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Objective. The objective of this work is to identify dysregulated genes and pathways of ccRCC temporally according to systematic
tracking of the dysregulated modules of reweighted Protein-Protein Interaction (PPI) networks. Methods. Firstly, normal and
ccRCC PPI network were inferred and reweighted based on Pearson correlation coefficient (PCC). Then, we identified altered
modules using maximumweight bipartite matching and ranked them in nonincreasing order. Finally, gene compositions of altered
modules were analyzed, and pathways enrichment analyses of genes in altered modules were carried out based on Expression
Analysis Systematic Explored (EASE) test. Results. We obtained 136, 576, 693, and 531 disrupted modules of ccRCC stages I, II, III,
and IV, respectively. Gene composition analyses of altered modules revealed that there were 56 common genes (such as MAPK1,
CCNA2, and GSTM3) existing in the four stages. Besides pathway enrichment analysis identified 5 common pathways (glutathione
metabolism, cell cycle, alanine, aspartate, and glutamate metabolism, arginine and proline metabolism, and metabolism of
xenobiotics by cytochrome P450) across stages I, II, III, and IV. Conclusions. We successfully identified dysregulated genes and
pathways of ccRCC in different stages, and these might be potential biological markers and processes for treatment and etiology
mechanism in ccRCC.

1. Introduction

Clear cell renal cell carcinoma (ccRCC) is the most common
type of kidney cancer and accounts for approximately 60%
to 70% of all renal tumors [1]. Patients with ccRCC comprise
a heterogeneous group of patients with variable pathologic
stage and grade, used to stratify patients and infer prognosis
[2]. However, providing patients with reliable information
about anticipated treatment response is challenging due to
the molecular heterogeneity of ccRCC [3]. Delineating the
pathogenesis of ccRCC by investigating the gene and epige-
netic changes and their effects on key molecules and their
respective biologic pathways is of crucial importance for the
improvement of current diagnostics, prognostics, and drug
development [4]. For example, studies suggest that ccRCC is
closely associated with tumor suppressor von-Hippel Lindau

(VHL) gene mutations that lead to stabilization of hypoxia
inducible factors (HIF-1𝛼 and HIF-2𝛼, also known as HIF1A
and EPAS1) in both sporadic and familial forms [5, 6].

With the advances of high-throughput experimental
technologies, large amounts of Protein-Protein Interaction
(PPI) data are uncovered, which make it possible to study
proteins on a systematic level [7, 8]. In addition, a PPI
network can be modeled as an undirected graph, where
vertices represent proteins and edges represent interactions
between proteins, to prioritize disease associated genes or
pathways and to understand the modus operandi of disease
mechanisms [9, 10]. But it has been noticed that PPI data are
often associated with high false positive and false negative
rates due to the limitations of the associated experimental
techniques and the dynamic nature of protein interaction
maps, which may have a negative impact on the performance
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of complex discovery algorithms [11]. Many computational
approaches have been proposed to assess the reliability
of protein interactions data. An iterative scoring method
proposed by Liu et al. [12] was selected to evaluate the
reliability and predict new interactions, and it has been shown
to perform better than other methods. However, studying
multiple diseases simultaneously makes it challenging to
discern clearly the intricate underlying mechanisms.

In addition, it is important to effectively integrate omics
data into such an analysis; for example, Chu and Chen
[13] combined PPI and gene expression data to construct a
cancer perturbed PPI network in cervical carcinoma to study
gain- and loss-of-function genes as potential drug targets.
Magger et al. [14] combined PPI and gene expression data
to construct tissue-specific PPI networks for 60 tissues and
used them to prioritize disease genes. Beyond straightforward
scoring genes in the gene regulatory network, it is crucial to
study the behavior of modules across specific conditions in
a controlled manner to understand the modus operandi of
disease mechanisms and to implicate novel genes [15], since
some of the important genes may not be identifiable through
their own behavior, but their changes are quantifiable when
considered in conjunctionwith other genes (e.g., asmodules).
What is required, therefore, is systematic tracking gene,
pathways, and module behavior across specific conditions in
a controlled manner.

