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Abstract: Food restriction is a robust nongenic, nonsurgical and nonpharmacologic intervention
known to improve health and extend lifespan in various species. Food is considered the most
essential and frequently consumed natural reward, and current observations have demonstrated
homeostatic responses and neuroadaptations to sustained intermittent or chronic deprivation. Results
obtained to date indicate that food deprivation affects glutamatergic synapses, favoring the insertion
of GluA2-lacking α-Ammino-3-idrossi-5-Metil-4-idrossazol-Propionic Acid receptors (AMPARs)
in postsynaptic membranes. Despite an increasing number of studies pointing towards specific
changes in response to dietary restrictions in brain regions, such as the nucleus accumbens and
hippocampus, none have investigated the long-term effects of such practice in the dorsal striatum.
This basal ganglia nucleus is involved in habit formation and in eating behavior, especially that
based on dopaminergic control of motivation for food in both humans and animals. Here, we
explored whether we could retrieve long-term signs of changes in AMPARs subunit composition in
dorsal striatal neurons of mice acutely deprived for 12 h/day for two consecutive days by analyzing
glutamatergic neurotransmission and the principal forms of dopamine and glutamate-dependent
synaptic plasticity. Overall, our data show that a moderate food deprivation in experimental animals
is a salient event mirrored by a series of neuroadaptations and suggest that dietary restriction may be
determinant in shaping striatal synaptic plasticity in the physiological state.

Keywords: food deprivation; dietary restriction; dorsolateral striatum; GluA1; calcium-permeable
AMPA; naphthyl-acetyl spermine

1. Introduction

Dietary restriction and acute food deprivation (fasting) are voluntary practices cur-
rently used in many cultures for religious and health reasons [1–3]. The popularity of
abstaining habits relies on their durable beneficial effects at a systemic level. In humans,
fasting has effects on the activity of brain areas involved in working memory tasks and
on performance in different cognitive domains [4,5]. It also improves executive functions,
such as mental flexibility and set-shifting [6], to produce long-lasting beneficial effects
when combined with conditioning tests [7].

Despite much evidence supporting the view of a general enhancement of cognition, the
effects of food restriction on the central nervous system are still debated due to experimental

Int. J. Mol. Sci. 2021, 22, 1916. https://doi.org/10.3390/ijms22041916 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-2237-2086
https://orcid.org/0000-0001-6020-1021
https://orcid.org/0000-0003-2885-8298
https://doi.org/10.3390/ijms22041916
https://doi.org/10.3390/ijms22041916
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22041916
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/22/4/1916?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 1916 2 of 13

differences that include statistical issues, diet composition, protocols and settings [4].
Potential applications of fasting or dietary restriction to the most common neurological
diseases remain poorly investigated [8].

Animal studies, which provide mechanistic insights into the effects of food depriva-
tion or restriction, mostly focused on the hippocampus for its involvement in cognitive
functions and on the nucleus accumbens for its role in reward and motivation. Food
restriction has mainly been tested as a tool to enhance hippocampal-dependent memory
performance [9,10], leading to improvement in cognition and synaptic efficacy. In the hip-
pocampal CA (Cornu Ammonis)1 area, short-term dietary restriction increases the number
of glutamate receptors at the synapses responsible for an enhanced long-term potentiation
(LTP) and α-Ammino-3-idrossi-5-Metil-4-idrossazol-Propionic Acid receptor (AMPAR)
membrane incorporation [11,12]. Dietary restrictions are also associated with a reorgani-
zation of glutamatergic synapses, increasing surface expression and postsynaptic density
abundance of GluA1 subunits of AMPARs, suggesting synaptic incorporation of these
GluA2-lacking Ca2+-permeable AMPARs [13]. Other studies reported a compensatory
upregulation of D1 Dopamine (DA) receptors [14,15] with enhanced phosphorylation of
the glutamatergic AMPAR GluA1 at Ser845. This downstream effect increases peak current,
facilitates the trafficking to the cell surface [16–18] and stabilizes the membrane Ca2+-
permeable AMPARs [19]. In cells expressing these receptors, a combination of fast decay
kinetics and large conductances that enhance synaptic transmission create the conditions
for metaplasticity, in which the synapses become primed for a preferential direction of
plasticity [20,21].

