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Abstract

Accumulation of unfolded proteins within the endoplasmic reticulum (ER) of eukaryotic cells 

leads to an unfolded protein response (UPR) that either restores homeostasis or commits the cells 

to apoptosis. Tools traditionally used to study the UPR are pro-apoptotic and thus confound 

analysis of long-term cellular responses to ER stress. Here, we describe an Endoplasmic 

Reticulum-localized HaloTag (ERHT) protein that can be conditionally destabilized using a small 

molecule hydrophobic tag (HyT36). Treatment of ERHT-expressing cells with HyT36 induces an 

acute, resolvable ER stress that results in transient UPR activation without induction of apoptosis. 

Transcriptome analysis of late-stage responses to this UPR stimulus reveals a link between UPR 

activity and estrogen signaling.

Introduction

Approximately one-third of all mammalian proteins are processed by the endoplasmic 

reticulum (ER)1. In order to handle this heavy workload, the ER contains high 

concentrations of proteins that facilitate protein folding and processing. When folding is 

unsuccessful, terminally misfolded proteins are retro-translocated to the cytosol, 

ubiquitylated, and degraded by the proteasome in a process called Endoplasmic Reticulum-

Associated Degradation (ERAD)2. However, large accumulations of misfolded proteins can 
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overwhelm the ERAD machinery and cause ER stress3. To sense and ameliorate ER stress, 

eukaryotic cells have evolved several mechanisms, which are collectively known as the 

Unfolded Protein Response (UPR). Low levels of stress are resolved via the adaptive 

mechanisms of the UPR; however, if the ER stress sensed by the cell cannot be remedied, 

pro-apoptotic UPR signaling becomes dominant, thereby eliminating cells unable to cope 

with disrupted protein folding in the ER.

The UPR in mammalian cells has traditionally been divided into three branches: IRE1, 

ATF6, and PERK, each named after an ER transmembrane protein that senses ER stress and 

initiates signaling events to restore homeostasis. The Inositol Requiring Enzyme 1 (IRE1) 

pathway is the only UPR branch conserved from yeast to mammals4. Although there are two 

IRE1 isoforms in mammals, the more widely distributed isoform is IRE1α5. Upon 

recognizing accumulated misfolded proteins in the ER lumen, IRE1α undergoes 

oligomerization6 and autophosphorylation of its cytosolic kinase domain. This causes 

activation its RNase domain, which is responsible for an unconventional splicing event 

whereby mRNA transcripts encoding the X box-Binding Protein 1 (XBP1u) are processed to 

yield the basic Leu zipper (bZIP) transcription factor, XBP1s7. XBP1s induces the 

transcription of genes involved in functions such as protein folding, lipid biosynthesis, and 

ERAD8. In addition to XBP1 splicing, IRE1 also functions to selectively degrade mRNA 

that encode for ER-targeted proteins in order to reduce total protein load within the 

organelle9. This process, known as Regulated IRE1-Dependent Decay (RIDD), is also 

thought to play a role in non-specific degradation of ER localized mRNA during UPR-

induced apoptosis10,11.

Activating Transcription Factor 6 (ATF6) is an endoplasmic reticulum transmembrane 

protein that is translocated to the golgi under ER stress and is subsequently processed by 

site-1 and site-2 proteases to yield an N-terminal fragment12. This N-terminal fragment acts 

as a bZIP transcription factor that upregulates expression of several ER-resident proteins 

involved in homeostasis maintenance, such as the Hsp70-related chaperone BiP (GRP78/

HSPA5). BiP binds to unfolded proteins in the ER, and it has been proposed that BiP 

binding to unfolded proteins may be an important step in the activation of IRE1α and 

ATF613.

Similarly to IRE1α, the Protein kinase R-like Endoplasmic Reticulum Kinase (PERK) is 

also activated via oligomerization and autophosphorylation8. Indeed, the luminal stress 

sensing domains of IRE1α and PERK are functionally interchangeable14. When activated, 

PERK phosphorylates and inactivates the Eukaryotic translation Initiator Factor 2α (eIF2α). 

This event, while attenuating global translation, favors the selective translation of a subset of 

mRNA, including activating transcription factor 4 (ATF4)15. ATF4 is a bZIP transcription 

factor that induces the expression of genes such as the transcription factor C/EBP 

Homologous Protein (CHOP) and Growth Arrest and DNA Damage-inducible 34 

(GADD34). Whereas the attenuation of general translation via eIF2α phosphorylation 

promotes cell survival under ER stress16, the induction of ATF4 and CHOP contributes to 

ATP depletion, oxidative stress, and eventual apoptosis17.
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ER stress in mammalian cells thus results in a seemingly paradoxical mixture of pro-survival 

and pro-apoptotic UPR signals. It has been proposed that the integration of these signals 

serves as a decision making process for cell fate18, and some combination of intensity and 

duration of the stress plays a role in the outcome. Although some factors influencing the 

decision to switch between stress resolution and apoptosis have been elucidated, our 

understanding of the consequences of UPR signaling remains incomplete.

