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ABSTRACT
Background Overexpression of the transforming
growth factor β family signalling molecule smad2 in the
airway epithelium provokes enhanced allergen-induced
airway remodelling in mice, concomitant with elevated
levels of interleukin (IL)-25.
Objective We investigated whether IL-25 plays an
active role in driving this airway remodelling.
Methods Anti-IL-25 antibody was given to mice
exposed to either inhaled house dust mite (HDM) alone,
or in conjunction with an adenoviral smad2 vector which
promotes an enhanced remodelling phenotype.
Results Blocking IL-25 in allergen-exposed mice
resulted in a moderate reduction in pulmonary
eosinophilia and levels of T helper type 2 associated
cytokines, IL-5 and IL-13. In addition, IL-25
neutralisation abrogated peribronchial collagen
deposition, airway smooth muscle hyperplasia and
airway hyperreactivity in control mice exposed to HDM
and smad2-overexpressing mice. IL-25 was shown to
act directly on human fibroblasts to induce collagen
secretion. Recruitment of endothelial progenitor cells to
the lung and subsequent neovascularisation was also
IL-25 dependent, demonstrating a direct role for IL-25
during angiogenesis in vivo. Moreover, the secretion of
innate epithelial derived cytokines IL-33 and thymic
stromal lymphopoietin (TSLP) was completely ablated.
Conclusions In addition to modulating acute
inflammation, we now demonstrate a role for IL-25 in
orchestrating airway remodelling. IL-25 also drives IL-33
and TSLP production in the lung. These data delineate a
wider role for IL-25 in mediating structural changes to
the lung following allergen exposure and implicate IL-25
as a novel therapeutic target for the treatment of airway
remodelling in asthma.

INTRODUCTION
Asthma affects 300 million people worldwide and
while current therapeutics may control eosinophilic
and T helper type 2 (Th2)-driven inflammation,
treatments for the associated airway remodelling
which encompasses goblet cell hyperplasia, fibrosis,
increased airway smooth muscle (ASM) mass and
neovascularisation are lacking. Therefore, identifi-
cation of molecules underlying airway remodelling
is a priority. Interleukin (IL)-25 was initially
described as an amplifier of Th2 immune responses
by inducing Th2 cell cytokines such as IL-13, IL-4
and IL-5.1 2 Direct delivery of IL-25 to the lungs
results in airway hyperreactivity (AHR) and eosino-
philic pulmonary inflammation that develops via

IL-13 and the Stat-6 pathway.3 Conversely, block-
ade of IL-25 during acute ovalbumin-driven allergic
airways disease abrogates AHR.4 A wider role for
IL-25 in development of effector T-cell responses
has been outlined with the discovery that IL-25 can
potentiate secretion of IL-9 from Th9 cells5 and, in
combination with IL-33, can promote the develop-
ment of type 2 innate lymphoid cells which are
critical in the early initiation of Th2 responses.6 7

Perturbations of the airway epithelium are
capable of driving structural changes linked to
airway remodelling.8 We previously used an adeno-
virus encoding the transforming growth factor
(TGF)-β/activin A signalling molecule smad2 to
overexpress this protein in airway epithelium before
exposure to inhaled house dust mite (HDM). This
resulted in an enhanced remodelling phenotype
compared with allergen exposure alone and identi-
fied a novel role for activin A in mediating AHR and
remodelling. IL-25 expression is also triggered in
the HDM-exposed mice overexpressing smad2 and
neutralisation of activin A completely abolished the
elevated IL-25, implicating a potential role for IL-25
in remodelling responses.
Support for this hypothesis comes from in

vitro studies that suggest that IL-25 may also contrib-
ute to angiogenesis.9 Biopsies of patients with asthma
show elevated levels of IL-25 and IL-17RB (its recep-
tor) transcripts compared with control subjects
without asthma/atopy10 11 and elevated expression of
IL-25 is inversely correlated with forced expiratory
volume in 1 s in patients with asthma.9 However, a
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potential functional role for IL-25 in modulating remodelling has
not yet been investigated.

