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Abstract: In recent years, air pollution caused by PM2.5 in China has become increasingly severe.
This study applied a Bayesian space–time hierarchy model to reveal the spatiotemporal heterogeneity
of the PM2.5 concentrations in China. In addition, the relationship between meteorological and
socioeconomic factors and their interaction with PM2.5 during 2000–2018 was investigated based
on the GeoDetector model. Results suggested that the concentration of PM2.5 across China first
increased and then decreased between 2000 and 2018. Geographically, the North China Plain and
the Yangtze River Delta were high PM2.5 pollution areas, while Northeast and Southwest China are
regarded as low-risk areas for PM2.5 pollution. Meanwhile, in Northern and Southern China, the
population density was the most important socioeconomic factor affecting PM2.5 with q values of
0.62 and 0.66, respectively; the main meteorological factors affecting PM2.5 were air temperature
and vapor pressure, with q values of 0.64 and 0.68, respectively. These results are conducive to our
in-depth understanding of the status of PM2.5 pollution in China and provide an important reference
for the future direction of PM2.5 pollution control.

Keywords: PM2.5 pollution; spatiotemporal heterogeneity; Northern and Southern China; GeoDetec-
tor; impact factors

1. Introduction

In the past few decades, the acceleration of urbanization has affected air quality,
human and ecological health worldwide [1–3]. In China, rapid economic development
and the increase in energy-intensive industries have caused serious environmental pol-
lution problems [1,4]. In particular, of the various atmospheric pollutants, particulate
matter with an aerodynamic diameter of less than 2.5 µm (PM2.5) is the most harmful [5,6],
which can severely impact environmental conditions, visibility and driving conditions,
and climate change [3,7]. In Beijing, annual PM2.5 concentrations exceeded the Chinese
National Ambient Air Quality Standard Level 2 (35 µg/m3) at all sites in 2014, especially
at traffic sites, where annual average values were as high as 98.6 ± 89.0 µg/m3 [8]. An-
nual PM2.5 concentrations in China ranged from 10 to 157 µg/m3 in 2016, with 78.79%
of the total population exposed to PM2.5 concentrations > 35 µg/m3. Subsequently, the
national PM2.5 mortality rate was 0.96 (95% confidence interval (CI): 0.45, 13.55) million,
accounting for approximately 9.98% of the total reported deaths in China [9]. In China,
we estimate that 12,100 Chinese people (95% CI: 10,300–13,800) would die from PM2.5
exposure each year [10]. More worryingly, some previous studies reported that with the
rise in PM2.5 concentration, the mortality rate of cardiovascular and respiratory diseases is
also increasing [11–13].
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The severity of PM2.5 pollution is well accepted to be strongly related to anthro-
pogenic emissions [14], topography [15], meteorology [16,17], and physical and chemical
reactions [18,19]. Due to its rapid urbanization and urban agglomerations, air pollution
episodes have been frequented in China. However, the speed and stages of urbanization
significantly differ among cities, which experience varying degrees of environmental prob-
lems and lead to spatial differences in PM2.5 concentrations [20]. More seriously, China
faces the highest mortality rate associated with PM2.5 exposure worldwide [21], meaning
that severe PM2.5 pollution has had an impact on human health; therefore, it has caused
concern in many fields. Notably, meteorological and socioeconomic variables are important
external factors that can impact a city’s accumulation and diffusion of pollutants. Therefore,
the association between meteorological and socioeconomic factors and PM2.5 across China
was investigated in order to further realize the sustainable development of cities.

For example, in 68 major cities in China, Yang et al. [22] reported the linear relationship
between PM2.5 and meteorological factors, and found that this connection has temporal
and spatial changes. Chen et al. [23] analyzed the relationship between meteorological
factors and air pollution in Nanjing, finding a negative association between PM2.5 and
temperature, wind speed, precipitation, and relative humidity. Similarly, in the Sichuan
Basin, Li et al. [24] found a negative relation between PM2.5 concentrations and wind speed,
temperature, and precipitation, while the PM2.5 concentration had a positive correlation
with air pressure. Li et al. [25] showed that an inverted V-shaped characteristics were found
between PM2.5 concentration and temperature, and PM2.5 was negatively correlated with
precipitation, wind speed, and relative humidity.

