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Abstract

The impact of influenza vaccination is largely measured by estimating vaccine effectiveness
(VE), which vary in different seasons. Strain mutations and waning immunity present two
key mechanisms affecting VE. We sought to quantify the relative effect of these mecha-
nisms by projecting VE and the reduction of iliness due to vaccination. We developed a sto-
chastic age-structured agent-based simulation model of influenza transmission dynamics to
encapsulate intraseason waning of immunity post-vaccination, and mutation-induced anti-
genic distance between circulating strains and vaccine strains. Parameterizing the model
with published estimates, we projected the temporal and overall VE during an epidemic sea-
son, and estimated the reduction of infection for high (70%) and low (30%) vaccine effica-
cies to reflect the levels of vaccine-induced protection in randomized control trials. Both
temporal and overall VE decreased as the attack rate increased, with lower median values
for epidemics starting with strains that were antigenically more distant from vaccine strains.
We observed a higher rate of temporal decline with considerably lower median values of the
overall VE in the presence of intraseason waning of immunity compared with only the anti-
genic distance effect. The highest benefit of vaccination in preventing influenza infection
was achieved at moderate attack rates in the range of 6%-15%. The results show that even
when VE is relatively low in the population and almost negligible for older age groups (i.e.,
50+ years), vaccination can still prevent significant illness in high-risk individuals; thereby
reducing healthcare resource utilization and economic burden. Our study indicates that
early vaccination remains an important strategy for alleviating the burden of seasonal influ-
enza. Policy discussions on optimal timing of vaccination to reduce the effect of intraseason
waning of immunity should be considered in the context of strain mutations within the epi-
demic course.

Introduction

Seasonal vaccination is the most effective preventive measure against influenza infection and
its severe outcomes such as hospitalization and death [1, 2]. There are two important
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properties that quantify the impact of influenza vaccination. First is the vaccine efficacy in
infection prevention, which depends on several factors at the individual level such as health
status (e.g., the presence of comorbid conditions), age, and frailty that impairs the ability to
resist infection and respond to vaccination in a process known as immunosenescence [3-7].
Second is the vaccine effectiveness (VE), which depends not only on vaccine efficacy, but also
on other population and pathogen characteristics including the occurrence of strain mutations
during natural infection that enhances the antigenic distance between dominant influenza
viruses and the vaccine strains [8-10].

While the vaccine efficacy is measured in clinical trials (under ideal conditions), the overall
VE is estimated during an influenza season (under real-world conditions). Both measures esti-
mate how well the vaccine performs to prevent infection, but they are subject to the aforemen-
tioned factors in their estimates. Observational studies indicate that VE often declines as the
epidemic progresses and infection spreads through the population [11, 12]. Explicators for the
decline of VE have included host factors, suboptimal immunity, attack rates, and viral drift
that reduces vaccine-induced protection. Further, recent studies provide evidence of intrasea-
son waning immunity (hereinafter referred to as waning immunity) among individuals vacci-
nated with the traditional inactivated vaccine [13-16]. These studies measure effectiveness
using methods of “test-negative design” [12, 17, 18] and respiratory syncytial virus illness as a
“negative-control outcome” [14], without consideration of infecting strains and their potential
antigenic distance with vaccine strains. Thus, the relative impact of waning vaccine-induced
protection and viral drift on reducing VE during a single epidemic season remains
undetermined.

We sought to quantify the impact of two distinct mechanisms of antigenic distance and
waning immunity on the reduction of VE, by developing an agent-based multi-scale simula-
tion model of influenza transmission dynamics in a population. We parameterised the model
with published estimates and simulated it to project the population-wide benefits of vaccina-
tion for different scenarios of disease severity (i.e., reflected in epidemic attack rate), vaccine
efficacy in infection prevention (i.e., high and low), and the presence of virus strains of varying
antigenic distance at the onset of epidemic. We compared the model outcomes under the sce-
narios of antigenic distance and waning immunity in terms of the overall and temporal VE,
and the percentage reduction of illness achieved due to vaccination.

Materials and methods
Ethics statement

This study used publicly available data and information published in previous studies, and
therefore did not require ethics approval. No patient records were used in this study.

The model framework

We developed a stochastic age-structured agent-based simulation model of influenza transmis-
sion dynamics, which includes health statuses of individuals as unvaccinated, vaccinated, latent
(exposed and infected), symptomatically infectious, asymptomatically infectious, and recov-
ered (S1 Fig in S1 Appendix). In an epidemic scenario, we assumed that recovery from infec-
tion confers immunity against re-infection in the same season.