Therefore, in this paper, we performed a temporal (stages
I, II, III, and IV of ccRCC) analysis between normal controls
and ccRCC patients to identify disrupted genes and pathways
by systematically tracking the altered modules of reweighted
PPI network. To achieve this, we firstly inferred normal
and ccRCC cases of different stages PPI networks based on
Pearson correlation coefficient (PCC); next, clique-merging
algorithmwas performed to exploremodules in PPI network,
and we compared these modules to identify altered modules;
then gene composition of thesemoduleswas analyzed; finally,
pathways enrichment analysis of genes in altered modules
was carried out based on Expression Analysis Systematic
Explored (EASE) test.

2. Materials and Methods

2.1. Inferring Normal and ccRCC PPI Network

2.1.1. PPI Network Construction. We utilized a dataset of
human PPI network, the Search Tool for the Retrieval
of Interacting Genes/Proteins (STRING), which comprised
16730 genes and 1048576 interactions [16]. For STRING, self-
loops and proteins without expression value were removed.
The remaining largest connected component with score of
more than 0.8 was kept as the selected PPI network, which
consisted of 8590 genes and 53975 interactions.

2.1.2. Gene Expression Dataset and Dataset Preprocessing. A
microarray expression profile, E-GEOD-53757, from Array
Express database was selected for ccRCC related analysis. E-
GEOD-53757which existed onAffymetrixGeneChipHuman
Genome U133 Plus 2.0 Platform was divided into 4 groups
according to tumor stage (stages I, II, III, and IV).There were

24, 19, 14, and 15 ccRCC patients at stages I, II, III, and IV,
respectively; the number of normal controls in each stage was
equaled to its patients’ number.

The expression profile was preprocessed by standard
methods, consisting of “rma” [17], “quantiles” [18], “mas”
[19], and “medianpolish” [17]. To be specific, “rma” method
was carried out for background correction to eliminate
influences of nonspecific hybridization [17]. The quantile
normalization algorithm was a specific case of the trans-
formation 𝑥
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Next, the data were screened by feature filter method of

gene filter package, and the number of genes with multiple
probes was 20102. At last, we obtained the gene expression
value for each gene, including 20102 genes from 144 samples
(72 normal controls and 72 ccRCC patients).

2.1.3. Reweighting Gene Interactions by PCC. Gene interac-
tions in network based on ccRCC patients of different stages
(stages I, II, III, and IV) and their normal controls were
reweighted by PCC, which evaluated the probability of two
coexpressed gene pairs. PCC is a measure of the correlation
between two variables, giving a value between −1 and +1
inclusively [20]. The PCC of a pair of genes (𝑥 and 𝑦),
which encoded the corresponding paired proteins (𝑢 and V)
interacting in the PPI network, was defined as

PCC (𝑥, 𝑦)

=

1

𝑠 − 1
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) ,

(1)

where 𝑠 was the number of samples of the gene expression
data; 𝑔(𝑥, 𝑖) or 𝑔(𝑦, 𝑖) was the expression level of gene 𝑥 or
𝑦 in the sample 𝑖 under a specific condition; 𝑔(𝑥) or 𝑔(𝑦)

represented themean expression level of gene𝑥 or𝑦; and𝑔(𝑥)

or 𝑔(𝑦) represented the standard deviation of expression level
of gene 𝑥 (or 𝑦).

The PCC of a pair of proteins (𝑢 and V) was defined as
the same as the PCC of their corresponding paired genes (𝑥
and 𝑦), which was PCC(𝑢, V) = PCC(𝑥, 𝑦). If PCC(𝑢, V) has a
positive value, there is a positive linear correlation between
𝑢 and V. In addition, we defined PCC of each gene-gene
interaction as weight value of the interaction.

2.2. Identifying Modules from the PPI Network. In this paper,
module-identification algorithm is based on clique-merging
[21, 22] and is similar to the method proposed by Liu et al.
[12]. It consisted of three steps; in the first step, it found
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all the maximal cliques from the weighted PPI network.
Maximal cliques were evaluated by a fast depth-first search
with pruning-based algorithm proposed by Tomita et al.
[23]. It utilized a depth-first search strategy to enumerate all
maximal cliques and effectively pruned nonmaximal cliques
during the enumeration process.