Furthermore, PM2.5 concentrations in China show clear spatial heterogeneities. Some
studies have shown that PM2.5 pollution is closely correlated to socioeconomic factors
because rapid urbanization and economic development are associated with those activities
linked to PM2.5 emission, because rapid urban development would lead to increased indus-
trial activities, attract large population concentrations, increase road density and biomass
burning, and, therefore, contributions to the spatial distribution in PM2.5 concentration. For
example, Wang et al. [26] showed that population density significantly impacts PM2.5 pollu-
tion, and Yang et al. [27] found that road density had a high impact on PM2.5 concentrations.
In addition, Zhu et al. [28] presented that the PM2.5 pollution in urban areas was more se-
vere than in the surrounding regions, demonstrating that urbanization has a non-ignorable
impact on PM2.5 pollution. Li et al. [29] demonstrated that, especially in metropolitan
areas, the impact of PM2.5 exposure levels on dynamically changing population movements
varies from time to time.

Previous studies have rarely calculated the effects of the interactions of influencing
factors on PM2.5 based on spatially stratified heterogeneity. Moreover, traditional statistical
methods to calculate the interactions of factors can only calculate the product of two factors,
and they have poor ability to explain spatially stratified heterogeneity. However, the
interaction of two factors can be coupled in many forms in reality; therefore, through
this study, our goal is to: (1) understand the long-term changes of PM2.5 pollution in
China and its temporal trends and spatial heterogeneity; (2) analyze the high and low-risk
areas (indicating that probability of a region becoming more/less polluted relative to the
average PM2.5 concentrations of the study area) of PM2.5 pollution-related mechanisms; and
(3) expose the determinant meteorological and socioeconomic factors and their interactive
impacts based on GeoDetector for identifying regional patterns of PM2.5 in Northern and
Southern China.

The study of PM2.5 pollution and its influencing factors on a long historical time series
and a large spatial scale can comprehensively provide an important direction for future
PM2.5 management and can provide a reference for the formulation of policies.
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2. Methods
2.1. Region and Data

There is a significant climatic variation from the coast to inland areas in China due
to geographical effects. According to the Ministry of Environmental Protection of China,
air quality in Baoding, Handan, Jinan, Langfang, Hengshui, Shenyang, Shijiazhuang,
Tangshan, Xingtai, and Zhengzhou, in 2015, was poorest [30], all of which are located in
Northern China. Given the reference from Zhang et al. [31], China has been divided to two
regions to further analysis the studied question; therefore, in our analyses, we also broadly
divided China into the following two regions: (1) Northern (Heilongjiang, Liaoning, Jilin,
Gansu, Ningxia, Inner Mongolia, Xinjiang, Qinghai, Beijing, Shanxi, Hebei, Tianjin, Henan,
Shaanxi, and Shandong) and (2) Southern (Jiangsu, Anhui, Shanghai, Hubei, Guangxi,
Chongqing, Sichuan, Tibet, Yunnan, Guangdong, Hainan, Zhejiang, Fujian, Jiangxi, Hunan,
and Guizhou) (Figure 1).
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Figure 1. Spatial distribution of annual mean PM2.5 concentrations (2000–2018) across China.

Data on PM2.5 from 2000 to 2018 were obtained from a group of Dalhousie University,
that is, https://sites.wustl.edu/acag/, which was accessed March 2021. It (0.01◦ × 0.01◦)
offers high accuracy, having been verified, and the R2 value was 0.81 [32]. Then, we
have extracted the annual mean values of PM2.5 for each province to further analysis.
Meteorological explanatory variable data downloaded from the China Meteorological Data
Sharing Service System refers to average temperature (AT), vapor pressure (VP), wind
speed (WS), relative humidity (RH), and precipitation (PC). Annual socioeconomic data
for 31 provinces refers to population density (PD); the non-agricultural proportion of the
population (UR); the agricultural proportion of the population (RU); industrial output (IO);
per capita GDP (hereafter PG); construction output (CO); proportion of the primary industry