Tools that facilitate UPR activation have been essential in probing the molecular 

components involved in each pathway. These ER stressors can be broadly categorized into 

two classes: pharmacological tools and genetic tools.

Pharmacological tools typically activate the UPR by disrupting an endogenous pathway, 

leading to ER stress. For example, thapsigargin inhibits sarcoplasmic or endoplasmic 

reticulum Ca2+-ATPase (SERCA) pumps, resulting in depletion of calcium reserves in the 

ER, a loss in activity of calcium-dependent chaperones, and subsequent protein misfolding 

within the ER19. The natural product tunicamycin inhibits N-linked glycosylation, thus 

producing incompletely processed proteins within the ER20. Brefeldin A inhibits nucleotide 

exchange on the ARF-1 protein necessary for golgi trafficking, which results in a rapid 

accumulation of normally-trafficked proteins within the ER21. All of these traditional ER 

stressors are toxic compounds that induce apoptosis, which can limit their utility in studying 

UPR signaling. Specifically, pharmacological stressors that cause global unfolding of ER 

resident proteins have the potential to impact any signaling events that involve said proteins 

and may thereby confound UPR signaling analysis. Additionally, the very tight binding of 

agents such as thapsigargin makes inhibition practically irreversible, persisting after dilution 

or removal of excess inhibitor19. Similarly, even a short pulse with tunicamycin has 

apoptotic activity in some cellular contexts22.

For the reasons listed above, attempts have been made to study the UPR by inducing the 

overexpression of an ectopic, misfolded protein within the ER23. However, these methods 

typically cannot activate the UPR with the same strength and kinetics as pharmacological 

agents. In some cases, misfolded proteins induce no activation of one or more of the UPR 

pathways24–27. Similarly, the Destabilizing Domain (DD) dependent small molecule driven 

protein degradation system also fails to cause a sufficient insult upon withdrawal of the 

Shield-1 stabilizing ligand to induce UPR activation28. Taken together, these reports suggest 

that simply overexpressing a single misfolded protein in the ER is inadequate to provide a 

robust UPR response with temporal control over activity.

Recently, independent control over protein levels of XBP1s and ATF6 in the same cell using 

two orthogonal small molecules was described1. This system significantly improved the 

understanding in the field regarding the influence of these two transcription factors on the 

UPR transcriptome, and it complements another recent report that focuses on the 

transcriptional effects of the PERK pathway via ATF4 and CHOP17.

The tools described above have inherent limitations in terms of intensity of stress, temporal 

control, physiological relevance, and stress resolvability. An aspect of ER biology that 

remains unexplored, therefore, is the nature of the cellular response to an acute stress that 
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can be resolved and does not lead to apoptosis. We reasoned that a tool engineered to 

explore this point may reveal new facets of UPR signaling that are observable only during 

later stages of the adaptive process and are typically masked by the apoptotic or non-specific 

effects of traditional ER stressors.

We recently described a system whereby small molecule hydrophobic tag (HyT) compounds 

can induce the thermodynamic destabilization of the HaloTag protein29–31. When expressed 

in the cytosol, this destabilized protein is recognized by chaperones including Hsp70 and is 

targeted for degradation by the ubiquitin-proteasome system. In the following study, we 

demonstrated that HyT-induced destabilization of a version of the HaloTag protein localized 

to the ER robustly activates the UPR. We also showed that, in contrast to the 

pharmacological stressors like tunicamycin and thapsigargin, the UPR induced by our 

system is transient and non-apoptotic. Finally, we used this HyT-Halotag system to analyze 

late-term transcriptomic effects of the UPR and discovered that induction of ER stress 

results in an upregulation of estrogen signaling.

Results

Localization of HaloTag to the Endoplasmic Reticulum

To create the Endoplasmic Reticulum-localized HaloTag (ERHT) construct, we fused 

HaloTag to EGFP along with the Calreticulin N-terminal signal sequence as well as the C-

terminal ER retention sequence, KDEL32,33 (Fig. 1a). We then stably integrated this 

construct into HEK293 cells using the Flp-In recombination system. The ERHT protein did 

indeed localize to the ER, as confirmed by confocal microscopy and co-staining with an 

endoplasmic reticulum selective dye (Fig. 1b). The ERHT protein and the ER-ID stain 

yielded Manders’ Colocalization Coefficients34 of M1 = 0.94 and M2 = 0.93, respectively 

(Supplementary Results, Supplementary Fig. 1). Based on its exquisite ability to induce the 

misfolding and degradation of the cytosolic version of the HaloTag protein, we chose the 

hydrophobic tag HyT3630 (Fig. 1c) for this study.