Population demographics and contact patterns

We stratified the population into 5-year age groups in a population of 10,000 individuals. The
age groups were populated according to the distribution (S2 Fig in S1 Appendix) derived from
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the 2017 Canadian census data [19]. The age of each individual was randomly selected in the
associated 5-year age-range. Due to short timelines of a single influenza epidemic season, we
ignored demographics of birth and natural death. We assigned a frailty index to each individ-
ual by performing a segmented linear regression (S1 Fig and S1 Table in S1 Appendix) on the
2016 Canadian Community Health Survey data of chronic diseases [20]. This regression, as a
function of age, was used to sample frailty index from a uniform distribution, with the mean
given by the value on the linear regression at any given age and a standard deviation of 5%
[21]. The daily number of contacts for each individual was sampled from a negative-binomial
distribution [22], with age-dependent mean and standard deviations (S2 Fig, S2 Table in S1
Appendix).

Strain mutation and antigenic distance

We considered hemagglutinin sequences with lengths of 566 amino acids in a virus strain,
herein referred to as ‘sites’ [10]. We calculated the probability of mutation in each site of a
strain sequence [9], taking into account possible substitutions reflecting a 20-dimensional
immunological shape space [23], by:

Lt
P =1—¢%

mutation

where p is the rate of nucleotide substitution/site/year and T is the infectious period (days) of
the individual infected with the same strain. Each site of a strain sequence was associated with
20 possible substitutions. When a site was selected to change, the day on which the substitution
occurred was randomly chosen within the first half of the infectious period of an infected indi-
vidual for the mutant to emerge. We allowed for more than one change in sites of a single strain.
This process was applied to all strains in an infected individual. The antigenic distance, denoted
by d, between a circulating strain and the vaccine strains was then calculated by the ratio of the
number of substitutions in sequence sites to the total number of sites [8, 9]. We used this dis-
tance to determine the strain-specific vaccine efficacy in infection prevention described below.

Vaccination and vaccine efficacy

Individuals were vaccinated randomly according to the vaccine coverage estimates (S3

Table in S1 Appendix) provided by the Public Health Agency of Canada for the 2016/17 sea-
sonal influenza in different age groups [24]. For vaccine distribution, we changed the status for
a proportion of individuals from susceptible to vaccinated corresponding to the vaccine cover-
age in their age group at the onset of model simulations. We then considered the initial vaccine
efficacy V, (as model input) to reflect the level of infection prevention in randomized control
trials under ideal conditions. For the model scenario with virus mutations, the protection level
of a vaccinated individual against infection with a strain was determined by the sampled frailty
index and the strain antigenic distance. The strain-specific protection conferred by vaccination
was then calculated by E, = V (1-f)-7.37d, where fis the sampled frailty index of a vaccinated
individual. The slope of decline was parameterized based on linear regression of VE for ILI
correlates in several influenza seasons from 1982 to 2008 as a decreasing function of antigenic
distance [9]. In the model scenario with waning immunity (without considering virus muta-
tions), we calibrated the model to the estimated 7% absolute decline of VE per month post-vac-
cination [13] to determine the temporal reduction of vaccine efficacy E, at the individual level.
Vaccine-induced protection was included as a reduction factor for disease transmission when
a vaccinated individual encountered an infectious individual. If infection occurred, vaccine
protection reduced the probability of developing symptomatic disease by a factor of 1-E; or 1
—E, in the corresponding model scenarios of antigenic distance and waning immunity.
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Disease dynamics

We allowed the disease to spread between individuals, in a probabilistic approach, through
contacts with symptomatically or asymptomatically infectious individuals. This was imple-
mented in the model as rejection sampling-based (Bernoulli) trials where the chance of success
is defined by a transmission probability distribution. Based on the natural history of influenza
(S1 Fig in S1 Appendix), a newly infected individual entered a latent stage during which the
disease cannot be transmitted. Once the latent period elapsed, the disease was manifested as
either symptomatic (with clinical symptoms) or asymptomatic (without clinical symptoms).
Latent and infectious periods were sampled for each individual from their associated distribu-
tions described in the Parameterization Section below. For a successful transmission in the
antigenic distance model at the time of contact, we determined the infecting strain using the
roulette fitness proportionate selection («;) [25], given by:

o — (1 _Ei)Ati
b (1-E)Ay

where E; is the vaccine protection efficacy against mutant i, and At; is the time since emergence
of mutant i during the infectious period.