https://sites.wustl.edu/acag/
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(PF); proportion of the secondary industry (PS); proportion of the tertiary industry (PT);
and the area of green land (GR) were obtained from the Chinese governmental statistical
yearbooks. Given the strong correlations between socioeconomic factors (Figure 2) and the
results from other studies, PD, UR, PG, IO, PS were ultimately selected for inclusion in the
study. Because PM2.5 historical dataset used in the study is annual data, i.e., there is one
PM2.5 value for each region each year, the annual average values of impact factors are used
in the calculation to ensure that the dependent and independent variables are consistent on
the time scale.
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Figure 2. Correlation matrix for socioeconomic factors. Note: PD: population density; UR/RU: the
non-agricultural/agricultural proportion of the population; PG: per capita gross domestic product; IO:
industrial output; PF/PS/PT: proportion of primary/secondary/tertiary industry; CO: construction
output; GR: area of green land. ** statistical significance level: 0.01.

2.2. Statistical Methods
2.2.1. Bayesian Space–Time Hierarchy Model (BSTHM)

BSTHM is a statistical method applied to investigate the representative spatiotem-
poral patterns of the spatiotemporal data. Second, BSTHM can also effectively solve the
problem of small sample size in spatiotemporal data and help to show the interpretation of
spatiotemporal correlations [33]. Third, it can solve the complex spatiotemporal coupled
stochastic processes. Moreover, BSTHM provides more information than traditional tech-
niques in spatiotemporal analysis, which has been applied in many subjects [34–36]. Thus,
this method in the study was used to detect the spatial–temporal heterogeneity of PM2.5
pollution.
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Here, the PM2.5 data (2000–2018) for the 31 study provinces were used as the spa-
tiotemporal data, as follows:

yit ∼ N
(

uit, σ2
y

)
(1)

log(uit) = α + si + (b0t∗ + vt) + b1it∗ + εit (2)

where yit is the average PM2.5 of province i (i = 1, 2, ..., 31) in year t (t = 1, 2, ..., 19), uit
stands for the overall potential pollution risk during the study period, σy

2 is the variance,
assuming that these items conform to normal distribution, α represents the overall log
pollution risk over the 19 years in China [33], si represents the spatial characteristics of the
PM2.5 risk during 2000–2018, (b0t* + vt) indicates pollution risk’s temporal variation, t* is
observation period calculating from the mid-study period, b1i is the local temporal trend
relative to the overall trend b0, and εit ~ N (0, σε

2) is the Gaussian noise [37].
According to the following two-step process, proposed by Richardson et al. [38]

pollution high/low-risk regions (and neither) were determined. First, when the posterior
probability p (exp (si) >1|data) exceeds 0.80 or is lower than 0.20, respectively, it is defined
as a high-risk or low-risk region. Those provinces falling between these values were
neither defined as high-risk region nor low-risk region. Here, exp (si) represents the
average pollution risk (overtime) in province i relative to α, the China average [33]. Second,
referring to the posterior probability of local slope exp (b1i), each of these categories was
further classified; that is, a faster or slower increasing trend corresponding to the overall
trend was assumed when p (b1i > 0|hi, data) ≥ 0.80 or ≤ 0.20, respectively; if local trend
approximated the overall that where 0.20 < p (b1i > 0|hi, data) < 0.80. Notably, increasing
and decreasing trends are relative to a common trend and, therefore, do not necessarily
correspond to an absolute increase/decrease in pollution risk [33]. Here, we can obtain
nine categories (i.e., risk categories (three) × trend categories (three)), which are calculated
in WinBUGS 14 [39], a software designed for Bayesian calculation.

2.2.2. GeoDetector

The GeoDetector, a non-linear method, (www.geodetector.cn (accessed on 16 August
2021)) can effectively quantify phenomena with spatially stratified heterogeneity whereby,
assuming that impact factor X has some effect on the dependent variable Y and is statistically
significant, then Y and X will have a similar distribution in space [40,41]. Moreover,
GeoDetector has no linearity assumptions on the variables, which is one of its advantages.
Therefore, it is possible to disregard the multicollinearity of the influencing factors, i.e.,
adding new factors or removing existing factors will not affect the results of other factors,
as follows:

q = 1− 1
Nσ2 ∑L

h=1Nhσ2
h (3)

where q (ranging [0, 1]) quantifies the effects of X or Xs on Y; h is the stratification of X or
Xs according to its or their spatial characteristics and h = 1, 2, ..., L, and L is the number of
strata [40,41]; N (is equal to 31) and σ2, in this study, denote the total number and variations
of study units, respectively; corresponding, Nh and σh

2 are the numbers and variations of
that in strata h, respectively.