In the second step, we assigned a score to each clique; the
score of a clique𝐶was defined as its weighted density 𝑑

𝑊
(𝐶):

𝑑
𝑊

(𝐶) =

∑
𝑢∈𝐶,V∈𝐶𝑤 (𝑢, V)
|𝐶| ⋅ (|𝐶| − 1)

, (2)

where𝑤(𝑢, V)was theweight of the interaction between 𝑢 and
V. We ranked these cliques in nonincreasing order of their
weighted densities {𝐶

1
, 𝐶
2
, . . . , 𝐶

𝑘
}.

Finally, we went through this ordered list repeatedly
merging highly overlapping cliques to build modules. For
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If 𝐼
𝑤
(𝐶
𝑖
, 𝐶
𝑗
) ≥ 𝑡, then 𝐶

𝑗
was merged into 𝐶

𝑖
forming a

module; else 𝐶
𝑗
was discarded.

We captured the effect of differences in interaction
weights between normal and ccRCC cases through the
weighted density-based ranking of cliques. Weighted density
assigned higher rank to larger and stronger cliques.Therefore,
we expected cliques with lost proteins or weakened interac-
tions to go down the rankings resulting in altered module
generation, thereby capturing changes in modules between
normal and ccRCC cases.

2.3. Comparing Modules between Normal and ccRCC Con-
ditions. The approach to compare modules between normal
and ccRCC conditions is similar to the method proposed by
Srihari and Ragan [15]. In detail, 𝐻

𝑁
and 𝐻

𝑇
represented

the PPI network of normal controls and ccRCC patients,
identifying the sets of modules 𝑆 = {𝑆

1
, 𝑆
2
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Correlation densities of ccRCC modules (𝑑
𝑐
(𝑇
𝑖
)) were

calculated similarly.
Disrupted or altered module pairs were evaluated by

modeling the set Υ(𝑆, 𝑇) as maximum weight bipartite
matching [24]. Firstly, we build a similarity graph 𝑀 = (𝑉
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every edge (𝑆
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). We next identified the disrupted module

pairs Υ(𝑆, 𝑇) by detecting the maximum weight matching
in 𝑀, and we ranked them in nonincreasing order of their
differential density Δ

𝐶
. At last, we inferred genes involved

in ccRCC as Γ = {𝑔:𝑔 ∈ 𝑆
𝑖

∪ 𝑇
𝑗
, (𝑆
𝑖
, 𝑇
𝑗
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and ranked in nonincreasing order of Δ
𝐶
(𝑆
𝑖
, 𝑇
𝑗
). To identify

altered modules, we matched normal and ccRCCmodules by
setting high 𝑡

𝐽
, which ensured that the module pairs either

had the same gene composition or had lost or gained only a
few genes.

2.4. Functional Enrichment Analysis. To further investigate
the biological functional pathways of genes in altered mod-
ules fromnormal controls and ccRCC, Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analysis
was performed by Database for Annotation, Visualization,
and Integrated Discovery (DAVID) [25]. KEGG pathways
with 𝑃 value < 0.001 were selected based on EASE test
implemented in DAVID. EASE analysis of the regulated
genes indicated molecular functions and biological processes
unique to each category [26]. The EASE score was used to
detect the significant categories. In both of the functional
and pathway enrichment analyses, the threshold of the
minimum number of genes for the corresponding term > 2
was considered significant for a category

𝑝 =

(
𝑎+𝑏

𝑎
) (
𝑐+𝑑

𝑐
)

(
𝑛

𝑎+𝑐 )

, (5)

where 𝑛was the number of background genes; 𝑎󸀠 was the gene
number of one gene set in the gene lists; 𝑎󸀠+𝑏was the number
of genes in the gene list including at least one gene set; 𝑎󸀠 + 𝑐

was the gene number of one gene list in the background genes;
𝑎
󸀠 was replaced with 𝑎 = 𝑎

󸀠
− 1.