The majority of data accumulated so far for IL-25 focus on
the early initiation of Th2 responses, therefore we investigated

whether IL-25 contributes to aspects of pathology associated
with prolonged allergen exposure. Inhaled HDM induces
phenotypic changes in mice characteristic of human asthma and
we determined the effects of blocking endogenously produced

Figure 1 Interleukin (IL)-25 neutralisation abolishes house dust mite (HDM)-induced pulmonary remodelling. (A) IL-25 (brown stained) section.
(B) Sirius red stained perivascular and peribronchial collagen. (C) Quantitative analysis of subepithelial peribronchiolar collagen density. (D)
α-Smooth muscle actin (brown stained) smooth muscle cells and myofibroblasts. (E) Peribronchial smooth muscle thickness. (F) Proliferating cell
nuclear antigen (PCNA)-positive (brown stained) proliferating cells. (G) Percentage of PCNA-positive peribronchial mesenchymal cells. (H) Periodic
acid-Schiff (PAS)-positive (pink/purple coloured) mucin-containing cells. (I) Epithelial PAS scoring. Original magnification ×40. Scale bar=50 mm.
*p<0.05 compared with phosphate-buffered saline (PBS) control group. §p<0.05 AdS HDM Ig compared with AdC HDM Ig control group. †p<0.05
HDM anti-IL-25 compared with HDM Ig control group. Plots depict the median and IQR and minimum and maximum values. Data are generated
from two independent experiments (n=8–12). IHC, immunohistochemistry. This figure is only reproduced in colour in the online version.
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IL-25 on parameters of remodelling in control mice and those
overexpressing smad2 which have an enhanced remodelling
phenotype. Our data suggest that in addition to its proven role
in the initiation of effector type 2 responses, IL-25 also drives
the airway remodelling responses that typify chronic disease.

MATERIALS AND METHODS
Animals
Female BALB/c mice (Charles River), 6–8 weeks old, received
15 μg HDM extract (Dermatophagoides pteronyssinus in
phosphate-buffered saline (PBS)) (Greer laboratories, Lenoir,
North Carolina, USA) or 15 μl PBS intranasally 3 days a week
for up to 3 weeks. Some groups received a first-generation
replication-deficient adenovirus serotype 5 containing murine
smad2 cDNA (AdSmad2) (2×109 viral particles in 25 μl PBS) or
an empty vector lacking a transgene (AdC) 2 days prior to com-
mencing instillation of either HDM or PBS. In addition, mice
received either 500 μg of neutralising antibody to murine IL-254

or control IgG (R&D Systems, Abingdon, UK) via intraperito-
neal injection 2 h prior to intranasal challenge with PBS or
HDM. All experiments were performed in accordance with UK
Home Office guidelines.

Measurement of AHR
Airway responsiveness was determined by direct measurements
of resistance and compliance in anaesthetised and tracheosto-
mised mice following 3 weeks of HDM challenge.8

Sample preparation
Serum, bronchoalveolar lavage (BAL) and lung cells were
collected.10–12 Differential cell counts were performed on

Wright-Giemsa-stained cytospins. Paraffin-embedded sections
(4 μm) were stained with H&E, periodic acid-Schiff (PAS) and
Sirius red. All scoring and measurements were performed
blinded by the same observer on medium airways measuring
between 150 and 250 μm in diameter.8 Paraffin sections were
stained with rabbit anti-mouse proliferating cell nuclear antigen
(PCNA) (Abcam, Cambridge, UK), α-smooth muscle actin
(α-SMA) (Abcam), von Willebrand factor (vWF) (Dako, Aachen,
Germany), IL-25 (Millipore, Billerica, Massachusetts, USA) or
IL17RB (Bioss, Woburn, Massachusetts, USA).13–15

Quantification of total collagen
Total collagen was measured in lung tissue or culture super-
natant by biochemical assay (Sircol collagen assay, Biocolor,
Belfast, UK) and normalised for tissue weight.

Cytokine analysis
Lung tissue supernatant was analysed by ELISA, IL-4, IL-5,
interferon (IFN)-γ (PharMingen, Oxford, UK), IL-33, thymic
stromal lymphopoietin (TSLP), CCL20, IL-25, vascular endo-
thelial growth factor (VEGF), activin A and IL-13 kits (R&D
systems).8 All data were normalised for lung weight. Paired anti-
bodies for IgE (R&D systems) were used to measure serum IgE
levels.