The dorsolateral part of the nucleus striatum hosts two forms of D1 DA-dependent
synaptic plasticity that encode specific action-outcome associations in goal-directed behav-
iors. An intact function of striatal spiny projection neurons (SPNs) is needed for action
selection and initiation through the integration of sensorimotor, cognitive, and motiva-
tional/emotional information [22]. Relevant to eating behaviors, the dorsal striatum is a
site of action of DA control of motivation for food in both humans and animals [23,24].

Based on previous findings showing that food deprivation may impact glutamatergic
synapses through enhancement of GluA2-lacking AMPARs-mediated activity in inhibitory
neurons [25], we explored whether in SPNs of mice acutely deprived for 12 hours/day, for
two consecutive days, we could retrieve signs of the synaptic insertion of GluA2-lacking
AMPARs. Towards this aim, we analyzed the glutamatergic neurotransmission and the
principal forms of DA-and glutamate-dependent synaptic plasticity: the corticostriatal
long-term depression (LTD) and LTP.

2. Results
2.1. Acute Food Restriction Protocol Induced Long-term Changes in Spontaneous Glutamatergic
Synaptic Currents in the Corticostriatal Synapses

To explore the long-term effects of acute food restriction on the activity of striatal
SPNs, we first analyzed the basal membrane properties through ex vivo patch-clamp and
intracellular recordings from SPNs in corticostriatal slices obtained from 40-days-old Food
Restricted (FR) and aged-matched C57BL/6J male mice (Naïve) (Figure 1A). The current-
voltage relationship, obtained by applying hyperpolarizing and depolarizing current steps
to SPNs, showed no significant differences between the two experimental groups. No
differences were observed in the resting membrane potential (RPMs) and in the firing
patterns (Figure 1B,C, RPM -85.89 ± 0.95 mV for Naïve and −87.54 ± 0.66 mV for FR;
Student’s t-test p > 0.05, Naïve n = 18, FR n = 28). The firing rate was also unchanged as the
mean number of spikes was similar between FR and Naïve mice (Figure 1D, 14.65 ± 0.51
n = 17 for Naïve and 16.00 ± 0.71 n = 15 for FR).
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Figure 1. Acute food restriction is associated with changes in glutamatergic transmission in spiny projection neurons 
(SPNs). (A) Experimental plan of Naïve and food-restricted condition. (B) Representative firing traces and (C) current-
voltage (I/V) graphs of Naïve (n = 17) and FR mice (n = 15), obtained after applying hyperpolarizing and depolarizing steps 
of current to SPNs recorded in dorsolateral striatum. (D) The aligned dot plot shows the mean number of spikes triggered 
by a step that generates a maximum response. (E) Current/voltage curve and bar graph show the rectification pattern and 
the rectification index in SPNs of Naïve and FR mice. The α-Ammino-3-idrossi-5-Metil-4-idrossazol-Propionic Acid recep-
tor (AMPAR)- excitatory postsynaptic currents (EPSCs) were pharmacologically isolated by application of the N-Methyl-
d-aspartate (NMDAR) antagonist D-(-)-2-Amino-5-phosphonopentanoic acid (D-APV, 50 µM) (current/voltage curve, 
two-way ANOVA time x group interaction, Naïve n = 19 vs. FR n = 11, F(2,56) = 5.36, *** p < 0.001; bar graph, unpaired t-test, 
Naïve n = 13 vs. FR n = 15, t = 7.942, df = 28, *** p < 0.001). Example traces of evoked AMPAR-EPSCs recorded at -70, 0, 
and+40 mV. Scale bar: 100 ms, 100 pA. (F) Group mean AMPA:NMDA ratio calculated in Naïve and FR SPNs in the 
presence of D-APV (unpaired t-test, Naïve n = 10, vs. FR n = 8, t = 2.911, df = 16, * p < 0.05); example traces of evoked AMPA- 