3. Results

3.1. Analyzing Disruptions in ccRCC PPI Network. We
obtained 20102 genes of normal and ccRCC cases after
preprocessing and then investigated intersections between
these genes’ interactions and STRING PPI network and
identified PPI networks of normal and ccRCC cases. The
normal 𝐻

𝑁
and ccRCC 𝐻

𝑇
PPI networks of different stages

(stages I, II, III, and IV) displayed equal numbers of nodes
(8050) and interactions (49151). Although their interaction
scores (weights) were different from each other, as shown
in Figure 1, there was no statistical significance between
normal and ccRCC cases in different stages in whole level
based on Kolmogorov-Smirnov test (𝑃 > 0.05). However,
the score distribution between the ccRCC networks and
normal networks was different, especially for stages III and
IV in the score distribution 0∼0.3 (Figures 1(c) and 1(d)).
Examining these interactions more carefully, distributions
among different stages were also different, and changes of
ccRCC networks and normal networks were more and more
obvious from stage I to stage IV.
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Figure 1: Score-wise distributions of interactions: normal versus ccRCC cases. (a) represents stage I of ccRCC, (b) represents stage II, (c)
represents stage III, and (d) represents stage IV.

3.2. Analyzing Disruptions in ccRCC Modules. Clique-
merging algorithm was selected to identify disrupted or
altered modules from normal and ccRCC PPI network in
this paper. In detail, we performed a comparative analysis
between normal 𝑁 and ccRCC 𝑇 modules to understand
disruptions at the module level. Maximal cliques of normal
and ccRCC PPI network were obtained based on fast depth-
first algorithm, and maximal cliques with the threshold of
nodes > 5 were selected for module analysis. Overall, we
noticed that the total number of modules (1895), as well as
average module sizes (20.235), was almost the same across
the two conditions and four stages. Table 1 showed overall
changed rules of weighted interaction density between
normal modules and ccRCC modules; we could find that

maximal and average weighted density of normal case was
smaller than that of ccRCC for each stage; in detail, the
average weighted density of stages III (0.075) and IV (0.089)
was a little higher than that of stages I (0.068) and II (0.046),
while, in the overall level, the difference of module density
scores had no statistical significance between normal and
ccRCC cases in different stages with 𝑃 > 0.05. Further, the
relationship between modules weighted density distribution
and numbers of modules was illustrated in Figure 2. The
module numbers were different when the interaction density
ranged from 0.05 to 0.25, especially for stages II, III, and
IV of ccRCC. These differences might be the reasons of
weighted density changes of ccRCC from different stages
(Table 1).
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Table 1: Correlations of normal and ccRCC modules of different stages.

Module set Stage I Stage II Stage III Stage IV
Normal ccRCC Normal ccRCC Normal ccRCC Normal ccRCC

PCC correlation
Maximal 0.315 0.324 0.254 0.278 0.324 0.339 0.294 0.326
Average 0.068 0.083 0.046 0.074 0.075 0.087 0.089 0.084
Minimum −0.076 −0.072 −0.073 −0.073 −0.092 −0.074 −0.078 −0.057
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Figure 2: Weighted interaction density distribution of modules in normal and ccRCC cases. (a) represents stage I of ccRCC, (b) represents
stage II, (c) represents stage III, and (d) represents stage IV.
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Table 2: Overall conditions of changed module correlation density
of ccRCC stages.

ccRCC stages Changed module correlation density
Maximum Average Minimum

I 0.255 0.015 −0.195
II 0.254 0.028 −0.192
III 0.253 0.012 −0.246
IV 0.155 −0.006 −0.240
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Figure 3: Module correlation density distributions of stage I, stage
II, stage III, and stage IV.

Next, we obtained disrupted module pairs (ccRCC mod-
ule and its relative normal module) based on modeling the
set Υ(𝑆, 𝑇) as maximum weight bipartite matching and then
calculated their PCC difference values (also called changed
module correlation density value). With the thresholds 𝑡

𝐽
=

2/3 and 𝛿 = 0.05, the overall conditions of changed module
correlation density of stages I, II, III, and IV in ccRCC had
no significant difference (𝑃 > 0.05, Table 2). An overall
decrease in maximum correlations of ccRCC modules with
deepened stage was observed; besides minimum correlation
density of stage III was the smallest among the four stages. In
addition, changed module correlation density distributions
were shown in Figure 3, and the number of modules was
different in the same density interval of four stages, especially
in the distribution interval of −0.05∼0.20. For stage IV,
module distributions firstly increased and then decreased
with density increase; the maximum was reached at section
of 0∼0.05.

