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Abstract: In light of the problems of low recognition efficiency, high false rates and poor 

localization accuracy in traditional pipeline security detection technology, this paper 

proposes a type of hierarchical leak detection and localization method for use in natural gas 

pipeline monitoring sensor networks. In the signal preprocessing phase, original 

monitoring signals are dealt with by wavelet transform technology to extract the single 

mode signals as well as characteristic parameters. In the initial recognition phase, a multi-

classifier model based on SVM is constructed and characteristic parameters are sent as 

input vectors to the multi-classifier for initial recognition. In the final decision phase, an 

improved evidence combination rule is designed to integrate initial recognition results for 

final decisions. Furthermore, a weighted average localization algorithm based on time 

difference of arrival is introduced for determining the leak point’s position. Experimental 

results illustrate that this hierarchical pipeline leak detection and localization method could 

effectively improve the accuracy of the leak point localization and reduce the undetected 

rate as well as false alarm rate. 

Keywords: leak detection; leak point localization; hierarchical; pipeline monitoring; 

sensor networks 
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1. Introduction 

In the present age, natural gas has become one of the most important energy resources in the World, 

which primarily depends on the pipeline transportation. However, with the widespread demand for 

natural gas supplies, the pipeline leak detection problem has become increasingly prominent [1,2]. 

Conventional leak detection methods mainly rely on periodical inspections conducted by maintenance 

personnel, which needs intensive human involvement, but periodical inspection does not provide real 

time monitoring of the pipeline. Accordingly, a leak may not be detected in time and this may bring 

about a great deal of economic losses and environmental pollution. Real time pipeline monitoring 

systems based on wired or wireless sensors have been studied in [3-5]. The wire-based techniques 

connect the sensors along the pipelines with wires. Monitoring information measured by each sensor is 

transmitted to the monitoring control center through these wires. Nevertheless, the wire-based 

monitoring systems are vulnerable to damage in any part of the networks and the deployment cost in 

an underground scenario is very expensive. Wireless sensor networks (WSNs) [6,7], on the other hand, 

are a much more robust and efficient option to monitor pipelines. Since 2006, many studies have been 

carried out on WSNs for pipeline monitoring. Jawhar et al. [8] proposed a framework for pipeline 

infrastructure monitoring using WSNs and designed a routing protocol for transmitting the information 

from sensor nodes to the sink. Guo et al. [9] put forward a distributed sensing data propagation 

algorithm based on graded residual energy used in pipeline monitoring sensor networks. The algorithm 

can achieve balanced energy consumption among sensor nodes and prolong the network lifetime.  

Ivan et al. [10] described a system called PipeNet used for detecting and localizing leaks and failures 

in water transmission pipelines. The system is composed of a host of sensor nodes with perception, 

computation and wireless communication capacities by self-organization. According to the acoustic 

signals, velocity (flow) signals and pressure transient signals captured by nodes, the system can 

diagnose the current state of the pipeline more accurately [10].  

Although some monitoring systems based on WSNs have been developed in the last several years, 

research on information processing in this type of networks is relatively scarce. Yu et al. [11] analyzed 

the features of monitoring information in pipeline networks in detail. Imad et al. [12] presented a 

model of in-network information processing for pipeline monitoring based on WSNs, but did not give 

any specific algorithms. This is mainly because monitoring information shows uncertainty and 

diversity in expressive form, huge amounts in numbers and complicated relationships [11]. 

Consequently, so far there has not been a kind of method which can effectively process monitoring 

information of natural gas pipelines. This mainly reflects the following aspects [13,14]: in the first 

place, under urban area circumstances, sensors may be affected by background noise so that detection 

information has great ambiguity. This is due to the fact that noise may submerge the useful signals, 

which will result in a false diagnosis by the monitoring system. In addition, the information provided 

by single-type sensors is always incomplete or inaccurate as a result of their own deficiencies and 

environmental interference, so each node may integrate several different types of sensors, such as 

acoustic sensor, flow sensor and pressure sensor and so on. Thus we need to design a reliable method 

for multi-source information processing. Moreover, to avoid the monitoring blind zone, when a node is 

out of action, the detection range among nodes should have a certain degree of overlap. In this case, 

multiple nodes detect the pipeline leak simultaneously when a leak occurs, but affected by the 
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monitoring position, different nodes may generate conflicting diagnosis results, which make it difficult 

for the monitoring system to make a right decision, so we need to devise a conflicting results solution 

method for making a reliable decision according to the diagnosis results from different nodes, avoiding 

the false alarm problem. 