Destabilization of the ERHT protein using HyT36

We first tested whether HyT36 had the desired effect of destabilizing the ERHT protein. To 

determine this, we examined ERHT protein solubility after binding to HyT36. We lysed 

ERHT-expressing cells, and treated the lysate with either HyT36 (10 μM) or DMSO (0.1%) 

and incubated the solution at 37 °C for 1 hour. We then centrifuged the solutions at 16,000 g 

for 20 minutes to generate a pellet fraction, washed the pellet, and then quantified ERHT 

levels in the pellet by Western blotting. We found that HyT36-treatment increased the 

amount of ERHT protein in the insoluble pellet fraction, suggesting a HyT36-induced 

reduction in ERHT protein stability (Fig. 2a, see Supplementary Fig. 2 for quantification).

Next, we tested whether treatment of ERHT-expressing cells with HyT36 induced unfolding 

of the protein in the cellular context. Indeed, HyT36 addition to cells induced association of 

the ERHT protein with IRE1α35 and with BiP/GRP78 at both the 1h and 4h time points 

(Fig. 2b, see Supplementary Fig. 3 for quantification). Blocking new protein synthesis with 
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cycloheximide did not affect the induction of BiP binding upon HyT36 treatment, 

supporting a post-translational effect (Supplementary Fig. 4).

UPR activation in ERHT-expressing Cells

Having verified that HyT36 treatment can destabilize the ERHT protein in cells, we 

examined whether HyT36 treatment in these cells would activate the unfolded protein 

response (UPR). We compared UPR activation observed after HyT36 treatment to UPR 

activation observed using two traditional ER stressors, thapsigargin and tunicamycin. We 

first measured activation of two UPR branches via Western blot: 1) phosphorylation of 

eukaryotic translation initiation factor 2α (EIF2α) as a readout of PERK activity, and 2) 

expression of X-box-binding protein 1 splicing variant (XBP1s) as a readout of IRE1α 

activity (Fig. 3a). Both pathways were activated to similar extents with 10 μM HyT36 and 

500nM thapsigargin, whereas 5 μg/mL tunicamycin yielded a smaller response.

To further test activation of the ATF6 and IRE1α pathways, we stably integrated luciferase 

reporters into ERHT-expressing cells. We used the section of XBP1 mRNA containing the 

Ire1 target intron to construct a reporter for this pathway, whereby splicing by the IRE1α 

RNase causes a frameshift that results in expression of the NanoLuc luciferase protein. In 

the case of the previously characterized unfolded protein response element (UPRE) 

reporter36, upregulation of ATF6 or Xbp1s transcriptional activity results in expression of 

the firefly luciferase protein. Use of these luciferase reporters confirmed that HyT36 

treatment activated the UPR to similar extents as the traditional ER stressors, thapsigargin 

and tunicamycin (Fig. 3b).

As a final confirmation that all three UPR pathways were activated in ERHT cells by HyT36 

treatment, we performed qPCR analysis on a panel of genes regulated by IRE1α1, ATF61, 

and PERK17 (Fig. 3c). HyT36 treatment gave similar levels of UPR activation as 

tunicamycin in all cases except, interestingly, the transcriptional regulation of CHOP and 

TRIB3, both of which were significantly more responsive to tunicamycin. Additionally, we 

evaluated IRE1α RNase activity by looking directly at XBP1 mRNA splicing 

(Supplementary Fig. 5). Also, we determined the dependence of select UPR target gene 

levels on the concentration of HyT36, and compared this response to that elicited by 

tunicamycin and thapsigargin (Supplementary Fig. 6). We observed that as little as 500nM 

HyT36 was sufficient to produce a robust UPR response. It is important to mention that we 

chose a maximum concentration of 10μM HyT36 in this experiment because a higher 

concentration of 30 μM appeared to affect cell viability even in parental FlpIn cells lacking 

the ERHT construct (Supplementary Fig. 7).

To confirm that modulation of the thermodynamic stability of the ERHT protein was 

sufficient to cause a marked effect of the kind HyT36 treatment had on the UPR, we treated 

ERHT cells with a HaloTag stabilizer molecule (HALTS1), which binds to HaloTag and 

functions as a pharmacological chaperone, resulting in an increase in its thermodynamic 

stability29. HALTS1 treatment lowered the basal levels of UPR-induced genes such as 

ERDJ4, HYOU1, and BiP (Supplementary Fig. 8). These data lend support to the idea that 

increasing or decreasing the thermodynamic stability of this single ectopic protein can 

increase or decrease ER stress.
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We next confirmed that the observed UPR activation with HyT36 was dependent upon the 

presence of the ERHT protein in the cells and not due to some off-target effect of the small 

molecule. We treated both the ERHT-expressing cells and the “parental” HEK293 cells, 

which do not express any ectopic protein, with HyT36 or thapsigargin and measured the 

activation of IRE1α via Xbp1s Western blot (Supplementary Fig. 9a). As expected, we 

observed no induction of XBP1s levels in the parental cells. Interestingly, thapsigargin 

appeared to induce XBP1 splicing to a lesser extent in the ERHT cells than in parental cells. 