Here, the GeoDetector, quantifying the effects of X and Xs (interaction between X1
and X2) on the Y (PM2.5 concentrations) and further calculating whether the effects of
interactions (X1∩X2) between different factors on Y increases or decreases compared to the
effects of X1 and X2 individually [40], is more comprehensive than traditional methods in
calculating interactions, with richer results and better integration and consideration of real
geographic features.

3. Results
3.1. Spatiotemporal Heterogeneity

Figure 3 depicts the overall temporal relative risks (RRs) in China during 2000–2018
and their temporal variations. Overall, a first increasing then decreasing trend was iden-

www.geodetector.cn
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tified. It is worth noting that significant regional differences have also been identified
in addition to temporal changes. Moreover, during two major events and policies (the
Beijing Olympic Games (in 2008) and the Air Pollution Prevention and Control Action
Plan (APPCAP) implemented by the Chinese government to improve the quality of the
air environment from 2013 to 2017), the PM2.5 also presented temporal differences. In the
Beijing–Tianjin–Hebei (BTH) region, the PM2.5 concentrations showed a first upward and
then downward trend in the early and after 2018 Beijing Olympic Games, with a peak
of 67.96 µg/m3, then showed a decreased trend after the APPCAP implemented in 2013.
The PM2.5 concentrations in Henan and Shandong provinces continued to rise until 2008,
reaching the highest values of 78.81 and 77.38 µg/m3, respectively. It showed a decreasing
trend during the emission reduction phase of the 2008 Olympic Games, and a continuous
decreasing trend after enacting the enactment of the APPCAP policy in 2013. In the Yangtze
River Delta (YRD), PM2.5 concentrations continuously increased until 2008 with a peak
value of 54.60 µg/m3, and then showed interannual fluctuations thereafter.
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Figure 3. Temporal relative risks and variations in PM2.5 concentrations in different regions. Note:
BTH is Beijing–Tianjin–Hebei region; YRD is Yangtze River Delta region; RR is relative risks; APPCAP
is the Air Pollution Prevention and Control Action Plan.

Spatially, the spatial RRs at the provincial-level from 2000 to 2018 exhibit notable
spatial differences, demonstrated by the q value of 0.71 (Figure 4). The spatial RRs in major
provinces of North China Plain (NCP) and YRD were higher, suggesting a severe PM2.5 risk
in these areas, while pollution risks in Heilongjiang, Jilin, Tibet, and Yunnan are relatively
low.
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Among the 31 provinces, nine (29.03%) and six (19.35%) were regarded as high and low
pollution risk regions (high/low-risk region), respectively; the other 16 (51.61%) provinces
did not belong to either classification (Figure 5).

Specifically, among the nine high risk regions, Henan showed a slower increasing
trend than the overall. Thus, the risk in this region is likely higher, and the region will
remain high risk in the future, deserving further attention (Figure 5).

Among the six low-risk regions, Heilongjiang and Yunnan showed a faster increasing
trend compared to the overall increasing trend, indicating that the risks in the two provinces
will be higher in the future. On the other hand, compared to the overall trend, Tibet, Sichuan,
Inner Mongolia, and Jilin were consistent. Therefore, the risk in these spots is expected to
remain relatively constant in the future (Figure 5).

Among those provinces that were not classified as high risk region or low-risk regions,
Xinjiang, Gansu, and Ningxia showed a slow increasing trend; thus, these provinces will
be high risk region in the future. Based on this, relevant departments in these provinces
should be made aware of these potential risks. Moreover, the trends in Qinghai, Shanxi,
Shaanxi, Liaoning, Chongqing, Guizhou, Hunan, Jiangxi, Zhejiang, Fujian, Guangdong,
Guangxi, and Hainan, were similar to the overall trend (Figure 5), suggesting that PM2.5
pollution in these provinces will remain relatively stable in the future.
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3.2. Impact Factors Analysis

Based on the GeoDetector, the highest factors affecting PM2.5 concentrations were
average temperature and population density in Northern China and vapor pressure and
population density in Southern China, as shown in Tables 1 and 2.