In view of the issues above, in this paper we analyze the benefits and drawbacks of existing 

methods and propose a novel hierarchical pipeline leak detection and localization method. At different 

levels, we adopt different detection methods to process leak information. The effectiveness of the new 

method is verified by simulation experiments. Our results demonstrate that the hierarchical method can 

detect pipeline leaks and localize leak points accurately and effectively. 

The rest of the paper is organized as follows: in Section 2, we review some of existing methods for 

pipeline leak detection and localization. The preliminaries, including the architecture of pipeline 

monitoring sensor networks and hierarchical leak detection and localization model, are briefly illustrated 

in Section 3. Section 4 describes the algorithm in detail. Section 5 evaluates the performance of 

hierarchical leak detection and localization method through simulation experiments. Finally, Section 6 

concludes this paper. 

2. Existing Leak Detection and Localization Methods 

Existing pipeline leak detection and localization methods can be divided into three categories based 

on signal processing, model estimation and knowledge.  

2.1. Methods Based on Signal Processing  

2.1.1. Negative Pressure Wave 

When a leak happens along the pipeline, the liquid density of the leak point declines immediately 

due to the fluid medium losses and the pressure drops. Then the pressure wave source spreads out from 

the leak point to the leak upstream and downstream ends. Taking the pressure before the leak as the 

reference criterion, the wave generated by such a leak is called the negative pressure wave. When the 

negative pressure wave reaches the pipeline terminal end, it will cause the drop of first the station inlet 

pressure and then the station outlet pressure. The pressure reduction signal is collected by pressure 

sensors installed on both ends of the pipeline. As the locations of the leak are different, different time 

difference of the negative pressure wave are captured. Based on the different time difference that 

pressure sensors on both sides detect, pipeline length and negative pressure wave velocity, the leak 

point can be determined [15,16]. The negative pressure wave method is not dependent on system 

hardware and it also does not need to set up the mathematical model, which means less calculation 

costs. However, it requires that the leak be quick and abrupt, since especially in the case of a slow leak, 

there is no obvious negative pressure wave.  

2.1.2. Mass Balance 

The working principle of mass balance method for leak detection is straightforward [17,18]: if a 

leak occurs, the mass balance equation (accounting for the input and output mass flow rates and also 

the line pack variable rate) presents a systematic deviation. Although simple and certainly reliable, the 
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primary difficulty in implementing this principle in practice derives from the huge variations 

experienced by the line pack term. This effect implies a very long detection time and, therefore, a 

frequently unacceptable leaked mass before an alarm is declared. Although the principle of mass 

balance method is simple, this method is very sensitive to arbitrary disturbances and dynamics of the 

pipeline, which may lead to false detection issues. 

2.1.3. Pressure Point Analysis 

Pressure point analysis (PPA) is one of the more popular system diagnosis methods that are 

available [19]. The PPA method detects leaks by monitoring pipeline pressure at a single point along 

the line and comparing it with a running statistical trend constructed from previous pressure 

measurements. The combination of selective filtering and software thresholds determines whether the 

behavior of successive measurements contains evidence of a leak. The PPA method just requires 

pressure signals from one or several detection points, so the advantages of this method are cost-

effectiveness and easy maintenance. Additionally, PPA can detect small leaks which cannot be 

detected by other methods. However, it is difficult for this method to localize leak points. Therefore, 

the application range of PPA is too narrow. 

2.1.4. Acoustic Correlation Analysis 

This method adopts the sound generated by pipeline leak as signal source, installs acoustic sensors 

along the pipeline to detect sound in leak point and uses signal processing technology for leak 

detection and localization [20,21]. Due to the limitations of object detection and the application 

environment, it is absolutely necessary to deploy many acoustic sensors along the pipeline for long 

distance detection. This method has the advantages of high detection and localization accuracy. 

Especially, this method does not need to set up complex mathematical model and could detect small 

leaks. 