We also confirmed that none of the UPR pathways were activated by HyT36 in parental 

cells by quantitative real-time PCR of their target genes (Supplementary Fig. 9b). Here too, 

10μM HyT36 treatment showed no induction of any of the genes tested, in contrast to 

thapsigargin, which caused a robust induction in all of their levels.

HyT36 Transiently Activates UPR without Inducing Apoptosis

To determine whether HyT36 induced UPR activity was sustained or transient, we 

performed quantitative real-time PCR analysis to evaluate the effect of HyT36 on several 

UPR target genes (ERDJ4, BiP, CHOP) at a later 10 hour time point: In all three cases, 

treatment with HyT36 for two hours gave similar levels of UPR activation as traditional ER 

stressors, thapsigargin and tunicamycin. However, at the later ten-hour time point, UPR 

activity induced by HyT36 had returned to basal levels (Fig. 4a). In contrast, activity was 

still measurable in all three pathways after treatment with thapsigargin and tunicamycin. 

Furthermore, CHOP mRNA levels, a hallmark of UPR-induced apoptosis, were still 

increasing with both of these molecules.

We confirmed that the resolution of HyT36-induced ER stress was not due to degradation of 

the compound during prolonged treatment (Supplementary Fig. 10a) and that supplementing 

media with fresh HyT36 at intermediate time-points did not confer additional UPR 

activation (Supplementary Figs. 10b, 10c). Approximately 25% of the ERHT protein had 

been degraded by ERAD machinery by the later 10 hour time point (Fig. 4b, 4c). However, 

the ERHT protein remained destabilized, as measured by increased BiP binding, even at the 

10 hour time point when UPR activity had been mostly resolved (Fig. 4d). Notably, we were 

not able to achieve transient UPR activation with thapsigargin even under pulsatile treatment 

conditions (Supplementary Fig. 11).

Mirroring CHOP kinetics, the transcription factor responsible for CHOP expression, ATF4, 

was also still increasing at the 10-hour time point after thapsigargin or tunicamycin 

treatment but not after HyT36 treatment (Fig. 5a). This led us to examine apoptosis. 

Strikingly, thapsigargin and tunicamycin treatment did indeed induce apoptosis after 24 

hours of treatment, whereas HyT36 treatment did not, as determined by PARP cleavage 

(Fig. 5b), direct cell counting (Fig. 5c), and an MTS viability assay (Supplementary Fig. 12).

Estrogen Signaling Upregulation in Response to ER Stress

We used mRNA-seq to examine changes in gene expression in ERHT-expressing cells after 

2-hour and 10-hour treatments with DMSO (0.1%), HyT36 (10 μM), thapsigargin (500 nM), 

or tunicamycin (5 μg/mL). After confirming that our mRNA-seq samples exhibited the 

expected UPR responses (Supplementary Table 1), we used Ingenuity Pathway Analysis to 
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help analyze the gene count data provided by the Genome Technology Access Center at 

Washington University, St. Louis (Supplementary Data Set 1). The ESR1 gene, encoding 

estrogen receptor (ERα), was listed as a master regulator of gene networks identified in the 

HyT36 10 hour time point (p value = 0.0015). We confirmed by qPCR the increased 

expression of 8 genes that were upregulated in our RNAseq sample and identified by 

Ingenuity Pathway Analysis to be downstream of the estrogen receptor: CRABP237, 

IFI2738, SLC6A939, PDK240, SULF141, HOXD442, EGF43, and SLC13A441 (Fig. 6a). 

Validation with qPCR confirmed that these genes were not upregulated upon HyT36 

treatment in parental FlpIn HEK293 cells, which do not express the ERHT construct 

(Supplementary Fig. 13).

We next tested whether estrogen signaling as a consequence of the UPR could be observed 

even with traditional ER stressors in MCF7 cells which, in contrast to 293s, express high 

levels of Estrogen Receptors. Using an Estrogen Response Element (ERE) luciferase 

reporter, we observed that UPR activation with thapsigargin or tunicamycin also induces 

estrogen signaling, albeit to a significantly lesser extent than estradiol treatment (Fig. 6b). 