3.3. In-Depth Analyses of Disrupted Modules. When restrict-
ing random inspection correction of modules under condi-
tion of 𝑃 < 0.01, we obtained 136, 576, 693, and 531 disrupted
modules of stages I, II, III, and IV, respectively. Meanwhile, a
total of 1026 genes were obtained of these disrupted modules,
in detail, 317 genes of stage I, 450 genes of stage II, 658 genes

Table 3: Common genes of disruptedmodules based on four ccRCC
stages.

Number Genes
1 MAPK1
2 CDC6
3 CDKN1A
4 SF3B6
5 CPSF3
6 SRSF6
7 SRSF1
8 U2AF1
9 SRSF4
10 CCNB1
11 ESPL1
12 NCAPH
13 KIF11
14 BUB1B
15 CDC20
16 CCNA2
17 CCNB2
18 MAD2L1
19 CENPF
20 ALDH4A1
21 NCBP1
22 MGST1
23 GSTZ1
24 GSTM2
25 GSTM5
26 GSTM3
27 GSTA3
28 SNRPD3
29 CDKN1B
30 NDUFAB1
31 RNPS1
32 ALB
33 LPA
34 GOT1
35 GLUD1
36 FTCD
37 GLUD2
38 ALDH3A2
39 ALDH9A1
40 ALDH1B1
41 ALDH7A1
42 NAGS
43 GATM
44 ASNS
45 ACY3
46 ASPA
47 GOT2
48 ASS1
49 GAD2
50 ALDH2
51 MGST2
52 MGST3
53 GSTO1
54 GSTM4
55 RPA3
56 UPF3B

of stage III, and 690 genes of stage IV.Therefore, 56 common
genes existing in four stages were explored (Table 3), such as
MAPK1, CCNA2, and GSTM3.



Computational and Mathematical Methods in Medicine 7

Cell cycle
Glutathione metabolism

Drug metabolism
Metabolism of xenobiotics by cytochrome P450

Arginine and proline metabolism
ECM-receptor interaction

DNA replication
Small cell lung cancer

Oxidative phosphorylation
Ribosome

Parkinson’s disease
Oocyte meiosis

Histidine metabolism
Alzheimer’s disease

Dilated cardiomyopathy

Epithelial cell signaling in Helicobacter pylori infection
Hypertrophic cardiomyopathy

Regulation of actin cytoskeleton
Arrhythmogenic right ventricular cardiomyopathy

Mismatch repair
Linoleic acid metabolism

Neuroactive ligand-receptor interaction
Nucleotide excision repair

Huntington’s disease
Spliceosome

RNA polymerase
Protein export

Proteasome
Beta-alanine metabolism

Cardiac muscle contraction
Focal adhesion

Chemokine signaling pathway
Progesterone-mediated oocyte maturation

Retinol metabolism
I II III IV

Existing
Not Existing

Vibrio cholerae infection

Figure 4: Distribution of pathways in stages I, II, III, and IV. Pathways were identified by KEGG with 𝑃 < 0.001. The light green square
represented the notion that one pathway did not exist in the stage, while the dark one stood for the notion that the pathway existed in the
stage.

As we all know, differentially expressed (DE) gene was
usually selected to screen significant genes between normal
controls and disease patients; thus we identified 2781 DE
genes between normal controls and ccRCC patients of four
stages based on Linear Models for Microarray Data package.
Taking the intersection of common genes and DE genes into
consideration, we obtained 19 genes (ALB, ASS1, GSTM3,
MAD2L1, ALDH1B1, ALDH4A1, MAPK1, GSTZ1, GATM,
FTCD, CCNA2, CENPF, GSTM4, ASNS, CCNB1, NAGS,
ACY3,GSTA3, and ESPL1), which might play important roles
in the ccRCC development.

Pathway enrichment analysis based on genes in disrupted
modules of different stages was performed, and the results
within threshold 𝑃 value < 0.001 were shown in Figure 4;
there were 5 common pathways (glutathionemetabolism, cell
cycle, alanine, aspartate, and glutamate metabolism, arginine
and proline metabolism, and metabolism of xenobiotics by
cytochrome P450) across stages I, II, III, and IV.