2.1.5. Spectral Analysis Response 

The principle of spectral analysis response for pipeline leak detection is as follows: when a mini-

leak occurs along the pipeline, it will generate a leak signal such as an ultrasonic wave. By extracting 

the characteristic parameters of leak signals for further analysis, we could obtain the corresponding 

relationship between ultrasonic spectrum and leak parameters such as aperture of leak point and 

pipeline inner pressure to judge the state and tendency of the leak point, thereby significantly 

enhancing the accuracy of the leak detection. Generally, spectral analysis response methods are based 

on Fast Fourier Transform (FFT) [22,23]. The accuracy of spectral analysis mainly depends on the 

eigenvalue problem, which can be solved by a filter diagonalization method (FDM) [24,25]. 
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2.2. Methods Based on Model Estimation  

2.2.1. State Observer 

The working principle of a state observer for pipeline leak detection is as follows: the state 

equations of pressure and flow amount are set up. Two pressure extremes are detected as inputs, proper 

algorithms are adopted for leak point detection and localization according to the error signal from 

measured and observed values. However, this method supposes that both pressure extremes are not 

affected by the size of the leak, so it is only suitable for the case of small leaks. 

2.2.2. System Identification 

This method can effectively distinguish the pipeline model and judge whether a leak happens by 

comparing it with pipeline actual value. In the case of pipeline integrity, both a fault sensitive model 

and a fault free model are built. For the fault sensitive model, correlation analysis is used for leak 

detection. For the fault free model, proper algorithms are introduced for leak point localization. Like 

the state observer method, this method supposes that both pressure extremes are not affected by the 

magnitude of the leak. Apart from that, it also needs to exert an M-sequence stimulus signal on the 

pipeline. 

2.2.3. Kalman Filter [26] 

This method first sets up discrete state space models of pressure and flow. Pressure and flow at the 

head and end of the pipeline are used as inputs. The whole pipeline is divided into several sections and 

three sorts of states (pressure, flow and leak amount) are set at each section point. Then an appropriate 

discriminate criterion is adopted for leak point detection and localization. However, this method has to 

acquire mean value and variance of process noise in advance and the degrees of accuracy of detection 

and localization are related to the number of sections. 

2.2.4. Impedance Method [27] 

The principle of the impedance method for leak detection can be given as follows: the hydraulic 

impedance is defined as the ratio of the head fluctuation to the discharge and the characteristic 

impedance is defined according to the pipe parameters and propagation constant. When the pipe 

friction is neglected, the final formulation of the pipe impedance with a leak is a function of hydraulic 

impedance. Therefore, the leak point position is determined by calculating the value of hydraulic 

impedance for each point where a leak could be detected. The impedance method is mainly used for 

linear pipelines with less curves and bends, because complicated pipelines with many curves bring 

difficulties and major uncertainties in the calculation of characteristic impedance and in the statement 

of boundary conditions. 

2.2.5. Standing Wave Difference Method 

Standing wave difference method (SWDM) is a promising leak detection method for water pipeline 

transmission systems, which is based on the technology used in electrical engineering to determine 
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leak point position [28]. Its principle is that SWDM utilizes sinusoidal excitation of the pipeline at one 

end using an oscillator and simultaneous measurement of head and discharge. Every discontinuity of 

the pipe impedance (i.e., the ratio between head fluctuation and discharge) reflects incident waves, 

creating residual standing waves. The distance between the excitation site and pipeline discontinuity is 

determined by the analysis of the respective resonance frequencies. 

2.3. Methods Based on Knowledge  

2.3.1. Support Vector Machine 

The method based on support vector machine (SVM) for leak detection and localization is to 

monitor the parameters at a number of sensor nodes in the pipeline networks under consideration and 

to feed these parameters’ values into a SVM trained to predict leak size and leak location [29,30]. The 

SVM is trained on a number of samples representing the presence of leaks of various sizes and 

locations in the pipeline monitoring networks. 

2.3.2. Pattern Recognition 

The detection principle of the pattern recognition method is based on transient feature extraction 

and structural pattern recognition for the negative pressure wave caused by a pipeline leak [31,32]. 