Flow cytometric analysis
Disaggregated lung cells were stained with CD4 andST2 or rele-
vant isotype controls for 20 min at 4°C. Fixed cells were ana-
lysed on a FACSCalibur using CellQuest.

Figure 2 Interleukin (IL)-25 acts
directly on mesenchymal cells to
induce remodelling. (A) Activin A
quantification in lung homogenate. (B)
Biologically active pulmonary
transforming growth factor (TGF)-β
levels. (C) IL-25-induced extracellular
collagen secretion by normal human
lung fibroblasts (NHLFs) in vitro. (D)
IL-17RB (brown stained) lung section:
(i) negative Ig control; (ii)–(iv)
IL-17RB-positive cells. *p<0.05
compared with phosphate-buffered
saline (PBS) control group. §p<0.05
AdS house dust mite (HDM) Ig
compared with AdC HDM Ig control
group. †p<0.05 HDM anti-IL-25
compared with HDM Ig control group.
Plots depict the median and IQR and
minimum and maximum values. Data
are generated from two independent
experiments (n=8–12). IHC,
immunohistochemistry. This figure is
only reproduced in colour in the online
version.
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SEAP assay
Five microlitres of lung homogenate or standard were added in
serum free medium to MFB-F11 cells16 for 24 h prior to meas-
uring bioactivity (Great EscApe SEAP Kit, Clontech, France).

Endothelial progenitor cell colony assay
Following 1 week of HDM exposure lung cell suspensions were
separated on discontinuous Percoll gradient. Mononuclear
cells were plated in endothelial basal medium (EBM-2/VEGF,
50 ng/ml/17% fetal calf serum (FCS); CambrexBioScience
Walkersville Inc, Walkersville, Maryland, USA) on fibronectin-
coated dishes. Endothelial progenitor cell (EPC) colonies were
scored on day 21 by morphology.17

Fibroblast culture
Normal human lung fibroblasts (NHLFs; Lonza, Basel,
Switzerland) were cultured in six well plates in functionally
graded materials supplemented with 10% FCS/hygromycin B
15 mg/ml in the presence or absence of 20 ng/ml recombinant
human IL-25 (R&D systems). Culture supernatant was analysed
for secreted collagen by sircol assay.

Statistical analysis
Data were analysed using Prism 4. Multiple comparisons were
performed using the Kruskal–Wallis test. A two-tailed p value
was determined by the Mann–Whitney test when comparing
between two groups. Data shown are represented graphically as
box and whisper plots to depict the median and IQR and
minimum and maximum values and are generated from at least
two independent experiments (n=4–6 per experiment).

Additional details on the methods used can be found in the
online supplementary data file.

RESULTS
Blockade of IL-25 reduces allergen-driven airway
remodelling
Elevated levels of IL-25 are observed in mice overexpressing
smad2 in the airway epithelium which precedes the develop-
ment of pronounced airway remodelling in response to HDM
exposure.8 We now show that in response to HDM, IL-25 is
abundantly produced by airway epithelial cells (figure 1A).
Overexpression of smad2 using an adenoviral vector (AdS) or
treatment of mice with the control empty vector (AdC) had no

Figure 3 Allergen-induced vascular remodelling. (A) von Willebrand factor (vWF)-positive (brown stained) peribronchial vessels. (B) vWF-positive
vessels per square millimetre. (C) Vascular endothelial growth factor (VEGF) levels in the lung homogenate. (D) Pulmonary endothelial progenitor cell
(EPC) colony assay. (E) Levels of CXCL2 in lung. *p<0.05 compared with phosphate-buffered saline (PBS) control group. †p<0.05 house dust mite
(HDM) anti-interleukin (IL)-25 compared with HDM Ig control group. Plots depict the median and IQR and minimum and maximum values. Data are
generated from two independent experiments (n=8–12). This figure is only reproduced in colour in the online version.
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effect on pulmonary cellular composition, AHR or parameters
of airway remodelling in the absence of allergen exposure.8

Therefore, for clarity, in the current investigation ‘control’ mice
are those treated with AdS and PBS.