Parameterization

The baseline transmission probability in the absence of vaccination was obtained by calibrat-
ing the model to various attack rates, defined here as the percentage of an unvaccinated popu-
lation infected throughout a season. In a recent systematic review [26], the pooled estimates
for symptomatic and asymptomatic infections combined for all influenza (A and B) among
unvaccinated individuals were 22.5% (95%CI 9.0% - 46.0%) for children (<18 years) and
10.7% (95%CI 4.5% - 23.2%) for adults. We considered a range of attack rates from low (4%)
to high (40%) for calibration in the absence of vaccination, representing mild to severe influ-
enza epidemic seasons.

Latent period was drawn from a uniform distribution with the mean of 1.5 days within the
range of 1-2 days [27, 28]. The infectious periods for both symptomatic and asymptomatic
infections were sampled from a truncated lognormal distribution with scale of 1 and shape of
0.4356, having mean of 3.38 days [27, 28]. The probability of developing asymptomatic infec-
tion was sampled for each individual from a uniform distribution in the range 0.3-0.7 and was
modified for vaccinated individuals according to the vaccine protection. We considered two
vaccine efficacies of 70% (high) and 30% (low), from which the individual-level vaccine protec-
tion efficacy was calculated based on the sampled frailty. All parameters and associated ranges
are summarized in Table 1.

Model implementation and estimation of VE

The model was computationally developed in Julia language to perform Monte-Carlo simula-
tions. Vaccination was implemented in the model as pre-epidemic program. All simulations
were seeded with a randomly selected individual in the latent state of the disease. We ran 3000
independent realizations for each scenario, and used five age groups (0.5-8, 9-17, 18-49, 50-
64, and 65+ years) to aggregate the simulation outputs for disease incidence and estimate the
overall and age-specific VE. Incidence of infection during the epidemic and any change in the
health status of individuals were recorded. We estimated vaccine effectiveness using VE = (1
—OR)100%, where OR is the odds ratio for cumulative incidence among vaccinated versus
unvaccinated individuals [29].
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Table 1. Model parameters with their associated values (ranges).

Parameter Value/range Source/comment

Attack rate in the absence of vaccination | 4%-40% [26]

Baseline transmission probability Varied depending on the attack | Calibrated to a specific attack rate
rate

Mean latent period (days) 1.5; Uniform(1, 2) [27, 28]

Mean infectious period (days) 3.38; LogNormal(1, 0.4356) [27, 28]

Relative transmissibility of asymptomatic | 0.3-0.7 [27, 28] Sampled for each

infection individual

antigenic distance at the onset of 0-0.04 [8,9]

epidemic

Annual strain mutation rate 0.004-0.31, Varied depending on | [8, 9] Calibrated to the estimated
the attack rate antigenic distance

Waning vaccine-induced protection at 1.6% per week [13] Calibrated to 7% decline of VE

the individual level per month

Vaccine efficacy 70% (high); 30% (low) Assumed

Frailty Sampled [20] Varied depending on the age of

individuals

https://doi.org/10.1371/journal.pone.0241549.t001

Simulation scenarios

For the antigenic distance model, we considered five scenarios in which the circulating strains
were introduced with different antigenic distances in the range 0-0.04 [8, 9] at the onset of epi-
demic. We then tracked the emerging strains in infected individuals to project the trend of
maximum antigenic distance throughout the epidemic (S3, S4 Figs in S1 Appendix). For the
waning immunity model, the vaccine protection efficacy at the individual level was reduced
every week by the calibrated value (Table 1) to achieve 7% absolute reduction of VE per month
post-vaccination [13]. Model outcomes for different scenarios were analysed, including the
incidence of infection and the temporal change in VE.

Results

We analysed the outcomes of the scenarios described above in terms of temporal antigenic dis-
tance and incidence of disease during an outbreak for a given attack rate. In the antigenic dis-
tance model, the results indicate an increase (S3, S4 Figs in S1 Appendix) in the antigenic
distance within the range estimated using a sequence-based method for HIN1 strains during
several epidemic seasons [8, 9]. The incidence of disease was higher for epidemics starting
with strains that carry a higher antigenic distance compared with vaccine strains (S5-S7 Figs in
S1 Appendix).