Figure 1. Acute food restriction is associated with changes in glutamatergic transmission in spiny projection neurons (SPNs).
(A) Experimental plan of Naïve and food-restricted condition. (B) Representative firing traces and (C) current-voltage (I/V)
graphs of Naïve (n = 17) and FR mice (n = 15), obtained after applying hyperpolarizing and depolarizing steps of current to
SPNs recorded in dorsolateral striatum. (D) The aligned dot plot shows the mean number of spikes triggered by a step that
generates a maximum response. (E) Current/voltage curve and bar graph show the rectification pattern and the rectification
index in SPNs of Naïve and FR mice. The α-Ammino-3-idrossi-5-Metil-4-idrossazol-Propionic Acid receptor (AMPAR)-
excitatory postsynaptic currents (EPSCs) were pharmacologically isolated by application of the N-Methyl-d-aspartate
(NMDAR) antagonist D-(-)-2-Amino-5-phosphonopentanoic acid (D-APV, 50 µM) (current/voltage curve, two-way ANOVA
time x group interaction, Naïve n = 19 vs. FR n = 11, F(2,56) = 5.36, *** p < 0.001; bar graph, unpaired t-test, Naïve n = 13 vs.
FR n = 15, t = 7.942, df = 28, *** p < 0.001). Example traces of evoked AMPAR-EPSCs recorded at -70, 0, and+40 mV. Scale bar:
100 ms, 100 pA. (F) Group mean AMPA:NMDA ratio calculated in Naïve and FR SPNs in the presence of D-APV (unpaired
t-test, Naïve n = 10, vs. FR n = 8, t = 2.911, df = 16, * p < 0.05); example traces of evoked AMPA- and NMDA-EPSCs at
+40 mV (Dual: AMPA + NMDA EPSCs; NMDA EPSCs: obtained by subtraction of the EPSCs measured before and after the
application of 50 µM D-APV; AMPA EPSCs: isolated by application of 50 µM D-APV). Scale bar: 100 ms, 100 pA.
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2.2. SPNs of FR Mice Showed Increased Inwardly Rectifying AMPARs Currents and Unbalanced
AMPA:NMDA Ratio

In a separate set of experiments, in corticostriatal slices, we recorded combined
AMPAR-N-methyl-D-aspartate receptor (NMDAR)–mediated excitatory postsynaptic cur-
rents (EPSCs) at +40 mV, and then to determine the rectification index (RI), we recorded
AMPAR EPSCs at different holding potentials (−70 mV, 0mV, +40 mV) in the presence
of D-(-)-2-Amino-5-phosphonopentanoic acid (D-APV, 50 µM), a selective NMDAR an-
tagonist. In contrast with Naïve mice, we found that FR mice showed an increase in RI
whose value differed significantly from the control mice (Figure 1E, current/voltage curve
two-way ANOVA time x group interaction, Naïve n = 19 vs. FR n = 11, F(2,56) = 5.36,
*** p < 0.001; bar graph unpaired t-test, Naïve n = 13 vs. FR n = 15, t = 7.942, df = 28,
*** p < 0.001). We then examined the AMPAR: NMDAR ratio at +40 mV and observed a sig-
nificant difference between the two experimental groups (Figure 1F, unpaired t-test, Naïve
n = 10 vs. FR n = 8, t = 2.911, df = 16, * p < 0.05). The decreased ratio in FR mice suggests a
correlation between this parameter and the RI, indicating an increased contribution of the
GluA2-lacking AMPAR to the EPSC. Notably, in SPNs of FR mice, AMPA-mediated cur-
rents showed a marked difference in kinetics, with a more rapid decay of EPSCs (Figure 1F,
bottom right panel, green lines).

2.3. Enhanced GluA1-mediated Function in Striatal SPNs of FR Mice was associated with a
Change in the Direction of Corticostriatal Synaptic Plasticity

To explore if changes in AMPAR subunit composition could affect the corticostriatal
glutamatergic transmission, we examined spontaneous EPSCs (sEPSCs) in SPNs of mice
of the two experimental groups. As reported in Figure 2B, sEPSCs frequency was signifi-
cantly increased in FR mice compared with Naïve mice (Figure 2A; unpaired t-test, Naïve
n = 10, vs. FR n = 8, t = 3.088, df = 19, ** p < 0.01). Conversely, the amplitude of sEPSCs was
comparable in SPNs between the two groups (Figure 2A).