Treatment of mice with a neutralising antibody to IL-25 had
no effect on basal indices of airway remodelling in the absence
of allergen challenge (figure 1). Increased deposition of extracel-
lular matrix is a hallmark feature of airway remodelling and
exposure of vector control mice to HDM for 3 weeks resulted
in a modest increase in peribronchial collagen (figure 1B,C)
which was completely inhibited in mice receiving anti-IL-25
antibody (AdC HDM anti-IL-25) compared with Ig control
(AdC HDM Ig). HDM-exposed mice overexpressing epithelial
smad2 (AdS HDM) had enhanced collagen deposited around
the conducting airways compared with mice receiving allergen
alone and even this enhanced de novo matrix deposition was
completely abolished by treatment of mice with anti-IL-25 anti-
body (figure 1B,C).

α-SMA-positive myofibroblasts and smooth muscle cells were
increased in HDM-treated mice (figure 1D). Peribronchial
smooth muscle thickness was also increased in HDM-challenged
mice compared with controls, and this increase was enhanced
in mice receiving the AdS vector (figure 1E). However,
allergen-induced thickening of the smooth muscle layer was
absent in mice administered anti-IL-25 antibody and a signifi-
cant reduction in ASM mass was observed even in the AdS
HDM treated group (figure 1E). Smooth muscle cell prolifer-
ation was assessed in lung sections stained with an antibody
against PCNA (figure 1F). The percentage of PCNA-positive
airway mesenchymal cells was calculated as an index of smooth
muscle hyperplasia. This was increased in response to HDM
and further elevated in the AdS HDM group (figure 1G).
PCNA-positive subepithelial mesenchymal cells were reduced
to baseline values in mice pretreated with IL-25 neutralising
antibody (figure 1G).

Lung sections were stained with PAS to demonstrate
mucus-containing cells (figure 1H). In contrast to the effects
on smooth muscle and collagen deposition, neutralising
IL-25 did not affect differentiation of the epithelium to a
mucus-secreting phenotype (figure 1I). We have previously
shown that levels of TGF-β1 and activin A are increased in
the lungs of HDM-treated mice and that activin A drives the
enhanced remodelling observed in AdS HDM groups.8 We
therefore investigated the effect of blocking IL-25 on these
two drivers of remodelling. While blocking activin A com-
pletely abrogates pulmonary IL-25,8 neutralising IL-25 had
only a modest effect on activin A levels (figure 2A) which
remain elevated relative to controls. Bioactive TGF-β was ele-
vated in HDM-treated mice but levels were not significantly
modulated by prophylactic blockade of IL-25 (figure 2B).

IL-25 acts directly on human mesenchymal cells to induce
phenotypic remodelling changes
Blocking IL-25 has profound effects on HDM-induced remodel-
ling, so to determine whether IL-25 acts directly on mesenchy-
mal cells, NHLFs were treated with human recombinant IL-25.
This resulted in significantly increased secreted extracellular col-
lagen within 8 h. Collagen synthesis was further increased over
48 h reaching maximal levels by 24 h (figure 2C). These data
show for the first time that human fibroblasts respond rapidly to
IL-25 by increasing matrix secretion, a hallmark of airway
remodelling in human asthma. In the mouse a number of struc-
tural cells express the IL-25 receptor (figure 2D), including
fibroblasts,18 endothelial cells,19 epithelial cells, particularly at

their apical surface (figure 2D iii and iv) and ASM cells (figure
2D v). Thus, IL-25 can potentially act on many structural cells
of the lung to directly induce remodelling changes.

IL-25 modulates allergen induced angiogenesis in vivo
Airway wall neovascularisation is a recognised feature of the
remodelled asthmatic lung. There was a significant increase in
the number of vWF-positive pulmonary blood vessels following
exposure of mice to HDM (figure 3A,B). Neutralisation of
IL-25 reduced submucosal angiogenesis by 50% (figure 3B).
A modest but significant elevation in VEGF was observed in the
AdC HDM group but was reduced by treatment of mice with
anti-IL-25 antibody (figure 3C). We next investigated recruit-
ment of EPC from the bone marrow to the lung. HDM expos-
ure elicited a significant increase in the number of EPCs in the
lung, and this was reduced following IL-25 blockade
(figure 3D). Levels of CXCL2, which has been shown to be
important for EPC recruitment,14 were elevated in response to
HDM challenge and were abrogated in mice administered
anti-IL-25 antibody (figure 3E).