Table 1. The q values (q1, q2) for the association between PM2.5 concentrations and meteorological
factors in Northern and Southern China, respectively.

Meteorological Factors q1 q2

Average temperature (◦C) 0.64 ** 0.51 **
Vapor pressure (hPa) 0.50 ** 0.68 **
Precipitation (mm) 0.15 ** 0.35 **

Relative humidity (%) 0.08 * 0.37 **
Wind speed (m/s) 0.08 0.13 **

Note: * statistical significance level = 0.05; ** statistical significance level = 0.01.

Among the selected meteorological factors, AT and VP had the greatest impact on
the temporal heterogeneity of PM2.5 concentrations (q = 0.64 and 0.68) in Northern and
Southern China, respectively. Meanwhile, the q value of WS was not significant in Northern
China (Table 1).

Socioeconomic factors were also found to play an important role. Shown in Table 2,
whether in Northern or Southern China, the effect of PD on PM2.5 pollution was strongest
(q = 0.62 and 0.66, respectively), meanwhile, the q values for PS and IO were not statistically
significant (Table 2).
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Table 2. The q values (q1, q2) for the association between PM2.5 concentrations and socioeconomic
factors in Northern and Southern China, respectively.

Socioeconomic Factors q1 q2

Population density (person/km2) 0.62 ** 0.66 **
Non-agricultural proportion of the population (%) 0.37 ** 0.27 **

Per capita GDP (104 CNY) 0.13 ** 0.12 **
Industrial output (104 CNY) 0.10 0.36 **

Proportion of second industry (%) 0.07 0.33 **
Note: ** statistical significance level = 0.01.

These results showed that both meteorological and socioeconomic factors significantly
impacted the pattern of PM2.5 concentrations in China.

Most of the previous studies have rarely calculated the impacts of the interactions
on PM2.5 considering spatially stratified heterogeneity. Moreover, traditional statistical
methods have a poor ability to explain spatially stratified heterogeneity; therefore, the
interactive influencing powers of combinations of the ten different meteorological or
socioeconomic factors were quantified by the GeoDetector in this study. Importantly, the
effects of these interactions for each pair of meteorological and socioeconomic factors were
much higher than their individual effects, highlighting the importance of interactive effects
on PM2.5 pollution (Figures 6 and 7), and indicating that the interaction of factors enhances
the effect of individual factor on PM2.5 pollution. Furthermore, in different regions, the
dominant factors also vary.
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Specifically, the strongest interactive effect of meteorological factors gave a q value
of 0.76 for both AT and RH, and AT and VP, in Northern China; the strongest interactive
effect with a q value of 0.77 for VP and WS in Southern China (Figure 6), indicating that one
meteorological factor combined with other meteorological factors had a stronger influence
on PM2.5 pollution.

As for socioeconomic factors, in Northern China, the strongest interactive effect with
a q value of 0.70 for PD and UR; and PD and PS with a q value of 0.74 in Southern China
(Figure 7), denoting that population activities interacted with other socioeconomic factors,
such as urbanization and industrial activities, would enhance their effect on PM2.5 pollution.