Subsequently, we tested the ability of SPNs to express the long-term depression (LTD).
In control condition, in which the bathing solution contained a physiological concentration
of magnesium ions, a high-frequency stimulation (HFS) protocol of the corticostriatal fibers
induced a robust LTD of the excitatory postsynaptic potentials (EPSPs) in the SPNs of
Naïve mice (Figure 2B, paired t-test pre- vs. 20 min post-HFS, Naïve n = 7, t = 12.10, df = 12,
*** p < 0.001). In contrast, the induction of this form of synaptic plasticity was impaired in
FR mice and, interestingly, we observed a long-term potentiation (LTP) (Figure 2B, paired
t-test pre vs. 20 min post-HFS, FR n = 9, t = 7.299, df = 17, *** p < 0.001), resulting in a
significant difference on the response to HFS between the two groups (Figure 2B, two-way
ANOVA: time x group interaction F(24,336) = 18.85, Bonferroni’s post hoc ###p < 0.001).
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Figure 2. Enhanced activity of GluA2-lacking AMPARs in food-restricted (FR) mice is associated with changes in the di-
rection of corticostriatal synaptic plasticity in SPNs. (A) Frequency and amplitude of sEPSCs glutamatergic transmission 
in Naïve and FR mice. In the upper part, comparison traces of spontaneous activity recorded from groups are shown. The 
frequency of sEPSC is increased in FR mice compared to Naïve mice (unpaired t-test, Naïve n = 10, vs. FR n = 8, t = 3.088, 
df = 19, ** p < 0.01). (B) Left panel: time course of excitatory postsynaptic potential (EPSP) amplitude of SPNs from Naïve 
and FR mice after induction of long‐term depression (LTD) protocol (high‐frequency stimulation, HFS) (paired t-test pre 
vs. 20 min post‐HFS, Naïve n = 7, t = 12.10, df = 12, *** p < 0.001, FR n = 9, t = 7.299, df = 17, *** p < 0.001). Grouped analysis 
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Figure 2. Enhanced activity of GluA2-lacking AMPARs in food-restricted (FR) mice is associated with changes in the
direction of corticostriatal synaptic plasticity in SPNs. (A) Frequency and amplitude of sEPSCs glutamatergic transmission
in Naïve and FR mice. In the upper part, comparison traces of spontaneous activity recorded from groups are shown. The
frequency of sEPSC is increased in FR mice compared to Naïve mice (unpaired t-test, Naïve n = 10, vs. FR n = 8, t = 3.088,
df = 19, ** p < 0.01). (B) Left panel: time course of excitatory postsynaptic potential (EPSP) amplitude of SPNs from Naïve
and FR mice after induction of long-term depression (LTD) protocol (high-frequency stimulation, HFS) (paired t-test pre vs.
20 min post-HFS, Naïve n = 7, t = 12.10, df = 12, *** p < 0.001, FR n = 9, t = 7.299, df = 17, *** p < 0.001). Grouped
analysis shows significant group effect (two-way ANOVA: time x group interaction F(24,336) = 18.85, Bonferroni’s post hoc
###p < 0.001). The scale factor is 50 ms/5 mV for all traces. Right panel, representative traces of single SPNs recorded from
Naïve and FR mice before (solid lines) and after HFS (dotted lines). (C) Left panel: time course of SPNs EPSP amplitude,
recorded from Naïve and FR mice in the presence of 30 µM 1-naphthylacetyl spermine (NASPM) bath application for the
whole duration of the experiment (paired t-test pre vs. 20 min post-HFS, Naïve n = 8, t = 8.017, df = 15; FR n = 9, t = 10.55,
df = 17, *** p < 0.001 for both groups). The scale factor is 50 ms/5 mV for all traces. Right panel, representative traces of
single SPNs recorded from Naïve and FR mice before (solid lines) and after HFS (dotted lines).
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2.4. Selective GluA1 Antagonism was Associated with the Reappearance of Corticostriatal LTD in
FR Mice

To test if this unexpected form of plasticity could depend on the increase in GluA1-
mediated activity, we analyzed the LTD expression in the presence of a selective blocker
of GluA2-lacking AMPARs, 1-naphthylacetyl spermine (NASPM, 30 µM). EPSPs were
recorded for 10 min to obtain a stable baseline and then for 20 min after applying the HFS
protocol. We found that in the presence of NASPM, SPNs recorded in Naïve and FR mice
showed LTDs of similar amplitudes (Figure 2C, paired t-test pre vs. 20 min post-HFS, Naïve
n = 8, t = 8.017, df = 15; FR n = 9, t =10.55, df = 17, *** p < 0.001 for both groups). Bath
application of 30 µM NASPM in corticostriatal slices from FR mice efficiently reduced the
EPSPs amplitude after HFS, contrasting the unphysiological potentiation observed in the
untreated condition, demonstrating that blocking GluA2-lacking AMPARs prevents the
shift in synaptic plasticity direction.

