{~Ea=T being the partition function of the total sys-
tem. However, the reduced density matrix ~rS~TrB ~rSB½ � of the qubit
system alone is no longer given by the Boltzmann distribution. The
deviation from the Boltzmann form provides a good qualitative mea-
sure of how strongly the eigenstates ~aj i are deformed in comparison
to the unperturbed states.

To quantify the loss of fidelity of the ground state due to such
deformation of the energy eigenstates of the uncoupled system, it is
convenient first to separate this effect from the loss of fidelity due to
thermal excitations. This can be done by using normalized ground
state fidelity, which we define as the Uhlmann fidelity16 between the
reduced density matrix ~rS and the ‘‘ideal’’ ground state density
matrix r0 5 j0æÆ0j, normalized to the Boltzmann ground state prob-
ability P0:

F~P{1=2
0 Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0
p

~rS
ffiffiffiffiffi
r0
pq

~

ffiffiffiffiffiffiffiffiffiffiffiffi
~P0
�

P0

q
, ð3Þ

where ~P0~ 0 ~rSj j0h i is the equilibrium probability for the qubits
to be in the ideal ground state when coupled to the environ-
ment. Normalization to the equilibrium Boltzmann ground state
probability P0 is natural in the context of this work, since in the
calculations presented below we adopt the assumption that the qubit-
environment system maintains equilibrium throughout the AQC
evolution. In the weak-coupling limit, no deformation of the eigen-
states is expected. Then ~P0~P0, and Eq. (3) gives F 5 1. This shows
that Eq. (3) indeed correctly separates the effect of the quantum
deformation of the ground state, which can be viewed as the result
of virtual transitions to the excited states, from the thermal loss of
probability. Qualitatively, the effect of the virtual transitions,
expressed in F, is different from that of the thermal transitions in
two important aspects. First, it persists even at T 5 0, when all the
thermal transitions are suppressed. Second, it depends on the
strength of coupling to the environment (or decoherence time of
the qubits), while thermal equilibrium probabilities only depend
on the energy eigenvalues and temperature. Nevertheless, similarly
to the thermal transitions, the virtual transitions reduce the occu-
pation probability of the ground state by transferring it to other low
energy states. In general, beyond the AQC, deviation of the occu-
pation probabilities of an equilibrium quantum system from the
Boltzmann distribution due to non-vanishing strength of coupling
to environment has been studied before as introducing corrections to
classical thermodynamics (see, e.g. Ref. 17–21, and references
therein). In particular, deformation of the ground state by coupling
to an environment, described in our case as a suppression of fidelity,
is known to lead to several physical effects, e.g., suppression of the
persistent current in normal-metal rings22 or violation of the fluc-
tuation-dissipation theorem for the thermal conductance23.

Perturbative calculation of fidelity. We calculate the fidelity (3)
perturbatively and relate it to measurable parameters of the qubit
system and environment. As appropriate for AQC, we assume that
the coupling HI is weak. This allows us to employ the perturbation
theory in HI around the non-interacting state of the qubit system and
the environment. To separate the effects of environment from other
deviations from the perfect adiabatic evolution of an AQC algorithm,
we consider the limit of slow evolution, when the rate of change of the
control parameter of the Hamiltonian is small, e.g., smaller than the
energy relaxation rate of the qubit system. In this case, non-adiabatic
transitions out of the ground state can be neglected, and the
occupation probabilities of the excited states (if non-vanishing)
correspond to local equilibrium at each moment during the
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evolution. While this is obviously not the most general case of time
evolution in AQC, which can be dominated by non-equilibrium
effects, it covers the most important regime of ideal AQC
evolution, and is appropriate for the situation of sufficiently slow
evolution in the presence of small but finite interaction strength
with environment we want to describe. The zeroth-order state of
the perturbation theory in this regime is the state with both the
uncoupled qubit system and environment in equilibrium at the
same temperature T, i.e., the total density matrix of the system
being the product of the density matrices rS~

P
n Pn nj i nh j and

rB~
P

n Pn nj i nh j, where Pn and Pn are the Boltzmann probabilities.
In general, the reduction of the ground state probability due to

finite HI is caused by two effects. First is the change dP0 in the
equilibrium probability P0 (; Pn50) as a result of renormalization
of the energy eigenvalues (Lamb shifts) of the qubit system. Second
effect, conceptually more important for this work, is the probability
transfer into and out of the ground state due to renormalization of
the qubit system wavefunctions. Explicitly, the probability ~P0 that
defines the normalized fidelity (3) can be expressed as