Incubation with the IRE1α RNase inhibitor 4μ8c inhibited reporter activation by 

thapsigargin but not by estradiol (Supplementary Fig. 14).

Discussion

Pharmacological tools currently used to study ER stress are pro-apoptotic small molecules 

that cause global protein unfolding within the endoplasmic reticulum, and thus have the 

potential to impact all cellular signaling that involves proteins passing through the secretory 

pathway. On the other hand, attempts to induce stress with ER-localized ectopically 

expressed unfolded proteins have yielded inconsistent results lacking in robustness of the 

UPR response and in temporal control over its induction.

The ERHT/HyT36 system described here is based on the premise that the unfolding of a 

single protein within the ER with a small molecule is a significantly improved tool to study 

ER stress, combining the advantages of temporal control provided by conventional stressors 

like tunicamycin and thapsigargin, and the specificity of ectopically expressed misfolded 

proteins. We had previously shown that the hydrophobic tag HyT36 can bind to the HaloTag 

protein in vitro and lower its thermodynamic stability, as measured by a decrease in protein 

melting temperature30. Therefore, we predicted that binding of HyT36 to ER-localized 

HaloTag (ERHT) would cause it to unfold and induce the UPR (Supplementary Fig. 15). We 

found that this was indeed the case, and that the HyT36 induced UPR was robust, operating 

through the expected mechanism whereby the unfolded protein was recognized by the 

elements of the ER quality control machinery. Interestingly, we were able to show that a 

pharmacological chaperone that binds and stabilizes the HaloTag protein (HALTS1) can 

lower the constitutive level of UPR signaling active in ERHT cells. This observation lends 

further support to our hypothesis that it is the modulation of the thermodynamic stability of 

the ERHT protein that is responsible for the marked effects on UPR signaling observed with 

our system.
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Since the ERHT/HyT36 system induces ER stress through unfolding of a single protein, we 

asked whether the cell could resolve or adapt to this stress and avoid committing to 

apoptosis. When we analyzed the expression of a number of UPR target genes at both 

mRNA and protein level, we discovered that, in contrast to tunicamycin and thapsigargin, 

the ER stress induced by HyT36 was short-lived, and by 10 hours after HyT36 addition to 

cells, UPR target genes had returned to basal levels. We hypothesized that the resolvability 

of the HyT36-induced ER stress might partially be explained by ERHT protein degradation. 

Indeed, we found that ERHT protein levels were lowered via ERAD by about 25% over 10 

hours with HyT36 treatment. Interestingly, we saw no drop-off in levels of ERHT mRNA 

over the same time course. We found that resolution of HyT36-induced UPR occurs even 

though a proportion of the ERHT protein remains misfolded and undegraded even at the 10 

hour time point of HyT36 addition, as measured by levels of bound BiP. Based on these 

results, we hypothesize that a combination of ERHT protein degradation by ERAD and the 

induction of the adaptive UPR is responsible for the resolution of HyT36 induced UPR. 

Given this resolution, we were not surprised to find that unlike thapsigargin and 

tunicamycin, HyT36 was non-toxic to cells. We observed no PARP cleavage and no loss in 

cell number after a 24 hour HyT36 treatment.

The ERHT/HyT36 system thus provides a unique opportunity to study the effects of an 

acute ER stress that can be resolved by the cell. Unlike traditional ER stressors, such as 

thapsigargin and tunicamycin, targeted destabilization of the ERHT protein induces ER 

stress that can be resolved and does not induce apoptosis. Unlike systems inducing the 

expression of a constitutively misfolded protein, the targeted destabilization of the ERHT 

protein allows simultaneous unfolding of the target protein population on command. This 

leads to two significant advantages: UPR activation is as rapid and intense as traditional ER 

stressors, and the ER stress can be resolved within several hours without inducing apoptosis. 

Therefore, we hypothesized that this system may allow us to examine changes in the cell 

during late-stage stress resolution or after the resolution process. In other words, what genes 

are upregulated during late time points of UPR activation that might have a role in adapting 

the cell to ER stress? It should be noted that some cellular events during the later period 

would be masked in an experiment using traditional ER stressors due to significant apoptotic 

signaling. Additionally, transcriptionally inducible misfolded proteins do not provide the 

same temporal control over UPR activation.