2.5. Enhanced GluA1-AMPARs Function was Associated with Changes in LTP Maintenance in
Striatal SPNs of FR Mice

Since AMPARs play a variety of roles in shaping synaptic plasticity and are important
for both LTD induction and LTP maintenance, we explored if the time course of LTP was
also changed by using whole-cell patch-clamp recordings of SPNs in corticostriatal slices.
To study this form of plasticity, Mg2+ ions were removed from the medium to promote the
activation of glutamate NMDARs.

Under these experimental conditions, an initial post-tetanic potentiation was normally
induced by the application of an HFS protocol in both Naïve and FR mice. Although
comparisons between EPSP amplitudes before and 20 minutes after HFS indicates that a
slight potentiation could still be observed in FR mice (paired t-test pre vs. 20 min post-
HFS, Naïve n = 5, t = 12.58, df = 9, p < 0.0001, FR n = 8, t = 4.075, df = 15, p < 0.001), the
LTP maintenance was different in the two groups. In FR mice, the amplitude of EPSPs
decreased over time, bringing to a significant difference in the strength of LTP between
the two groups (Figure 3, two-way ANOVA: time × group interaction F(24,264) = 4.23,
11–20 min, Bonferroni’s post hoc # p < 0.05).
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a significant increase of the AMPAR rectification index. In our paradigm, this measure 
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subunits. These latter are the most expressed subunits of AMPARs in the striatum of adult 
rodents [26–28], characterized by a unique editing at the mRNA level where a glutamine 
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ions, resulting in a higher single channel conductance and fast decay kinetics.  
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mission to shape the direction of corticostriatal synaptic plasticity, we explored a possible 
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Figure 3. AMPAR subunit composition is critical for the maintenance of long-term potentiation (LTP). Left panel: time
course of EPSP amplitude of SPNs from Naïve and FR mice after induction of LTP protocol. Grouped analysis shows
significant group effect (two-way ANOVA: time x group interaction F(24,264) = 4.23, 11–20 min, Bonferroni’s post hoc
# p < 0.05). The scale factor is 50 ms/5 mV for all traces. Right panel: representative traces of single SPNs recorded from
Naïve and FR mice before (solid lines) and after HFS (dotted lines).

3. Discussion

In this paper, we present evidence that acute but moderate (12 hours/day, for two
consecutive days) food restriction can be related to persistent and subunit-specific enhance-
ment in AMPARs function in SPNs of the dorsolateral striatum that emerges under specific
stimulation of the corticostriatal pathway.

In our experiments, striatal SPNs of FR mice displayed intrinsic membrane properties
and amplitude of spontaneous glutamatergic-mediated activity comparable with ad libitum
fed controls. However, we observed significant changes in other aspects of glutamatergic
transmission with substantial modifications in the glutamate-dependent synaptic plasticity
linked to an enhanced function of GluA2-lacking AMPARs.

According to findings showing that food deprivation is associated with an enhanced
abundance of Ca2+-permeable AMPARs at glutamatergic synapses [13], here we describe
a significant increase of the AMPAR rectification index. In our paradigm, this measure
provided an indication of the changed proportion of the GluA1 over the GluA2 AMPAR
subunits. These latter are the most expressed subunits of AMPARs in the striatum of
adult rodents [26–28], characterized by a unique editing at the mRNA level where a
glutamine codon is switched to arginine that confers channel resistance to Ca2+. As a
result, the neurons with increased insertion of homomeric GluA1 AMPARs show inward
rectification that becomes linear when the GluA1 subunits are coexpressed with the GluA2
subunits [29,30]. Therefore, AMPAR complexes that lack GluA2 are permeable to sodium
and Ca2+ ions, resulting in a higher single channel conductance and fast decay kinetics.

Since striatal AMPARs and NMDARs act in concert with dopaminergic neurotrans-
mission to shape the direction of corticostriatal synaptic plasticity, we explored a possible
imbalance between AMPA- and NMDA-mediated glutamatergic transmission to find a link
between the different AMPAR subunit composition and the changes in the AMPA:NMDA
ratio. Our data show a reduction of such a ratio in SPNs of Naïve and FR mice and, as
confirmation of the increased GluA1-mediated activity, AMPAR-mediated currents were
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markedly different in their decay slope, exhibiting faster channel deactivation kinetics [31]
and more rapidly decaying EPSPs [32].