IL-25 drives AHR following HDM exposure
IL-25 drives AHR in acute ovalbumin models but we investigated
whether IL-25 also promotes the augmented HDM-induced
AHR in mice with altered epithelium (figure 4A). This enhanced
AHR was reduced by 70% in AdS HDM mice following treat-
ment with anti-IL-25 antibody. AHR was also completely abol-
ished in the AdC HDM treated group following neutralisation of

Figure 4 Airway hyperreactivity is dependent on interleukin (IL)-25.
(A) Airway resistance in mice. (B) Airway resistance (RL) at 100 mg/ml
methacholine (MCh). *p<0.05 compared with phosphate-buffered
saline (PBS) control group. §p<0.05 AdS house dust mite (HDM) Ig
compared with AdC HDM Ig control group. †p<0.05 HDM anti-IL-25
compared with HDM Ig control group. Plots depict the median and IQR
and minimum and maximum values. Data are generated from two
independent experiments (n=8–12).
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IL-25 (figure 4B). Thus, IL-25 is critical in driving AHR follow-
ing exposure to an inhaled allergen, even when enhanced by
ectopic expression of smad2 in the epithelium.

Blocking IL-25 reduces pulmonary inflammation
in HDM-exposed mice
Inflammatory cuffs were evident around the conducting airways
and blood vessels in H&E-stained lung sections taken from all
HDM-treated groups of mice (figure 5A). Mice with altered epi-
thelial smad2 expression had a similar inflammatory response to
the AdC groups when challenged with allergen. Treatment of
mice with anti-IL-25 antibody resulted in a 50% decrease in the
number of recruited cells in the lung (figure 5B) and BAL fluid
(data not shown). In particular, eosinophilia, a characteristic
feature of asthma, was reduced by anti-IL-25 antibody (figure
5C). Similarly Th2 cells, recruited in response to inhaled HDM,
were reduced by blocking IL-25 (figure 5D).

IL-25 blockade partially reduces inflammatory mediators
in the lung
IL-4, IL-5 and IL-13 were elevated in response to HDM expos-
ure and blocking IL-25 significantly reduced the amount of
these cytokines in the lung (figure 6A–C). Levels of IFN-γ, the
prototypical Th1 cytokine, are very low in this model of allergic
airways disease. However, there was a significant increase in

IFN-γ in the AdC PBS anti-IL-25-treated mice (figure 6D).
Serum levels of total IgE (figure 6E) and HDM-specific IgE
(figure 6F) were elevated following 3 weeks of allergen chal-
lenge. Treatment of mice with anti-IL-25 antibody abrogated
production of total and antigen-specific IgE.

The cytokines IL-25, IL-33, TSLP and CCL20 have been pos-
tulated to be important drivers of early allergic Th2 responses
in mice, either by the induction of innate helper cells (IL-25 and
IL-33) or by differentiation/activation of dendritic cell popula-
tions (CCL20 and TSLP). In contrast to the partial effect of
blockade of IL-25 on Th2 cytokines associated with the adap-
tive response, production of the innate epithelial-derived cyto-
kines was totally dependent on the presence of IL-25. IL-33,
TSLP, IL-25 and CCL20 were all elevated following 1 week of
HDM administration (figure 7A–D), but neutralising IL-25 com-
pletely ablated this early innate response to allergen challenge.

Collectively, these studies demonstrate that IL-25 is critically
involved in airway remodelling in response to HDM. Our data
outline a wider role for IL-25 in mediating the chronic and
acute effects of allergen exposure.