Overall VE

For a vaccine efficacy of 70% in infection prevention, Fig 1 (al-a5) shows the overall VE for
different attack rates in the antigenic distance model. Not surprisingly, VE decreases as the epi-
demic attack rate increases with a lower median VE for epidemics starting with strains that
have a higher antigenic distance. However, despite decreasing VE, we observed that the highest
reduction of illness is achieved for some moderate attack rates in the range 6%-15%. Perform-
ing a segmented linear regression suggests that the median reduction of illness increases for
low to moderate (4%-12%) attack rates and decreases for higher attack rates Fig 1 (b1-b5). A
higher initial antigenic distance was associated with lower estimates of reduction of illness,
decreasing the benefits of vaccination without changing the observed pattern.
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Fig 1. Projected VE (al-a5) and reduction of illness (b1-b5) in the antigenic distance model with an initial vaccine
efficacy of 70% for calibrated attack rates in the absence of vaccination. Simulated scenarios correspond to the presence
of circulating strains with different antigenic distance at the onset of epidemic. Boxplots represents the variation in
projected VE and reduction of illness with median values shown by red circles.

https://doi.org/10.1371/journal.pone.0241549.g001

The qualitative aspects of these results did not alter when the epidemic scenarios were simu-
lated with a low vaccine efficacy of 30% (Fig 2). As expected, the temporal VE declined
throughout the simulated epidemics with both low and high vaccine efficacies (Fig 3), corre-
sponding to increasing antigenic distance patterns (S3, S4 Figs in S1 Appendix).

We also observed similar outcomes when simulating the waning immunity model with
70% and 30% vaccine efficacies (Fig 4). While VE decreased as the attack rate increased, the
reduction of illness was highest for moderate attack rates (8%-12%) with lower vaccine benefits
in low and high attack rates. Similar to the model of antigenic distance, the temporal VE in the
waning immunity model declined throughout the simulated epidemics with both low and
high vaccine efficacies (Fig 5) but saturated at a considerably lower levels (for the overall VE)
compared the antigenic distance model.
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Fig 2. Projected VE (al-a5) and reduction of illness (b1-b5) in the antigenic distance model with an initial vaccine
efficacy of 30% for calibrated attack rates in the absence of vaccination. Simulated scenarios correspond to the presence
of circulating strains with different antigenic distance at the onset of epidemic. Boxplots represents the variation in
projected VE and reduction of illness with median values shown by red circles.

https://doi.org/10.1371/journal.pone.0241549.g002
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Age-specific VE

In all scenarios simulated here, the lowest VE was associated with age groups of 50+ years old,
reflecting lower individual-level vaccine-induced protections due higher frailty compared to
other age groups (S8, S9 Figs in S1 Appendix). However, the median reduction of illness in the
50+ years age-groups was comparable or higher than other age groups, even with negligible
(nearly zero) median VE when the attack rate was relatively high, or vaccine efficacy was low
(30%) (S10 Fig in S1 Appendix). This indicates the indirect benefits of vaccination that reduces
the burden of illness in older individuals as a result of increased herd immunity.

Discussion

The modelling outcomes in this study show that the highest benefit of vaccination in prevent-
ing influenza infection is achieved at moderate attack rates. This finding corroborates a recent
data-driven study estimating VE during the 2017-2018 influenza season in the United States
[30]. The study concludes that despite a relatively low estimated VE of 38% in the population
(which also varied in different age groups), the benefit of influenza vaccination was substantial
mainly because of the high burden of influenza-associated disease. In our model, this corre-
sponds to a maximum reduction of illness observed for moderate attack rates, presenting an
extremum for the effect of vaccination. For mild seasons with a low attack rate, the benefits of
vaccination are largely masked by the low number of infections in the population. On the
other hand, for severe seasons with a high attack rate, both the VE and reduction of illness can
decrease substantially, diminishing the impact of vaccination as a result of high number of
infections and the rapid spread of disease. However, our model shows that even when VE is
relatively low in the population and almost negligible for older age groups (i.e., 50+ years), vac-
cination can still prevent significant illness in high-risk individuals; hence reducing healthcare
resource utilization and economic burden.