4. Discussions

The objective of this paper is to identify dysregulated genes
and pathways in ccRCC from stage I to stage IV accord-
ing to systematically tracking the dysregulated modules of
reweighted PPI networks. We obtained reweighted normal
and ccRCC PPI network based on PCC and then identified
modules in the PPI network. By comparing normal and
ccRCC modules in each stage, we obtained 136, 576, 693,
and 531 disrupted modules of stages I, II, III, and IV,
respectively. Furthermore, a total of 56 common genes (such
as MAPK1 and CCNA2) and 5 common pathways (e.g.,
cell cycle, glutathione metabolism, and arginine and proline
metabolism) of the four stages were explored based on gene
composition and pathway enrichment analyses.The common
genes and pathways from stage I to stage IV were significant
for ccRCC development; if we control these signatures and
the biological progress in the early stage of the tumor, there
might be positive effects on the therapy.
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Figure 5: Swapping behavior in altered module (MAPK1, CEBPB,MAPK3, RELA,MAPK14,NFKB1, and RIPK2). Nodes stood for genes, and
edges stood for the interactions of genes.The thickness of the edges represented the interaction scores or expression levels between two genes
in the module, more thickness with higher value of expression scores. (a) represents stage I of ccRCC, (b) represents stage II, (c) represents
stage III, and (d) represents stage IV.

MAPK1 (mitogen-activated protein kinase 1), which
encoded a member of theMAPK family, acted as an integra-
tion point for multiple biochemical signals and was involved
in a wide variety of cellular processes such as proliferation,
differentiation, transcription regulation, and development
[27]. Roberts and Der had reported that aberrant regulation
of MAPK contributed to cancer and other human diseases,
such as ccRCC; in particular, theMAPK had been the subject
of intense research scrutiny leading to the development of
pharmacologic inhibitors for the treatment of cancer [28].
Moreover, MAPK participant biological processes were key
signaling pathways involved in the regulation of normal cell
proliferation and differentiation. For example, an increase
in the activation of MAPK signal transduction pathway was
observed as the cancer progresses [29]. MAPK/extracellular
signal-related kinase pathway was activated in tumors and
represented a potential target for therapy [30]. Therefore,
ccRCC as a common tumor was related toMAPK closely.

Furthermore, we studied gene swapping behaviors in
single altered module of four stages, taking MAPK family
genes related altered modules as an example. As shown in
Figure 5, we could discover that, for a module (MAPK1,
CEBPB, MAPK3, RELA, MAPK14, NFKB1, and RIPK2) in
stages I, II, III, and IV, its gene compositions (nodes) were
the same, but the interaction scores (edges) were different.
The interaction value betweenMAPK1 andMAPK3 was 0.52,
−0.48, 1.09, and −0.03 in stages I, II, III, and IV, respectively,
and there was a weak correlation of the two genes in stage
II. It might explain differences of modules and existence
of dysregulated modules. Swapping behavior in the altered
module (CCNA2,MND1, CDC45, RFC4, CCNB1, and CDK4)
was shown in Figure 6.

CCNA2, cyclin A2, was expressed in dividing somatic
cells and regulated cell cycle progression by interacting with
cyclin-dependent kinase (CDK) kinases [31]. Consistent with
its role as a key cell cycle regulator, expression of CCNA2
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Figure 6: Swapping behavior in altered module (CCNA2, CDK4, CDC45, RFC4, CCNB1, and MND1). Nodes stood for genes, and edges
stood for the interactions of genes.The thickness of the edges represented the interaction scores or expression levels between two genes in the
module, more thickness with higher value of expression scores. (a) represents stage I of ccRCC, (b) represents stage II, (c) represents stage
III, and (d) represents stage IV.

was found to be elevated in a variety of tumors such as
breast, cervical, liver, and kidney tumors [32]. It was not clear
whether increased expression ofCCNA2was a cause or result
of tumorigenesis;CCNA2-CDK contributed to tumorigenesis
by the phosphorylation of oncoproteins or tumor suppressors
[33]. In our paper, we had also proved that the correlation
value betweenCCNA2 andCDK4 of the four stages was 0.603,
0.565, 1.203, and 0.978 in sequence (Figure 6).Wemight infer
that cell cycle played amedium role in correlations ofCCNA2
and cancers; thus cell cycle was discussed next.