4. Discussion

As shown in the above results, we observed significant spatial heterogeneity in the risk
of PM2.5 pollution, the high-risk regions were mainly distributed in the North China and
YRD regions. Socioeconomic conditions are crucially important here, and they are regarded
as important drivers of PM2.5 pollution. For example, PD showed the highest association
with PM2.5 risk in both Northern and Southern China, which can be demonstrated from
previous research [27,35]. Ding et al. [42] also demonstrated that PD is the most strongly
associated with PM2.5 concentrations in China, which validates our results. Similar results
were found in the study of Lou et al. [43], who indicated that PD strongly affects PM2.5
concentrations in the Yangtze River Delta. However, previous studies have mainly focused
on the effect of single factors; the interactive effect of impact factors are rare, as shown
in this study, and the interaction of PD with other factors such as UR and PS has a more
significant impact on PM2.5. This reflects that emissions from human activities largely
affect PM2.5 concentrations and, when combined with other factors, greatly enhance the
impact of individual factors on PM2.5 concentrations. The association is linked to anthro-
pogenic emissions of secondary aerosols [44]. Furthermore, as in recent decades, China
has experienced rapid urbanization, the continuous expansion of cities enhances the urban
heat island effect, further promoting the generation and accumulation of pollutants and
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associated environmental hazards. Moreover, high-density populations, especially in the
big cities, consume greater amounts of non-renewable energy, which is considered the main
source of PM2.5 [45].

Urbanization was also spatially related to PM2.5 concentrations, especially in Northern
China. Notably, China is undergoing rapid urbanization, and the resulting impact on PM2.5
pollution cannot be ignored. In North China, using remote sensing data, Zhang et al. [35]
also found a positive correlation between urbanization and PM2.5 concentration, validating
our results. Similar results were found in the study by Yang et al. [20], for example, they
investigated that rapid urbanization would facilitate the increase in PM2.5 pollution from
the global perspective. This reflects the fact that rapid urbanization and urban expansion
may often be accompanied by increased population density, complex road traffic and high
energy consumption, promoting an increase in PM2.5 emissions and thus aggravating PM2.5
pollution.

In Southern China, in particular, IO was also found to significantly impact the spatial
heterogeneity of PM2.5 concentrations. Many studies have demonstrated that industrial
activities were direct pollution source of PM2.5. For example, Wang et al. [26] and Yang
et al. [27] demonstrated that IO and PM2.5 concentrations in China were associated with
industrial emissions. Similarly, Zhang et al. [46] suggested that the proportion of the
secondary industry, such as energy-intensive and high-polluting mining, construction,
and manufacturing, is the most important factor driving PM2.5 pollution via direct and
secondary reactions in China. However, Zhang et al. [35] showed that in the experiment of
North China, no significant correlation was observed between IO and PM2.5. The difference
may be due to that the difference in study area, as even the same factors can have different
correlations with PM2.5 in different regions. Moreover, the greater impact of the interaction
of UR and IO on PM2.5 revealed that the level of urbanization and industrial activities have
significantly enhanced their effect on PM2.5 alone. Additionally, some regions of China
lack appropriate control measures and have failed to implement effective energy-saving
measures and environmental protection policies to tackle PM2.5 emissions. Due to rapid
urban development, there has been a great increase in industrial activities, road density
and energy consumption, which are, in turn, related to the direct source of PM2.5 pollution.
Therefore, when formulating policies related to pollution prevention and control in the
future, appropriate restrictions on highly polluting and emitting industrial activities should
be considered in order to achieve sustainable development.

Most of the previous studies have also shown that temporal changes in PM2.5 pollution
are related to meteorological factors, which have a certain impact on the accumulation and
diffusion of pollutants [47,48]. Our results showed that AT showed the highest correlation
with PM2.5 risk among meteorological factors in Northern and Southern China during the
study period, which is similar to the results of other studies. Tai et al. [49] also found that
temperature had the greatest and positive effect on PM2.5 concentration, validating our
results. Chen et al. [50] showed that human activities and climate change can have some
influence on the trend of submicron particle pollution. However, Chen et al. [23] found
a negative relationship between PM2.5 and temperature in summer and autumn, which
was different from the previous research. Notably, the interaction of AT and RH/VP had
the largest effect on PM2.5 concentrations, both with q values of 0.76, indicating that the
average temperature itself not only had a strong effect on PM2.5 concentrations, but also
enhanced the effect of one factor on PM2.5 to a large extent when combined with other
factors. The reason for this phenomenon could be that secondary aerosols are more likely
to form if they are at higher temperatures, which would lead to an increase in PM2.5 [51].
In addition, if at lower temperatures, the use of heating and power generation systems can
be greatly increased, leading to the emission of large amounts of pollutants, thus increasing
PM2.5 pollution [52].