We identified ESR1 signaling as being upregulated in a 10 hour treatment with HyT36 and 

not with thapsigargin or tunicamycin, even though several estrogen signaling genes in our 

list were upregulated by a 10 hour treatment with these compounds (Supplementary Table 

2). Given the limited activation of ESR1 genes by HyT36 in ERHT cells, we reasoned that 

thapsigargin and tunicamycin may also induce estrogen signaling through their activation of 

the UPR, but the effect may have been masked by apoptotic or non-UPR signaling in those 

samples. This may in part be due to the low abundance of estrogen receptor in our ERHT 

cells, which yielded gene counts for ESR1 of approximately 5 counts per million. Indeed, 

we found that in MCF7 cells, which express high levels of Estrogen Receptors, we could 

induce estrogen signaling with thapsigargin and tunicamycin. Based on a previous report 

that XBP1s can interact with Estrogen Receptor binding sites and promote Estrogen 

Receptor transcriptional activity44, we hypothesized that the Estrogen Receptor activity 
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induced by ER stress might be proceeding through IRE1α-dependent generation of XBP1s. 

In support of this reasoning, we found that pretreatment of MCF7 cells with the Ire1α 

inhibitor 4μ8c attenuated thapsigargin induced ERE-luciferase activity.

Although we decided to use the ERHT/HyT36 system to study gene expression profiles in 

the cell after an acute ER stress, we believe this system could be used in a number of ways 

to study the UPR. For example, it would be interesting to characterize the contribution of 

different mechanisms such as increased chaperone and foldase expression, increased ER 

volume, and increased ERAD activity. Similarly, it would be interesting to understand 

whether any changes to the ER persist long after the stress has been resolved. The ERHT/

HyT36 system may prove to be a useful tool to study many aspects of ER regulation that 

cannot be studied using the tools currently available. Lastly, it would be interesting to test if 

the ERHT/HyT36 system could be expanded to study the mitochondrial UPR. This would 

simply involve placing a mitochondrial localization signal on the HaloTag protein and 

studying its unfolding upon HyT36 treatment. mtUPR is currently studied with the help of 

inducers such as overexpressed misfolded proteins45,46 or mitochondria-targeted pro-

apoptotic Hsp90 inhibitors such as Gamitrinibs47,48. Future work using this system may 

yield a complementary small molecule based tool to study the mtUPR.

Online Methods

Cell culture

HEK293 cells used in this study were FRT recombination-based 293 Flp-In cells 

(Invitrogen), which were cultured in Dulbecco’s Modified Eagle Medium (DMEM) from 

Life Technologies. MCF7cells were cultured in Gibco® RPMI1640 medium. All growth 

media were supplemented with 10% Fetal Bovine Serum (FBS, Gibco®), 100 U mL−1 

penicillin and 100 μg mL−1 streptomycin (Gibco®). For experiments involving β-estradiol 

treatment, at least one day prior to the experiment, cells were incubated in phenol red-free 

RPMI 1640 (Gibco®) containing 10% charcoal/dextran-treated FBS (HyClone).

Reagents

Monoclonal Antibodies against pEIF2α (#3398), Eif2α (#5324), IRE1α (#3294), PERK 

(#3192), BiP (#3177), and HA (#3724) were purchased from Cell Signaling. The anti-

XBP1s monoclonal was purchased from Biolegend (#647502). ATF4 and ATF6 antibodies 

were supplied by SantaCruz Biotech (sc-200) and Abcam (ab122897) respectively. HyT36 

was synthesized in the Crews lab and has been characterized previously.30 Epoxomicin was 

synthesized in the Crews lab and has been characterized previously.49 Tunicamycin, 

thapsigargin, and β-estradiol were purchased from Sigma Aldrich. The IRE1a RNase 

inhibitor 4μ8c was purchased from Calbiochem.

The ERHT plasmid was constructed using the pcDNA5/FRT vector (Life Technologies). 

The HaloTag2 template has been described previously31. We included the 17 amino-acid 

signal sequence from Calreticulin followed by EGFP at the N-terminus of HaloTag2, and 

the KDEL ER-retention signal at the C-terminus. The XBP1-Luciferase reporter was 

constructed with a 3-way USER Friendly Cloning Reaction using the pcDNA3 vector (Life 

Technologies), destabilized NanoLuciferase (NLucP) from Promega (Madison, WI) and an 
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XBP1-GFP reporter plasmid that was a gift from Prof. Maho Niwa (UCSD). The UPRE-

driven firefly luciferase reporter plasmid, p5xATF6-GL3, was purchased from Addgene. 

The estrogen response element-driven firefly luciferase reporter plasmid, 3xERE TATA 

Luc, was purchased from Addgene.

Immunoprecipitation and immunoblotting

Cells were grown in 10cm plates, and treated with DMSO, HyT36, thapsigargin, or 

tunicamycin for indicated times. For western analysis of endoplasmic reticulum stress 

pathways, cells were lysed in a high salt RIPA buffer (40mM Tris pH 7.5, 500mM NaCl, 

1% NP-40, 0.1% SDS, 0.5% sodium deoxycholate) supplemented with protease and 

phosphatase inhibitors, and sonicated briefly. Protein concentrations were normalized using 

a BCA assay, and 20–60ug total protein per sample were loaded on an SDS-PAGE gel. 