We then tested the hypothesis that in deprived mice, the corticostriatal LTD, which
depends on the activation of AMPARs [33], was also changed.

In SPNs recorded from FR mice, a high-frequency stimulation protocol of the corticos-
triatal fibers that, in physiological condition, elicited LTD, induced a shift toward LTP. This
form of synaptic plasticity, whose induction is typically dependent on NMDAR activation,
was not observed at physiological concentrations of magnesium ion, which acts as a natural
blocker of the receptor pore. Such a change in synaptic plasticity direction might depend
on increased Ca2+ entrance due to the enhancement of GluA2-lacking activity after a strong
afferent stimulation. In such conditions, a massive corticostriatal stimulation would pro-
duce a greater depolarization of the SPNs membrane, relieving the NMDA receptors from
the magnesium block and facilitating the induction of LTP.

This interpretation was substantiated by the present electrophysiological findings
showing that NASPM, a selective blocker of GluA1-bearing AMPARs, restored a physio-
logical LTD in FR mice at a dose that did not induce any effects in Naïve mice.

A possible explanation for the effect of such a moderate restriction protocol could be
sought in a coincident impact of food deprivation on AMPARs changes during the develop-
ment. In the newborn striatum, GluR1 immunoreactivity was observed in the presynaptic
neurites, forming synapses with a more pronounced presence at the postsynaptic level in
morphologically mature synapses as shown in seminal immunoelectron microscopy stud-
ies [34]. Moreover, the expression of GluA2-lacking AMPA receptors at excitatory synapses
have been detected in many brain regions in the early postnatal development [35], and the
switch from this subunit to the GluA2-containing AMPARs subunit occurs within the first
two to three postnatal weeks [36–38]. However, we tested the animals far beyond these
time points, when subunit composition had reached a steady-state with a net prevalence of
GluA2-containing AMPARs. Thus, we excluded possible confusing developmental factor’s
effect on corticostriatal synaptic activity.

Given that AMPARs govern a variety of functions, including a fine regulation of both
Ca2+ influx and LTP maintenance, and the link with Ca2+-mediated kinase II [17,18,39], we
explored the possibility that a change in their function could also affect the maintenance of
LTP. While LTP was typically induced in SPNs from both groups, the amplitude of LTP in
FR mice degraded over time.

Although SPNs show a peculiar pharmacological modulation of LTP, due to co-
activation of DA and glutamate receptors and concurrent modulation by interneuronal
activity, a possible explanation would be that the phase transition between induction and
maintenance of LTP requires a change in membrane insertion of AMPARs subunits, as
observed in the hippocampal CA1 area. In fact, in pyramidal neurons of CA1, during LTP
induction, an initial incorporation of GluA2-lacking Ca2+-permeable AMPARs is followed
by a replacement with GluA2-containing Ca2+-impermeable receptors [40]. However, given
that this aspect has not been investigated in striatal SPNs, additional analyses are required
to clarify these dynamics and the relevant contribution of AMPAR- and NMDAR-mediated
components in the reduction of LTP.

These results support the view that a sudden, although moderate, food deprivation
in experimental animals that were fed ad libitum since birth could be a salient event that
may be encoded into a series of synaptic adaptations associated with long-term effects
with adaptive changes in the AMPAR-mediated functions. These changes observed in
isolated currents also emerged upon electrical stimulation of afferents without affecting
the NMDAR-dependent phases of corticostriatal plasticity. This is in agreement with
other studies reporting that increased Ca2+ influx via AMPARs lacking the GluA2 subunit
does not have an impact on the NMDA component of LTP [41] and might be managed in
homeostatic conditions.

Further investigations should clarify if the changes in AMPARs subunit composition
are only limited to the postsynaptic level. In fact, presynaptic GluA1-AMPARs have been



Int. J. Mol. Sci. 2021, 22, 1916 9 of 13

identified in corticostriatal and thalamostriatal axon terminals [42,43]. A possible increased
insertion of these receptors [13] may explain the increased sEPSC frequency observed in
our experimental setting.