Since it is quite different from that caused by adjusting pumps and valves, describing the negative 

pressure wave by pattern recognition method and building classification system of wave structure are 

able to effectively distinguish between normal adjustment states and leak states. This type of detection 

method can effectively reduce the false alarm rate and the missing detection rate, and improve the 

accuracy of leak detection.  

2.3.3. Expert System 

A leak diagnosis expert system based on leak mechanism is a type of complex nonlinear distributed 

parameter control system [33,34]. The whole reasoning process is how to synthetically utilize 

experience knowledge, leak pattern, leak mechanism model and physics laws. The system first 

completes the breadth search for the most serious abnormal phenomenon of the pipeline. Then it 

carries out the depth-first search, accomplishing effective qualitative diagnosis based on experience 

knowledge to determine whether a leak happens. 

3. Network Architecture and Hierarchical Model for Leak Detection and Localization 

3.1. Architecture of Pipeline Monitoring Sensor Networks  

Natural gas pipeline monitoring sensor networks are made up of a great number of sensor nodes, the 

sinks and a control and management center. The whole networks adopt a sort of clustering structure, 

which is described as Figure 1. The sensor nodes, installed along the pipeline, are in charge of signal 

collecting and data preprocessing. Then the processing results are sent to the sink via a multi-hop 

route. The monitoring networks take an in-tube communication mode for message exchange between 

sensor nodes. The sink, as the cluster leader, is responsible for managing sensor nodes in its cluster, 
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combining preprocessing results for final decision and localizing leak position if a leak has occurred. 

Finally, the diagnosis result is sent to the control and management center, which judges whether a leak 

warning alarm should be announced. 

Figure 1. Architecture of pipeline monitoring sensor networks. 

 

3.2. Hierarchical Leak Detection and Localization Model  

According to the architecture of monitoring networks and the monitoring information features, we 

set up a hierarchical model for leak detection and localization as follows: in the first place, the original 

leak signals are easily disturbed by background noise and transmission route, which may lead to the 

ambiguity of detection information. In order to diminish the disturbance impact and improve the 

detection precision, wavelet transform technology is introduced to cope with original leak signals and 

the leak characteristic parameters are extracted as well. Secondly, SVM multiple classifiers are 

employed to integrate the leak characteristic parameters in monitoring networks. This kind of 

classifiers not only could enhance the ability of anti-interference, but also could accurately recognize 

the current state of a pipeline. Thirdly, due to the influence of monitoring position, sensor nodes in 

different positions may generate conflicting results, which makes it difficult for the monitoring 

networks to provide a correct decision. To solve this problem, a recognition result from a single node, 

which is regarded as the independent evidence, will be combined with results from other nodes at the 

sink to increase the focal degree of the correct proposition. Furthermore, if there has been a leak along 

the pipeline, the position of the leak point can be precisely determined by the localization results 

among nodes. 

Based on the analysis above, the process of leak detection and localization is divided into three 

parts, shown as Figure 2. At sensor nodes, we use wavelet transform technology to deal with original 

leak signals as well as obtain characteristic parameters of the signals in both the time and frequency 

domains. Then, we build the model of SVM multiple classifiers and acquire the recognition results of 
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each node. At the sink, we design an improved evidence combination rule based on the degree of 

reliability for the final decision making from the recognition results of several nodes, and judge the 

state of the pipeline. If the state corresponds to a leak, a weighted average localization algorithm based 

on time difference of arrival (TDOA) is introduced to precisely calculate the position of the leak point. 

The whole model adopts a hierarchical configuration, in which the result from the former level is 

regarded as the input of the next level. Thus the model is able to separately achieve multiple different 

levels of leak information processing, which ensures the accuracy and reliability of the diagnosis results. 

Figure 2. Hierarchical model for leak detection and localization. 

 

4. Algorithm Design  

4.1. Leak Detection Algorithm  

4.1.1. Leak Information Preprocessing Based on Wavelet Transformation 

(1) Selection of Wavelet Basis 

In this study, wavelet in series db is adopted to transform the original signals. This sort of wavelet 

has the following advantages: (i) it is sensitive to the leak signals and can highlight the singular 

characteristics of signals; (ii) it can reduce the signal distortion and ensure perfect signal reconstruction 

as well as good performance of time-frequency analysis. 