~P0:~Pn~0~TrB,S 0j i 0h j
X

a

~Pa ~aj i ~ah j
" #

: ð4Þ

Introducing interaction-induced corrections to the equilibrium
probabilities ~Pa~PazdPa, where Pa 5 PnPn, and wavefunctions:
~a n,nð Þj i~ nj i6 nj iz d~a n,nð Þj i, we can rewrite this expression to

the lowest non-vanishing order in HI as
~P0~dP0z

X
n

PnTrB,S 0j i 0h j6rB
: ~a n,nð Þj i ~a n,nð Þh j½ �: ð5Þ

Using the relation 0j i 0h j~1{
P

m=0 mj i mh j to transform the
n 5 0 term in Eq. (5) we obtain

~P0~P0zdP0{
X
n=0

C0nP0{Cn0Pnð Þ, ð6Þ

where

Cmn: nh jTrB d~a m,nð Þj i d~a m,nð Þh jrB½ � nj i:

The terms proportional to C in Eq. (6) describe the reduction of
the ground state probability as a result of virtual transitions
between the ground and excited state due to the interaction with
the environment.

Next, we calculate dP0 and Cmn. Quite generally, the interaction
Hamiltonian HI is

HI~
X

j,a

qa
j sa

j , ð7Þ

where sa
j are the Pauli matrices for the jth qubit, a 5 x, y, z, and qa

j are
the corresponding operators of the noise generated by the envir-
onment. As usual, the averages of the noise operators vanish,

qa
j

D E
~0. Then, in the weak coupling regime, the effect of envir-

onment is fully characterized by the noise spectral densities:

Sa
j vð Þ~

ð
dt eivt qa

j tð Þqa
j 0ð Þ

D E
, ð8Þ

where Æ…æ 5 TrB{rB…} is the average over the environmental
degrees of freedom. For simplicity, we limit our discussion to the
most typical case when the noises with different a or j are uncorre-
lated. It is shown in the supplementary information (SI) that the
perturbation expansion in HI in this situation gives

dP0~{bP0

X
j,a,n,m

Pn{dn0ð Þ sa
j,nm

��� ���2 ð dv

2p

Sa
j vð Þ

vmnzv
,

Cmn~
X

j,a

sa
j,nm

��� ���2ð dv

2p

Sa
j vð Þ

vnmzvð Þ2
,

ð9Þ

where sa
j,nm: n sa

j

��� ���mD E
and vnm ; En 2 Em. Substituting (9) into

(6) and then into (3), we obtain

F~1{b
X

j,a,n,m

sa
j,nm

��� ���2ð dv

4p

Sa
j vð Þ Pn{dn0ð Þ

vmnzv

{
X

j,a,nw0

sa
j,n0

��� ���2ð dv

4p

Sa
j vð Þ{ Pn=P0ð ÞSa

j {vð Þ
vn0zvð Þ2

:

ð10Þ

Equation (10) is our main result. The normalized fidelity is well-
defined at T 5 0, when all thermal excitations are suppressed, i.e.,
Pn 5 0 for n . 0 and Sa

j vð Þ:0 at v , 0. Hence, the values of v
around 2vm0, when the denominator in (10) vanishes, do not con-
tribute to the integral. When T ? 0, the divergences that appear at v
5 2vm0 reflect the fact that environment can also create real thermal
excitations of the qubit system. However, the detailed balance rela-
tion, Sa

j {vð Þ~e{bvSa
j vð Þ, ensures that these divergences cancel

each other out and Eq. (10) is well-defined also at T ? 0 (see the SI).

Normalized fidelity for single qubit. Equation (10) is now applied
to specific problems. The first example we consider is a typical
individual qubit with the Hamiltonian

HS~{ eszzDsx½ �=2 ð11Þ

coupled as in Eq. (7), but only through sz, to the environmental noise
with spectral density S(v) (8). In the usual weak-coupling appro-
ximation [see, e.g., Ref. 24], the qubit decoherence time T�2 is given
by

1
T�2

~
1

2T1
z

1
TQ

, ð12Þ

where T1 and TQ are the relaxation and pure dephasing times, given
by

T{1
1 ~ D2�V2� �

S Vð ÞzS {Vð Þ½ �, ð13Þ

T{1
Q ~ 2

�
V2� �

S 0ð Þ, ð14Þ

with V~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2z 2

p
. The standard expressions for the eigenstates of

the Hamiltonian (11) reduce Eq. (10) for the normalized fidelity to
F 5 1 2 D2K/2V2, where