The highlight of this study suggested that the interactive effects between different
socioeconomic and meteorological factors, relative to their individual effects, all enhance
the impact on PM2.5 pollution. The interactive effects between socioeconomic and meteoro-
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logical factors exacerbate the degree or extent of air pollution to some extent and play a
mutually reinforcing role in terms of PM2.5 concentrations. Specifically, PM2.5 pollution
is influenced by various factors, including meteorological, socioeconomic, anthropogenic
emissions and so on. By analyzing the interaction effects of various factors, this study
provided a new perspective for studying PM2.5 pollution, which can provide some scientific
references for policy formulation. That is, when formulating policies, it is important to
consider not only the influence of a single factor, but also the interaction of various factors
on PM2.5 pollution to contribute to the improvement of environmental quality. In addition,
China is a vast country with different levels of PM2.5 pollution in different regions, which
can provide a reference for policy-making and improve public awareness and understand-
ing of PM2.5 pollution. Since cities are common carriers of pollutants and their influencing
factors, interactions can have a more considerable impact on the environment, weather,
and human living conditions [53], because no factor exists alone. Therefore, in future policy
formulation and pollution prevention and control, the interaction of factors should be con-
sidered comprehensively in order to achieve an integrated layout and targeted treatment
for the region’s sustainable development.

The results of BSTHM presented high and low-risk regions of PM2.5 pollution. The
high-risk regions are mainly located in North China and the YRD, indicating that these
regions experience severe PM2.5 pollution. The low-risk regions are mainly located in the
northeast and southwest regions, indicating that the PM2.5 level in these regions is relatively
low. The results suggested that both meteorological and socioeconomic conditions had
an intervening in PM2.5 pollution levels, which can be demonstrated from the previous
studies. Zhang et al. [35] reported that in North China, the level of urbanization was
positively correlated with PM2.5 pollution, i.e., the higher the level of urbanization, the
more severe the PM2.5 pollution. The results of Yang et al. [27] showed that the industrial
output presented as having a dominant effect on PM2.5 concentration. The underlying
mechanism may be that with the rapid socioeconomic development, increased industrial
activities, population gathering, and high road density, would promote the growth of PM2.5
concentrations.

There are some limitations that should be mentioned. First, PM2.5 pollution and
impact factors (meteorological and socioeconomic factors) used in this study are spatially
based on provinces and temporally based on years, which can bring some uncertainties to
the results, and future studies can further improve on these aspects, more detailed spatial
units will be used, such as cities. Second, although the accuracy of the raw PM2.5 data is
quite high, there are also uncertainties in different regions. Therefore, using data with high
spatial and temporal resolution in further studies makes the error in quantifying the effects
of influencing factors on PM2.5 smaller.

5. Conclusions

We investigated the spatial–temporal heterogeneity of PM2.5 pollution across China
between 2000 and 2018 using BSTHM and quantified the influence of meteorological and
socioeconomic factors on PM2.5 in the northern and southern regions of China, respectively,
using GeoDetector. Temporally, PM2.5 concentrations continued to increase during 2000–
2008, followed by fluctuating trends during the early and late stages of the 2008 Beijing
Olympics, and a decreasing trend in PM2.5 after the enactment of the APPCAP policy in 2013.
The North China Plain and the Yangtze River Delta region are high-risk regions of PM2.5
pollution. Moreover, meteorological factors (especially temperature) and socioeconomic
factors (especially population density) are closely related to the temporal and spatial
heterogeneity of PM2.5 pollution, and there are regional differences. The above findings
provided us with a clearer understanding of PM2.5 pollution patterns across Chinese
provinces, which can be considered a scientific reference for implementing the air quality
policies and providing guidance for remedial measures in some polluted provinces.

Notably, the contribution of this study is mainly to explain that there are different
dominant factors affecting PM2.5 pollution within different regions and the interactions
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between each regional factor on PM2.5 pollution to provide scientific reference for policy
formulation. The dominant socioeconomic factors are population density and industrial
activities, indicating that with rapid urbanization, anthropogenic emissions and industrial
activities would contribute to the rise of PM2.5 concentration and, therefore, industrial
expansion, especially polluting industries, should be adequately limited during rapid
urban development.
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