(2) Determination of Decomposition Scale 

We make the discrete wavelet transform for leak signals with background noise. Generally, the 

larger the decomposition scale is, the more favorable it is to eliminate the noise [35]. However, some 

important local singular characteristics may be lost if the decomposition scale is too large. According 

to the frequency characteristics of detection signals, we suppose that signal sampling frequency is fs 

and the lowest identification frequency is fmin. Thus the maximum decomposition scale n should satisfy 

the following relationship expression:  

min12
s

n

f
f+ ≥  (1) 
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(3) Wavelet Denoising Method of Threshold Selection 

After calculating the maximum decomposition scale n, we decompose the leak signals into n levels. 

Considering that wavelet spectrums of leak signals and noise signals have different performance 

characteristics in every scale, we select an appropriate threshold by a heuristic method. For the points 

whose value is less than the threshold value, its coefficient is set to 0, while for the points whose value 

is more than the threshold value, its coefficient is set to the difference between the point value and the 

threshold value. Then we reconstruct the decomposed signals and obtain the single mode signals 

without noise. 

(4) Characteristic Parameters Calculation 

We carry out the time domain analysis for single mode signals and extract the characteristic 

parameters which can completely reflect pipeline leak, such as peak value, average amplitude, 

variance, root amplitude and so on. 

4.1.2. Leak Initial Recognition Based on SVM Multiple Classifiers 

At sensor nodes, the leak recognition model is built based on SVM multiple classifiers because the 

SVM method is able to detect small leaks and slow leaks which could not be detected by the traditional 

methods. Also, the SVM method avoids the large sample requirements of traditional classification 

methods [36,37]. To build a model of SVM multiple classifiers includes designing the following 

aspects: input vector, classification principle, inner product function, penalty coefficient. Sensor nodes 

in the networks adopt the same structure of SVM multiple classifiers, shown in Figure 3. Where  

Xi (i = 1,2,…,N) denote the input characteristic parameters, and Yj (j = 1,2,…,M) denote the output 

results from SVM multiple classifiers. 

Figure 3. Structure of SVM multiple classifiers. 

 

(1) Selection of Input and Output Variables 

Related studies have demonstrated that (i) peak value, (ii) average amplitude, (iii) variance and  

(iv) mean square root are parameters which can reflect the fluctuation of stress waves caused by 

pipeline leaks; (v) peak factor, (vi) pulse factor and (vii) margin factor are parameters which can 

reflect the impact of dramatic changes of stress waves; (viii) skewness factor and (ix) kurtosis factor 
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are parameters which can reflect the changes of amplitude distribution of stress waves [38]. 

Consequently, the nine parameters mentioned above are selected as characteristic input vectors of the 

SVM multiple classifiers. 

Owing to the fact that a single SVM only resolves the two-classifier problem, we set up a SVM 

model composed by several classifiers to distinguish different states of the pipeline. According to the 

application requirements analysis for leak detection, the pipeline has three types of recognition states: 

normal, small leak and big leak. As a result, we need to construct three SVMs to correspond with the 

three kinds of states. For the ith SVM, the recognition output of ith pipeline state is +1 while the 

outputs of other two states are both −1. Namely, the number of output variables is 3. When the pipeline 

states are normal, small leak and big leak, output variables of multiple classifiers are (+1, −1, −1),  

(−1, +1, −1) and (−1, −1, +1), respectively. 

(2) Classification Principle and Parameters Optimization  

The classification principle of SVM multiple classifiers is based on structural risk minimization 

principle and kernel function method [39]. The expression of discriminant function is: 

1

( ) sgn( ( , ) )
n

i i i
i

f x y k x x bα
=

= +  (2) 

where xi and x represent training and measured samples, respectively; y = {−1, +1} is the classification 

label. α denotes Lagrange coefficient vector, which satisfies that 0 ≤ αi ≤ C and ∑ ܽ௜ݕ௜௡௜ୀଵ ൌ 0 ,  

i = 1,2,…,n, where C is the penalty factor. In Equation (2), b denotes the classification threshold value 

and k(xi,x) is the kernel function. In this paper RBF kernel function is adopted and its expression is: 
2

( , ) exp[ ]i ik x x x xγ= − −  (3) 

where γ is the parameter of the kernel function. Simulation experiments show that RBF kernel function 

has better classification results than others.  