K~

ð
dvS v{Vð Þ

2pv

1{e{v=T

v
{

e{V=Tze{v=T

T e{V=Tz1ð Þ

� �
: ð15Þ

We see that the same noise spectral density that defines the relaxa-
tion and dephasing rates (13) and (14) of the qubits in the GMQC
determines the reduction of the ground-state normalized fidelity in
AQC. In this respect, the main difference between the reduction of
normalized fidelity and the real-time relaxation and dephasing is that
even in the lowest-order perturbation theory, the normalized fidelity
is reduced by the whole spectrum of environmental excitations, and
not just by limited spectral groups resonant with the qubit energy
differences or the low-frequency excitations, as in Eqs. (13) and (14).

To strengthen this comparison, we consider an Ohmic bath char-
acterized by the noise

S vð Þ~gv
�

1{e{v=T
� �

ð16Þ

where, g is a dimensionless coefficient and vc is the cutoff frequency.
In this case, the relaxation time is T{1

1 ~g D2�V� �
coth V=2Tð Þ and

the normalized fidelity is expressed as

F~1{
k
Q

, k:
K
2g

tanh
V

2T
, ð17Þ

where Q 5 T1V is the qubit quality factor due to relaxation. Equation
(15) gives the following expressions for the factor k at low and high
temperatures:
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k~
1

4p

ln vc=Vð Þ{1zp2T2
�

3V2, T=V,

V=Tð Þ2ln vc=Tð Þ, T?V:

( )
ð18Þ

Equation (17) relates the normalized ground state fidelity to the
qubit quality factor, Q, as calculated due to relaxation only. This
shows that the normalized fidelity can be related more closely to
the relaxation (T1) and not dephasing (TQ) processes. Adding a 1/f
low-frequency noise of a realistic magnitude does not change this
conclusion (as discussed in more details in the numerical examples
below). As expected, a larger Q leads to a better F. Figure 1 shows the
factor k in Eq. (17) as a function of temperature for different cut-off
frequencies vc. It exhibits the non-monotonic T-dependence, and
only weak, logarithmic, dependence on vc, which allows one to
estimate F without precisely specifying vc. The factor k is maximal
around kmax^0:5 at T^0:5V, which leads to a minimum normalized
fidelity F^1{ 2Qð Þ{1. Notice that even a qubit quality factor as low
as Q 5 10, which is practically useless for GMQC, leads to F . 95%.

Normalized fidelity for multi-qubit systems. We now consider
multi-qubit systems, starting with a system of N uncoupled qubits.
In this case, the trace in the definition of normalized fidelity (3) can
be taken independently over separate qubits, so that the total F is the
product of fidelities Fj, j 5 1, …, N of the individual qubits: F~PjFj.
For instance, a typical starting point of AQC algorithms is to initialize
the system in the ground state of the Hamiltonian HD (20). Then, the
state of all qubits is the same and can be characterized by the same
normalized fidelity (17). Then,

F~ 1{k=Qð ÞN Q?k^e{kN=Q
�� : ð19Þ

For independent qubits, F scales exponentially with N as a result of
the exponential scaling of the probability for all qubits to remain in
their corresponding ground states. Since Q is inversely proportional
to the noise strength g, by decreasing the noise by a factors of, e.g., 10,
one can achieve the same F with 10 times more qubits.

Next, we focus on how the normalized ground state fidelity
behaves in practical AQC systems. We use as an example the D-
Wave One quantum annealing processor, as the one installed at
the University of Southern California (see Ref. 6). The Hamil-
tonian implemented by the processor has the form of Eq. (1),
with

HD~{
XN

i~1

sx
i , HP~

XN

i~1

his
z
i z

XN

i,j~1

Jijs
z
i sz

j , ð20Þ

where hi and Jij are tunable dimensionless bias and coupling coeffi-
cients. The parameters A(s) and B(s) for this processor are plotted in
Fig. 2b. We calculate F(s) for a ferromagnetic chain (illustrated in
Fig. 2a) with hi 5 0 and Ji,i11 5 21, otherwise known as a quantum
Ising model in a transverse field. Here, the length of the chain is
varied from N 5 2 to 16. Although this model is exactly solvable
(see, e.g., Ref. 27 and references therein), F cannot be calculated
exactly for practical noise models in which the coupling to envir-
onment is dominated by the sz