A concept of AMPA-dependent changes in presynaptic activity has already been put
forward in past studies using in vivo microdialysis and showing enhanced release of gluta-
mate in the striatum upon perfusion of AMPA that was blocked by AMPA antagonists [43],
an effect associated with presynaptic adenylyl cyclase-dependent processes [44]. These
data are in agreement with more recent findings demonstrating that AMPARs localize at
presynaptic sites on glutamatergic afferents [42], and that AMPA autoreceptors would
assure a positive feedback control of glutamate release that modulates synaptic scaling
with nonlinear characteristics [42]. This system would work in balance with presynaptic
metabotropic glutamate receptors, which, on the contrary, suppress or inhibit the release
from axon terminals [45].

Relevant to our observations, these findings suggest that a dynamic regulation of
synaptic scaling might also occur in FR mice, where an LTP is observed instead of an
LTD. Given the increase of sEPSC frequency, this shaping in the direction of plasticity
would be not only associated with an adaptive enhancement of postsynaptic GluA2-
lacking-mediated function (resulting in an increase of rectification index) but also extend to
changes in the AMPAR activity at presynaptic levels. A point that still awaits to be clarified
is the identification of the duration of possible adaptive changes in AMPAR subunits
composition in cortico- and thalamostriatal afferents, and if a switch toward GluA2-lacking
subunit-dependent function can also be detected at presynaptic sites.

In conclusion, with the present electrophysiological results, this study provides new
insights into the importance of Ca2+-permeable GluA1 AMPARs and their involvement
in the two primary forms of striatal plasticity, LTD and LTP. Dissecting the role of GluA2-
lacking AMPARs, although less expressed in the adult striatum, can be critical for a full
understanding of the mechanisms of compensative synaptic regulations that may occur in
physiological conditions when the limits of homeostasis are challenged.

4. Materials and Methods
4.1. Animals

Male C57BL/6JO1aHsd mice (n = 23; approximately 40 days old at study onset)
(Harlan, Italy) were used. All animals were housed four per cage, under a controlled
12-h light/12-h dark cycle and temperature (22–23 ◦C), with food and water ad libitum.
All efforts were made to minimize the number of animals used and their suffering, in
accordance with the European Directive (2010/63/EU). All procedures were approved by
the institutional review board and ethics committee (IRCCS Fondazione Santa Lucia) and
by the Italian Ministry of Health (Project identification code: 534/2019-PR). The animals
were randomly allotted into two groups, Food Restricted (FR) and aged-matched C57BL/6J
male mice (Naïve). The FR mice were subjected to a moderate food deprivation protocol
that limited their access to food for 12 hours, during the dark phase, for two consecutive
days [46]. Such a regimen resulted in no significant body weight loss. Thirty days later,
both Naïve and FR mice were sacrificed for the electrophysiological recordings (Figure 1A).

4.2. Slices Preparation

FR male mice and Naïve aged-matched C57BL/6J male mice were used in electro-
physiological experiments. All mice were sacrificed by cervical dislocation and the brain
was rapidly removed from the skull. Corticostriatal slices were cut from mice brains (thick-
ness, 240–280 µm) using a vibratome in Krebs’ solution (in mmol/L: 126 NaCl, 2.5 KCl,
1.2 MgCl2, 1.2 NaH2PO4, 2.4 CaCl2, 10 glucose, and 25 NaHCO3) bubbled with a 95%
O2–5% CO2 gas mixture. After at least 1 hr recovery, individual slices including the cortex
and the striatum were transferred to a recording chamber and continuously superfused
with oxygenated Krebs’ medium, at 2.5–3 mL/min and maintained at 32–33 ◦C.
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4.3. Whole-cell Patch-clamp Recordings

Current-clamp recordings from spiny projection neurons (SPNs) were performed
using the whole-cell patch-clamp technique. Neurons of the dorsal striatum were visu-
alized using infrared differential interference contrast microscopy (Eclipse FN1, Nikon,
Tokyo, Japan) [47,48]. Recordings were made with a Multiclamp 700B amplifier (Molecular
Devices, San José, CA, USA) and stored on PC using pClamp 9 (Molecular Devices, San
José, CA, USA). Borosilicate glass pipettes (6–9 MΩ) were filled with the following internal
solutions (in mM): 120 K-gluconate, 0.1 CaCl2, 2 MgCl2, 0.1 EGTA, 10 N-(2-hydroxyethyl)-
piperazine-N-s-ethanesulfonic acid, 0.3 Na-guanosine triphosphate, and 2 Mg-adenosine
triphosphate (Mg-ATP), adjusted to pH 7.3 with KOH. For recordings in voltage-clamp
mode the internal solution of glass pipettes contained (in mM): 120 CsMeSO3, 10 CsCl, 8
NaCl, 2 MgCl2, 10 HEPES, 0.2 EGTA, 10 TEA, 5 QX314, 0.3 NaGTP and 2 Mg-ATP. Striatal
neurons were clamped at the holding potential of -80 mV and identified by the absence of
spontaneous action potential discharge.