Our model included two distinct processes of virus mutation and waning immunity. The
fact that mutations occur, not only from one season to the next, but also during each season is
an important factor determining the risk of infection in vaccinated individuals [7]. As new
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mutants evolve, the antigenic distance may be increased, which reduces the efficacy of vaccine
in preventing infection [8, 9]. Within the published estimates, we observed that waning immu-
nity can lead to a larger reduction of VE compared to only antigenic distance. Studies on intra-
season waning immunity [12-14, 17, 18] raise the concern that early vaccination may leave
vaccinated individuals, especially those in high-risk groups, vulnerable to infection during the
epidemic peak, highlighting the importance of a policy discussion regarding the optimal tim-
ing of vaccination. Due to various factors affecting the onset of epidemic season and its severity
[7, 31], determining this optimal timing poses a significant challenge. On one hand, later vacci-
nation during the epidemic delays the effect of waning vaccine-induced protection, and there-
fore reduces vulnerability of vaccinated individuals during the high influenza activity. On the
other hand, it allows for the epidemic to spread at a faster pace during the early stages, which
can encourage strain mutants with high antigenic distance to emerge more quickly and dimin-
ish the vaccine-induced protection. Early vaccination can slow the spread of disease, and there-
fore decelerate the generation of mutants that are antigenically distant from those included in
the vaccine. Since viral mutation and waning immunity occur concurrently in a season, a
potential solution to limit the decline of VE would be to enhance the level of heard immunity
by increasing the vaccination coverage, or to provide a booster dose which represents a costly
strategy. Raising herd immunity requires strategies with improved vaccination coverage.
Because the highest burden of influenza in terms of mortality and hospitalization occurs in
older individuals and those with comorbid illnesses, vaccination programs have prioritized
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https://doi.org/10.1371/journal.pone.0241549.9005

these high-risk individuals. Vaccination provides real but limited protection in these groups
[32-35]; however, most disease is likely transmitted by younger, healthier individuals at low
risk of severe outcomes. Inclusion of healthy children and working adults in influenza vaccina-
tion programs [36-38] could enhance the level of herd immunity and disrupt disease transmis-
sion, conferring significant indirect benefits.

In the modelling framework developed here, we considered the effect of several factors
affecting VE, without explicitly encapsulating the underlying mechanisms that are also influ-
enced by pathogen-host interactions. For example, the host conditions (e.g., age, co-morbid ill-
ness, and immunocompromised) are included as frailty of individuals [3, 4]. The model was
parameterized with age-specific contact patterns of individuals in urban settings, which can
affect the risk of infection per contact regardless of the level of vaccine-induced protection
[21]. We did not explicitly include pre-existing immunity, as its level in different seasons is
unknown and changes during each season due to various factors [7]. However, the effect of
such immunity is to a large degree accounted for through interrelated parameters. First, while
pre-existing cross-reactive immunity may not prevent infection, it can reduce the risk of devel-
oping clinical disease if infection occurred. This was taken into account by a parameter repre-
senting the probability of developing symptomatic infection. Second, any level of pre-existing
immunity in the population reduces the severity and/or number of infections throughout the
season. This is reflected in the attack rate, which varied in our model and calibrated to values
within the estimated range for seasonal epidemics. We also considered different vaccine effica-
cies to account for changes in the virus characteristics that may lead to lower strain-specific
protection levels. It is however important to distinguish between vaccine efficacy (prevention
of illness among healthy vaccinated individuals enrolled in controlled clinical trials) and VE
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(prevention of illness in vaccinated populations). Unlike the former, the latter is subject to var-
ious factors in the real-world scenarios including repeated exposures, wider variation in
response to vaccine, exposure to infection before an optimal immune response mounted upon
vaccination, and variation in virus strains [7]. As we have shown, even a small antigenic dis-
tance in circulating strains (compared to vaccine composition) could lead to a significant
reduction of VE. However, it is important to note that we have simplified the process by which
influenza virus strains improve their antigenic distance. For example, some epitopes in the
hemagglutinin-biding sites of the virus play a more dominant role than others and may have a
high percentage of amino acid substitutions under strong immune pressure [39]. On the other
hand, some substitutions occur rarely but may decrease the antigenic distance, thereby
increasing the efficiency of mutated-virus neutralization by antibodies specific to the parent
virus [40, 41]. Simplifying these mechanisms and using a sequence-based antigenic distance
measurement [9], our model implements the effect of antigenic distance on vaccine efficacy
linearly with the same probability of mutation at each site [39]. Extending the modelling
framework proposed here with the inclusion of variabilities in amino acid substitutions and
their effect on VE merits further investigation.

Conclusions

Considering the qualitative aspects of our study, the results indicate that early vaccination
remains an important public health strategy for alleviating the burden of seasonal influenza.
Policy discussions on optimal timing of vaccination to reduce the effect of waning immunity
will need to be considered in the context of unpreventable strain mutations during the epi-
demic. Potential solutions to limit the decline of VE may include an improved vaccination cov-
erage of low-risk individuals, and a booster dose during the epidemic which represents a costly
strategy and merits a rigorous evaluation for its cost-effectiveness.
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