DISCUSSION
The pathophysiology associated with exposure to allergen is
thought to be coordinated by a complex network of mediators
including cytokines. We have examined the role of IL-25 in

Figure 5 Blocking interleukin (IL)-25 reduces allergen-induced pulmonary inflammation. (A) H&E stained lung sections. Scale bar=50 μm. (B) Total
lung inflammatory cells. (C) Pulmonary eosinophil numbers. (D) T helper type 2 (Th2) cells in the lung. *p<0.05 compared with phosphate-buffered
saline (PBS) control group. †p<0.05 house dust mite (HDM) anti-IL-25 compared with HDM Ig control group. Plots depict the median and IQR and
minimum and maximum values. Data are generated from two independent experiments (n=8–12). This figure is only reproduced in colour in the
online version.
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regulating key features of allergic airways disease in response to
the clinically relevant allergen HDM. We used mice exposed to
allergen alone as well as mice overexpressing smad2 in the
airway epithelium, which renders them more susceptible to fea-
tures of airway remodelling and AHR following HDM expos-
ure.8 Enhanced expression of IL-25, rather than the classical
Th2 cytokines IL-13, IL-5 and IL-4, is a prominent feature of
this model. These data show that IL-25 plays a critical role in
allergen-induced airway remodelling and AHR.

A greater understanding of the molecular mechanisms driving
airway remodelling may enhance development of effective treat-
ments. We now show that peribronchial collagen deposition is
critically dependent on IL-25. Even in AdS-treated mice, which
show enhanced matrix deposition in response to allergen chal-
lenge, collagen density is reduced to basal levels when IL-25 is

neutralised. To confirm that the observed effects of IL-25 block-
ade on collagen deposition are a direct effect of IL-25, as
opposed to indirect effects induced by IL-25 on the production
of Th2 cytokines, NHLFs were treated with IL-25. Fibroblasts,
which express the IL-25 receptor subunit IL17RB,18 rapidly
upregulated collagen secretion in response to stimulation with
IL-25. In addition to fibroblasts we also show in our model that
ASM cells express IL-17RB as has previously been reported in
patients with asthma.20 It is known that in vitro ASM cells sti-
mulated with IL-25 increase their expression of extracellular
matrix components.20 These data show unequivocally that
IL-25 can directly induce parameters associated with airway
remodelling in human asthma.

Mucus production and goblet cell hyperplasia during an acute
ovalbumin model of allergic airways disease are dependent on

Figure 6 Allergen-induced inflammatory mediator production is partially decreased by blocking interleukin (IL)-25. (A) Pulmonary IL-4, (B) IL-5,
(C) IL-13 and (D) interferon (IFN)-γ levels. (E) Serum total IgE and (F) house dust mite (HDM)-specificIgE determined by optical density (OD).
*p<0.05 compared with phosphate-buffered saline (PBS) control group. †p<0.05 HDM anti-IL-25 compared with HDM Ig control group. Plots depict
the median and IQR and minimum and maximum values. Data are generated from two independent experiments (n=8–12).
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IL-25.4 In contrast, mice exposed to HDM exhibit epithelial
mucus changes independent of IL-25 expression. This is likely
driven by eosinophil and T-cell derived IL-13 which was not
completely ablated in the lungs of anti-IL-25 HDM-treated
mice.

Increased ASM mass is postulated to contribute to altered
asthmatic airway function. Mice exposed to HDM exhibit mes-
enchymal cell hyperplasia and the subsequent increase in ASM
mass was completely abrogated following treatment with
anti-IL-25 antibody. AHR was concomitantly reduced in
allergen-exposed mice treated with IL-25 blocking antibody,
even in mice with enhanced AHR following dual exposure with
AdS. IL-25 appears to play a critical role in the induction of
AHR regardless of the model used to induce allergic airways
disease, and this has been shown to be independent of Th2
cytokine production.4

Increased bronchial vascularisation in patients with asthma is
thought to contribute to airflow obstruction. Mice exposed to
HDM have elevated numbers of pulmonary EPCs and subse-
quent airway neovascularisation compared with controls.
Neutralising IL-25 completely abolished angiogenesis in vivo,
confirmed earlier by in vitro observations using human umbil-
ical vein endothelial cells.9 Numbers of EPCs in patients with
asthma have been shown to correlate with increased peribron-
chial blood vessels21 and allergen challenge of patients with
atopic asthma results in EPC influx to the airways.22 We have
previously shown that EPC recruitment in response to ovalbu-
min is independent of VEGF A.14 Similarly, levels of VEGF A
were not modulated by HDM. However, HDM-induced

IL-25-dependent CXCL2 expression correlates with EPC
recruitment. Blocking the receptor CXCR2 has been shown to
attenuate bronchial angiogenesis in pulmonary ischaemia.23

However, neutralising IL-25 may provide a therapeutic advan-
tage in the treatment of asthma because in addition to prevent-
ing neovascularisation other aspects of allergen-induced airway
remodelling are also ablated.