Cell cycle is the series of events that take place in a cell
leading to its division and duplication, and dysregulation of
the cell cycle components may lead to tumor formation [34].
It had been reported that alterations in activated proteins
(cyclins and cyclin-dependent kinases, etc.), which led to
failure of cell cycle arrest, may thus serve as markers of a
more malignant phenotype and cell cycle-related genes aided

in discrimination of atypical adenomatous hyperplasia from
early adenocarcinoma [35]. Chen et al. demonstrated that
cell cycle progression effects on NF-𝜅B activity represented
a molecular basis underlying the aggressive tumor behavior
[36]. Besides, cell cycle checkpoint inactivation allowedDNA
replication in aneuploid cells and may favor oncogenic
genomic [37], and a cell cycle regulator is potentially involved
in genesis of many tumor types, such as ccRCC [38]. We
could conclude that cell cycle played a key role in the ccRCC
progress.

Our results also showed that ccRCC had close rela-
tionship with metabolism pathways, such as glutathione
metabolism and arginine and proline metabolism. Glu-
tathione metabolism which played both protective and
pathogenic roles in cancers was crucial in the removal and
detoxification of carcinogens [39]. And the present review
highlighted the role of glutathione and related cytoprotective
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effects in the susceptibility to carcinogenesis and in the
sensitivity of tumors to the cytotoxic effects of anticancer
agents [40]. Recently, Hao et al. discovered that three sig-
nificant pathways related to ccRCC, namely, arginine and
prolinemetabolism, aldosterone-regulated sodium reabsorp-
tion, and oxidative phosphorylation, were observed [41].
Arginine/proline metabolism is a significant pathway in
ccRCC that had been discovered by Perroud et al. previously
[42], and the results were in accordance with our analysis.

5. Conclusions

In conclusion, we successfully identified dysregulated genes
(such as MAPK1 and CCNA2) and pathways (such as cell
cycle, glutathione metabolism, and arginine and proline
metabolism) of ccRCC in different stages, and these genes and
pathwaysmight be potential biologicalmarkers and processes
for treatment and etiology mechanism in ccRCC.
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comparison of normalizationmethods for high density oligonu-
cleotide array data based on variance and bias,” Bioinformatics,
vol. 19, no. 2, pp. 185–193, 2003.

[19] B. Ben, affy: Built-in Processing Methods, 2013.
[20] N. Gerhard, “Pearson correlation coefficient,” in Dictionary of

Pharmaceutical Medicine, p. 132, Springer, 2009.
[21] G. Liu, L. Wong, and H. N. Chua, “Complex discovery from

weighted PPI networks,” Bioinformatics, vol. 25, no. 15, pp. 1891–
1897, 2009.

[22] S. Srihari andH.W. Leong, “A survey of computationalmethods
for protein complex prediction from protein interaction net-
works,” Journal of Bioinformatics and Computational Biology,
vol. 11, no. 2, Article ID 1230002, 2013.

[23] E. Tomita, A. Tanaka, and H. Takahashi, “The worst-case time
complexity for generating all maximal cliques and computa-
tional experiments,”Theoretical Computer Science, vol. 363, no.
1, pp. 28–42, 2006.

[24] H. N. Gabow, “An efficient implementation of Edmonds’ algo-
rithm for maximum matching on graphs,” Journal of the ACM,
vol. 23, no. 2, pp. 221–234, 1976.

[25] D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Systematic
and integrative analysis of large gene lists using DAVID bioin-
formatics resources,” Nature Protocols, vol. 4, no. 1, pp. 44–57,
2008.



Computational and Mathematical Methods in Medicine 11

[26] G. Ford, Z. Xu, A. Gates, J. Jiang, and B. D. Ford, “Expression
Analysis Systematic Explorer (EASE) analysis reveals differen-
tial gene expression in permanent and transient focal stroke rat
models,” Brain Research, vol. 1071, no. 1, pp. 226–236, 2006.
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