j terms. Hence, we calculate the nor-
malized fidelity numerically. In the limit NR‘, the model is known
to have a quantum critical point at sc where A(sc) 5 B(sc). At this
point, the chain goes through a quantum phase transition between
quantum paramagnetic and ferromagnetic phases. In the ferromag-
netic phase, the ground state is doubly degenerate with respect to
simultaneous change of signs of all sz

i terms. Figure 2c plots several of
the lowest energy levels of a 10-qubit chain relative to the ground
state energy E0. In the thermodynamic limit (N R ‘), the appearance
of the doubly-degenerate ground state and the minimum in the
energy gap between the ground and the second excited states happen
at the quantum critical point. For the 10-qubit chain of Fig. 2, how-
ever, these happen at slightly different points than the one defined by
A(sc)5 B(sc).

To calculate F(s) for this system, we use a realistic noise model
relevant to the D-Wave qubits25. In this case, the dominant envir-
onmental coupling is to the magnetic flux noise, which couples
directly to the qubit computational basis states represented by the
sz

j operators. The noise spectral density S(v) was characterized in the
earlier experiments, which were consistent with the noise being a
combination of the 1/f low-frequency noise and an Ohmic noise at
high frequencies26. For calculations of F, we take S(v) 5 k(s)[SHF(v)
1 SLF(v)], where SHF(v) is the Ohmic spectral density (16) and
SLF(v) 5 c2/jvj. The coefficient k(s) 5 B(s)/B(sm) appears because
the strength of coupling to flux noise depends on the persistent
current of the flux qubits which changes as a function of s (see SI).
Here, sm is the bias point at which the measurements of g and c are
performed. Based on the experimental data, we use g 5 0.1, c 5

20 MHz and sm 5 0.636. We also assume vc 5 100 GHz for the
high-frequency cutoff and vL 5 1 MHz for the low-frequency cutoff
(based on a tf , 1 ms evolution time of an algorithm). We found that
for these parameters, F is dominantly determined by the high-fre-
quency Ohmic noise and not by the 1/f noise.

In principle, since the total number of energy levels grows expo-
nentially with N, the time required for numerical calculation of F also
grows exponentially. Fortunately, the value of F converges rapidly for
a finite number of retained energy states. Here, we keep all energy
levels for N # 10, and up to 2000 energy levels for larger chains. The
normalized ground state fidelity F(s) of the 10-qubit chain is plotted
as a function of s in Fig. 2d. The fidelities of chains with other lengths
(and also coupled systems other than chains) are qualitatively the
same as the one plotted in Fig. 2d. It is clear from the figure that F(s) is
minimum close to the critical point sc. Notice also that the fidelity
approaches 1 as s R 1, which is the result of HP commuting with HI,
with only sz

j terms and negligible other types of coupling to envir-
onment. This again reflects the fact that F depends rather on relaxa-
tion than dephasing.

Figure 3 shows the numerical results for the normalized ground
state fidelity for N-qubit chains with N 5 1 to 16 at the critical point.
For all chain lengths, F(sc) is better than 90%. It should be empha-
sized that these are the minimum fidelities at the quantum critical
point sc. The normalized fidelity at all other points is larger, and near
s 5 1, is very close to 1 as shown in Fig. 2d. We have also plotted in
Fig. 3 the normalized ground state fidelity of N uncoupled qubits

ω Ω

Ω

Figure 1 | The temperature-dependent factor k in the expression (17) for
the normalized ground state fidelity of an individual qubit in the presence
of Ohmic environment with cut-off frequency vc.
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(with the same parameters) at different N based on the exponential
scaling of Eq. (19). The scaling and magnitude of F at large N is better
for the ferromagnetic chain than for the uncoupled qubits. A plaus-
ible reason for this is that the spin-spin interaction introduces addi-
tional rigidity into the chain dynamics making it less susceptible to
the environmental perturbations, and therefore increasing the fidel-
ity. Unfortunately, it was not possible to pursue numerical calcula-
tions beyond 16 qubits, as direct perturbation approximation would
break down when F strongly deviates from unity. A naive exponen-
tial extrapolation of the data points to N 5 128 (representing the
worse case) yields a lower bound of 0.47 for F, meaning that the
eigenstates could retain their quantum properties without error cor-
rection for such a large-size system. As in uncoupled qubits, if one
can reduce the noise by a large factor, the size of the chain can be

increased by the same factor while keeping F unchanged. In addition,
other techniques such as dynamical decoupling28 or error correc-
tion29 could be employed to enhance the normalized ground state
fidelity at large scales.