Further processing followed standard protocols. To detect binding of the HaloTag protein to 

endoplasmic reticulum stress receptors, cells were lysed in a buffer containing 40mM Tris 

pH 7.5, 150mM NaCl, 1% Tx-100, and protease inhibitors. Protein concentrations were 

normalized with a BCA assay and 1mg of total protein per sample was incubated for 2h with 

EZview Red Anti-HA affinity gel (Sigma) that had previously been blocked with 3% BSA 

in lysis buffer. The beads were subsequently centrifuged and washed three times with lysis 

buffer and suspended and boiled in 2x Laemmli buffer. Samples were loaded on an SDS-

PAGE gel and western blotting was done following standard protocols.

Repeated HyT36 Treatments

ERHT cells in a 6-well plate were treated with 2mL of DMEM containing DMSO (0.1%) or 

HyT36 (10 μM). To one set, 1mL of DMSO (0.1%) or HyT36 (10 μM) was added every 

2.5h, for a total of 4 treatments and a final volume of 5mL. All Cells were collected after 10 

hours of treatment and processed for immunoblotting.

Thapsigargin Pulse Treatment

ERHT cells were treated with DMSO (0.1%), thapsigargin (500 nM), or HyT36 (10 uM) 

under two conditions: Under standard conditions (10 h treatment), cells were treated for 10 

consecutive hours before assessing pro-apoptotic UPR signaling with a Western blot for 

ATF4. Under washout conditions (2h treatment + 8 h washout), cells were incubated with 

the indicated treatment for 2 hours, were then washed with PBS, and were then incubated in 

standard growth media for 8 hours before assessing ATF4 protein levels.

Confocal microscopy

ERHT cells were seeded at approximately 40% confluency on cover slips pre-coated with 

Cell-Tak (BD). The next day, cells were fixed and stained for endoplasmic reticulum with 

the ER-ID Red assay kit (Enzo Life Sciences) using the provided protocol. Cells were then 

mounted on Superfrost Plus microscope slides (Thermo Scientific) with Vectashield 

mounting medium (Vector Laboratories). Images were acquired using a Zeiss LSM 510 

confocal microscope (Zeiss). Manders’ colocalization coefficients were calculated using 

ImageJ software.
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Luciferase reporter assays

Cells were resuspended in the growth medium at 100,000 cells/mL. 25 μL of media was then 

added to each well in a white, 384-well tissue culture-treated plate (Corning). For the XBP1s 

luciferase reporter, the plate was assayed using NanoGLO (Promega) following 

manufacturer’s instructions. For the UPRE reporter, firefly luciferase activity was measured 

after treatment.

Real-time quantitative PCR

Total RNA was isolated using the RNeasy Mini Kit (Qiagen). cDNA was then created using 

the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems). Real time 

quantitative PCR was then performed using FastStart Universal SYBR Green Master [ROX] 

(Roche) on a CFX96 Real-Time System (Bio-Rad). For primer sequences, see 

Supplementary Table 3.

XBP1 visualization by PCR

cDNA was generated from treated cells as described above. PCR reactions were carried out 

(primers XBP1F: GAGTTAAGACAGCGCTTGGG and XBP1R: 

ACTGGGTCCAAGTTGTCCAG) using GoTaq from Promega. The reaction was then 

digested with PstI, which cleaves the unspliced XBP1 amplicon to yield the 2u and 3u 

fragments, and run on a 3% agarose gel.

mRNA sequencing

Sample preparation, sequencing, and gene calling were performed by the Genome 

Technology Access Center at Washington University in St. Louis as described on their 

website.

Toxicity assays

For the MTS readout, cells were resuspended in the appropriate media at 400,000 cells per 

mL, and 50 μL were added per well to a 96 well tissue culture-treated plate (Corning). Cells 

were then treated with 50 μL of 2x media with the corresponding compounds and incubated 

for 24 hours. MTS conversion was then measured using the CellTiter 96 AQueous Non-

Radioactive Cell Proliferation Assay (Promega). For the cell counting experiments, cells 

were treated in 6-well plates. 24h later, they were trypsinized and resuspended in 1mL of 

growth medium. Cell counting was done using a BioRad TC20 automated cell counter in 

biological and technical triplicates.