Whole-cell access resistance was 15–30 MΩ. Picrotoxin (50 µM) was added to block
GABAA-currents. D-APV (50 µM), an N-methyl-D-aspartate receptor (NMDAR) antag-
onist, was used to pharmacologically isolate the Ammino-3-idrossi-5-Metil-4-idrossazol-
Propionic Acid receptor (AMPAR)-excitatory postsynaptic currents (EPSCs). To obtain
the NMDA current, an evoked current at +40 mV was subtracted before and after the
application of this antagonist. To calculate the AMPAR:NMDAR ratio, the AMPAR EPSC
amplitude was divided by the NMDAR EPSC amplitude, both measured at +40 mV. The
rectification index (RI) of AMPARs was obtained by dividing the chord conductance cal-
culated at negative potential (−70 mV) and positive potential (+40 mV). Injected currents
and input resistances were checked throughout the experiments. Cells with variations in
these parameters >20% were rejected.

4.4. Intracellular Recordings with Sharp Electrodes

Current-clamp recordings, with an intracellular technique, were performed blindly
using sharp electrodes filled with 2 M KCl (30−60 MΩ). Signal acquisition was performed
with an Axoclamp 2B amplifier (Molecular Devices, San José, CA, USA), displayed on a
separate oscilloscope, stored. Online and offline analyses were performed using a digital
system (pClamp 9, Molecular Devices, San José, CA, USA).

To evoke EPSCs and glutamatergic excitatory postsynaptic potentials (EPSPs), the
stimulating bipolar electrode and the recording electrodes were located in the white matter
and within the dorsolateral striatum, respectively.

In both patch-clamp and intracellular recordings, EPSPs were evoked by electrical
stimulation every 10 s and EPSP peak amplitudes were used as a measure of SPNs activity,
according to previous studies from our and other research groups, which consider this pa-
rameter an optimal index to evaluate the extent of evoked striatal responses when recording
in current-clamp mode [33,49–52]. To induce long-term depression (LTD) and long-term
potentiation (LTP), we used a high-frequency stimulation (HFS) protocol, consisting of
three trains of 100 Hz, 3 s of duration, and 20 s of interval. For the LTP protocol, magne-
sium (Mg2+) ions were omitted from the Kreb’s solution to remove the Mg2+-dependent
block of NMDA receptors [49]. During tetanic stimulation, the intensity of stimulation
was increased to suprathreshold levels. EPSP modifications induced by HFS protocol
were expressed as a percentage of control, the latter representing the mean of responses
recorded during a stable period (15–20 min) before the tetanic stimulation. Current-voltage
relationships were obtained by applying steps of current of 200 pA in both hyperpolarizing
and depolarizing direction (from −400 to +200 pA). Firing frequency was calculated as the
mean number of spikes in response to a step of 600 pA and shown as averaged values in
scatter dot plots.
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4.5. Chemicals

D-(-)-2-Amino-5-phosphonopentanoic acid (D-APV) was from Tocris Bioscience (Bris-
tol, U.K.); 1-naphthylacetyl spermine trihydrochloride (NASPM) and Picrotoxin were
from Sigma-Aldrich (Milan, Italy). Drugs dissolved in the final concentration were bath
applied by switching the control perfusion to drug-containing solution. During the cell’s
recording, an aliquot of the stock APV solution was diluted in Krebs’ solution to 50 µM
and kept in a syringe for the entire duration of the experiment. For the NASPM and the
Picrotoxin an aliquot of the stock solution was diluted in Krebs’ solution to 30 µM and
50 µM, respectively.

4.6. Statistical Analyses

Analyses were performed using Prism 6.0 (GraphPad software). Electrophysiological
results are presented as mean ± SEM. Paired Student’s t-test was used for analysis of the
mean pre vs post-HFS in the same cell population. Analysis of variance (ANOVA) test with
a post hoc Bonferroni test were performed among different neuronal populations. Sample
size was calculated with G*Power software (5% type I error; 80% power).
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