Discussion
Finally, we discuss how the normalized ground state fidelity should
affect the performance of AQC. First, we notice that the actual equi-
librium ground state probability at point s is ~P0 sð Þ~P0 sð ÞF2 sð Þ,
where P0(s) is the Boltzmann probability. Therefore, a suppression
of the normalized fidelity creates an extra reduction of the ground
state probability on top of the thermal reduction. In universal
AQC3,4, F(1) directly affects the quality of the computation.
Indeed, deviations of F(1) from 1 mean that the statistics of measure-

Figure 2 | (a) A ferromagnetic spin chain with transverse field and coupling energies given, respectively, by A(s) and B(s) in Eq. (1). (b) Energy scales A(s)

and B(s) extracted from experimental parameters. (c) The lowest 20 energy levels, relative to the ground state, of a 10-qubit ferromagnetic chain with Jij 5

21, as a function of the normalized time s. (d) Normalized ground state fidelity of the 10-qubit chain of (c) at T 5 20 mK. The vertical (red) dashed line

marks the quantum critical point as defined by the condition A(sc) 5 B(sc).
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ments done on the final state will be different from the one that
corresponds to the ideal ground state. For instance, in the case of
one qubit with ~0 and the Hamiltonian (11), measurement of sx

has a non-vanishing probability 1 2 F2 of producing the result sx 5
21 different from the ground state sx 5 1 even at temperatures
T=D. However, this effect is absent in the special case when the
coupling to environment via HI commutes with the final
Hamiltonian HP, leading to F 5 1 at the end of evolution, as in the
adiabatic quantum optimization discussed above and shown in
Fig. 2d. In this case, a small fidelity in the middle of the evolution
increases the loss of probability due to the thermal transitions,
thereby decreasing the ground state probability even further.
Therefore, the probability will be distributed among the low energy
states even more than implied by the thermal equilibrium. Part of the
probability can be regained later when the gap is larger and F is closer
to 1. However, since the relaxation time becomes exponentially long
near the end of evolution, the majority of the probability that is lost
may not be gained back, thus leading to a smaller probability of
success. This makes it important to maintain F(s) close to unity
throughout the evolution. We stress that most treatments of AQC
based on the weak coupling master equation, e.g. Ref. 8,9,30, even
with Lamb shift, do not take into account the effect of deformation of
the eigenstates that is captured by our calculation of the normalized
fidelity.

In summary, we have proposed using normalized ground state
fidelity as a quantity for measuring the strength of decoherence
effects in AQC. The fidelity plays a role similar to decoherence time
in GMQC, but takes into account qualitatively different effects of
environment on the ground state relevant to AQC. The fidelity is
related to the relaxation processes and is relatively insensitive to the
dephasing. Our numerical calculations indicate that a normalized
fidelity close to unity can be achieved with a moderate qubit quality
factor, even for large numbers of qubits. Normalized ground state
fidelity should be a useful measure of the environment related quality
of AQC systems in the context of further work on important topics in
AQC such as quantum error correction or the threshold theorem.
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12. Tiersch, M. & Schützhold, R. Non-Markovian decoherence in the adiabatic
quantum search algorithm. Phys. Rev. A 75, 062313 (2007).

13. Amin, M. H. S., Love, P. J. & Truncik, C. J. S. Themally assisted adiabatic quantum
computation. Phys. Rev. Lett. 100, 060503 (2008).

14. Amin, M. H. S., Averin, D. V. & Nesteroff, J. A. Decoherence in adiabatic quantum
computation. Phys. Rev. A 79, 022107 (2009).

15. Lloyd, S. Robustness of adiabatic quantum computing. eprint arXiv:0805.2757.
16. Uhlmann, A. The transition probability in the state space of a *-algebra. Rep.

Math. Phys. 9, 273 (1976).
17. Allahverdyan, A. E. & Nieuwenhuizen, T. M. Extraction of work from a single

thermal bath in the quantum regime. Phys. Rev. Lett. 85, 1799 (2000).
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Figure 3 | Normalized ground state fidelity at the quantum critical point
for ferromagnetic chains with N 5 1 to 16, at T 5 20 mK. Circles are the

numerical results using (10). The red dashed line is the fidelity of

uncoupled qubits from (19), with k 5 0.32 and Q 5 38.4.
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