Graphing and Statistical Analysis

P-values for network enrichment in the RNA-sequencing data were provided by Ingenuity 

Pathway Analysis (IPA) as described50. Graphs were generated and t-tests were performed 

in GraphPad Prism.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The Endoplasmic Reticulum-localized HaloTag (ERHT) system. a) Schematic of ERHT 

construct. b) Confocal microscopy images showing an endoplasmic reticulum-staining dye 

(red), the ERHT protein (green), as well as a composite view including a differential 

interference contrast (DIC) image of the cells. Scale bar, 10μm c) Chemical structure of the 

small molecule, HyT36, used to destabilize the HaloTag protein.
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Figure 2. 
HyT36 treatment causes destabilization of the ERHT protein. a) Immunoblot of the pellet 

fraction of ERHT cell lysate after treatment with DMSO or 10μM HyT36 b) Co-

immunoprecipitation of BiP and Ire1α with the ERHT protein after a 1-hour or 4-hour 

treatment of cells with DMSO (0.1%) or HyT36 (10 μM). See Supplementary Fig. 16 for 

full gels.
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Figure 3. 
HyT36 treatment of ERHT cells induces a UPR response comparable to tunicamycin and 

thapsigargin a) Western blot of ERHT cells after treatment with DMSO (0.1%), HyT36 (10 

μM), thapsigargin (500 nM), or tunicamycin (5 μg/mL) for the indicated times. See 

Supplementary Fig. 17 for full gels. b) Luciferase reporter activity for Xbp1 splicing (left) 

and UPRE driven transcription (right) in ERHT cells. Treatments were with DMSO (0.1%), 

HyT36 (10 μM), thapsigargin (Tg, 500 nM), or tunicamycin (Tm, 5 μg/mL) for either 4 

hours (XBP1 splicing reporter) or 12 hours (UPRE reporter). 20 wells of a 384-well plate 

were used for each treatment (n=20). c) Real-time quantitative PCR measurements of genes 
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upregulated in response to UPR activation. The data was collected in biological triplicates 

(n=3). All Data represents mean values ± SEM. (*: p<0.05; **: p<0.01; ***: p<0.001; ****: 

p<0.0001)
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Figure 4. 
Destabilization of the ERHT protein leads to acute ER stress. a) Real-time quantitative PCR 

analysis of UPR activation in ERHT cells after treatment with DMSO (0.1%), HyT36 (10 

μM), thapsigargin (500 nM), or tunicamycin (5 μg/mL) for the indicated times. b) 

Normalized values for flow cytometry of GFP fluorescence (closed circles) to assess ERHT 

protein levels and qPCR (open squares) to assess ERHT mRNA levels after treatment with 

HyT36 (10 μM) for the indicated periods of time. c) The p97 inhibitor, NMS-873 (5μM), 

and the proteasome inhibitor, epoxomicin (100nM), prevent ERHT protein degradation 

induced by a 5.5h treatment with HyT36 (10 μM). d) Co-immunoprecipitation of BiP with 

the ERHT protein after a 2-hour, 6-hour, or 10-hour treatment with DMSO (0.1%) or HyT36 
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(10 μM). See Supplementary Fig. 18 for full gels. All data quantified herein was collected in 

biological triplicates (n=3) and represents mean values ± SEM. (n.s.: no significant 

difference; *: p<0.05; **: p<0.01; ***: p<0.001; ****: p<0.0001)
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Figure 5. 
The acute ER stress induced by HyT36 does not result in apoptosis. a) Western blot for 

ATF4 levels (PERK activity) after treatment with DMSO (0.1%), HyT36 (10 μM), 

thapsigargin (500 nM), or tunicamycin (5 μg/mL) for the indicated time periods. b) PARP 

cleavage, measured by Western blot, as a read-out of apoptosis after treatment with DMSO 

(0.1%), HyT36 (5 μM or 10 μM), thapsigargin (500 nM), or tunicamycin (5 μg/mL) for 24 

hours. See Supplementary Fig. 19 for full gels. c) Cell counting to determine number of cells 

after treatment with DMSO (0.1%), HyT36 (10 μM), thapsigargin (500 nM), or tunicamycin 

(5 μg/mL) for 24 hours. The experiment was done in biological triplicates (n=3). Data 

represents mean values ± SEM. (n.s.: no significant difference; ****: p<0.0001)
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Figure 6. 
Identification of estrogen signaling as a late-stage response to UPR activation. a) Real-time 

quantitative PCR of a subset of genes that were identified by Ingenuity Pathway Analysis as 

potentially regulated by ESR1 in the HyT36 10 hour sample, after a 10 hour treatment with 

DMSO (0.1%) or HyT36 (10 μM). The data was collected in biological triplicates (n=3) b) 

Estrogen response element (ERE) luciferase activity in MCF7 cells after a 24 hour treatment 

with DMSO (0.1%), estradiol (10 nM), thapsigargin (500 nM), or tunicamycin (5 μg/mL). 

20 wells of a 384-well plate were used for each treatment (n=20). All data shown here 

represents mean values ± SEM. (*: p<0.05; **: p<0.01; ***: p<0.001; ****: p<0.0001)
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