TGF-β has been implicated in the development of airway
remodelling in ovalbumin-driven asthma models. However, neu-
tralisation of TGF-β during HDM-induced allergic airways
disease does not prevent the increase in collagen deposition or
α-SMA-positive cells and in fact augments AHR.24 Our present
study confirms that HDM-induced airway remodelling is
unlikely to be solely driven by TGF-β. In the gut TGF-β acts
upstream of IL-2525 but the relationship between TGF-β and
IL-25 in the lung has yet to be fully elucidated. Our previous
work has shown that the TGF-β family member activin A is also
involved in the development of HDM-driven airway remodel-
ling. Neutralising activin A abrogated the HDM-induced
increase in pulmonary IL-25 levels.8 Blocking IL-25 had a
modest effect on activin A, however levels remained significantly
elevated compared with control mice. We have previously
shown that it is necessary to block TGF-β and activin A to
prevent pulmonary allergic pathology.26 Our current data
suggest that activin A acts upstream of IL-25 and that both
cooperate to promote airway remodelling.

Overexpression of IL-25 results in elevated IL-4, IL-5 and
IL-13 gene expression and serum IgE, IgG1 and IgA levels in
addition to eosinophilia, increased mucus production and

Figure 7 Allergen-induced epithelial cytokine release is completely abrogated by blocking interleukin (IL)-25. Levels of (A) IL-33, (B) thymic
stromal lymphopoietin (TSLP), (C) CCL20 and (D) IL-25 in the lung. *p<0.05 compared with phosphate-buffered saline (PBS) control group. †p<0.05
house dust mite (HDM) anti-IL-25 compared with HDM Ig control group. Plots depict the median and IQR and minimum and maximum values. Data
are generated from two independent experiments (n=8–12).
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epithelial cell hyperplasia/hypertrophy.27 Administration of
anti-IL-25 antibody to HDM-exposed mice significantly
decreased pulmonary inflammation and Th2 cytokine produc-
tion, although levels remained elevated compared with PBS
control mice. In contrast, IL-25 neutralisation completely
abrogated the allergen-induced early increases in the innate
cytokines, IL-33 and TSLP. TSLP, IL-25 and IL-33 are an
epithelial-derived triad of cytokines which collectively drive
Th2 polarisation through complementary and sometimes syner-
gistic mechanisms. Emerging evidence suggests that IL-33
and TSLP may also be associated with tissue remodelling.
Expression of IL-33 is strongly associated with fibrosis in
chronic liver injury and skin and IL-33 levels have been shown
to correlate with pulmonary fibrosis and decreased forced vital
capacity.28 29 Intradermal administered TSLP promotes subcuti-
cular fibrosis in mice and TSLP can enhance fibrocyte differenti-
ation and increase collagen production.30 31 Of interest, IL-25
has been shown to increase TSLP expression in MLE12 epithe-
lial cells,1 and we have shown that murine airway epithelial cells
express IL-17RB. Our data suggest that IL-25 drives production
of IL-33 and TSLP in vivo and might also cooperate with these
cytokines to orchestrate airway remodelling, confirming a
central role of the airway epithelium in driving the pathological
changes observed in the remodelled asthmatic lung.

In conclusion, neutralising IL-25 has a limited effect on
recruitment of leukocytes to the lung when a complex allergen is
used. In contrast, blocking IL-25 completely inhibits the release
of the epithelial-derived innate cytokines and abrogates sube-
pithelial fibrosis and mesenchymal cell proliferation and AHR.
Focusing specifically on mediators which play a crucial role in
driving remodelling and AHR presents a novel therapeutic
approach to the treatment of asthma, particularly as this aspect of
disease pathology is resistant to most current therapies.
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