In the aspect of parameter selection, both C and γ are important parameters, which are able to 

directly affect classification precision. Here, a bilinear search method is used to work out the optimal 

parameters. Its principle is that different values of parameters combinations (C, γ) have different 

properties to correspond with, so we use logC and logγ as the coordinates of parameter space and 

parameter combination (C, γ) for maximum learning precision will occur in the vicinity of the straight 

line log ߛ ൌ log ܥ െ log ሚܥ . The specific algorithm is as follows: (i) we calculate the optimal ܥሚ  for 

maximum learning precision from linear SVM; (ii) for the SVM with RBF kernel function, we fix ܥሚ. If ܥሚ satisfies log ߛ ൌ log ܥ െ log  .ሚ, we train the SVM for obtaining the optimal parameter valuesܥ

(3) Probability Output of SVM Multiple Classifiers 

The standard SVM output is a hard decision output so that it is likely to cause excessive dependence 

on the voting method [40]. However, it needs a SVM with soft decision output in practical application. 

Therefore, in order to get posterior probability output, we utilize a sigmoid function to map the SVM 

output f(x) to the interval (0, 1). The expression of posterior probability output is: 
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1
( 1 ( ))

1 exp( ( ) )
P y f x

Gf x H
= =

+ +
 (4) 

where the parameters G and H could be obtained from the following Equation:  

min ( log( ) (1 ) log(1 ))i i i i
i

t p t p− + − −  (5) 

where ݌௜ ൌ ଵଵାୣ୶୮ ሺீ௙ሺ௫೔ሻାுሻ, ݐ௜ ൌ ௬೔ାଵଶ  and yi is the classification label of sample i. 

4.1.3. Final Decision Based on Improved Evidence Combination Rule 

According to the practical output requirement of pipeline leak detection, we set up the decision 

model based on an improved evidence combination rule. 

(1) Frames of Discernment 

Let θ be the frame of discernment, containing N exclusive and exhaustive hypotheses, and let 2θ 

denote its power set. In this paper, frames of discernment in pipeline monitoring sensor networks are  

θ = {A1, A2, A3}, where A1, A2 and A3 respectively represent the normal, small leak and big leak states. 

(2) Basic Probability Assignment (BPA) 

A basic probability assignment is a function m from 2θ to [0, 1] verifying: 

( ) 0

( ) 1
A

m

m A
θ⊆

Φ =
 =

  (6) 

For any A, m(A) represents the belief that one is willing to commit to A, given a certain piece of 

evidence. Therefore, how to assign the values of m(Ai) is the main problem to be dealt with. Here we 

propose the concept of error upper bound in SVM classification recognition: if a set of training 

samples could be divided by an optimal classification surface, the upper bound of classification error 

rate of testing samples is the ratio of average support vector number of training samples to total 

number of training samples. That is: 

( ( ))
1

sv

t

E
E P error

E
≤

−
 (7) 

where Esv and Et respectively denote the average support vector number and total number of training 

samples. Equation (7) precisely reflects the uncertainty of sample x by the SVM method, which 

corresponds to Θ in frames of discernment. As a consequence, we employ the following method to 

assign BPA values of Ai (i = 1,2,…,N). 

For the ith point in the sample set, the probability output of initial recognition results could be 

calculated by trained SVM multiple classifiers. The BPA value corresponding to Aj in initial 

recognition results is: 
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3

1,

3

1

1 1
( )

1 exp( ( ) ) 1 1

exp( ( ) )

1 exp( ( ) ) 1

exp( ( ) )1
( ) ( )

1 1 exp( ( ) ) 1

j
i j

j

j m

m m j j

j m
i

m j

s
m A

Gf x H l k

Gf x H s

Gf x H l

Gf x H s
m

k Gf x H l

= ≠

=

= +
+ + − −

 +
 + + −  

+
Θ =

− + + −





 
(8) 

where 
ଵଵାୣ୶୮ ሺீ௙൫௫ೕ൯ାுሻ is the posterior probability output of jth two-classification SVM and it could be 

calculated by Equation (4). The term sj denotes the number of support vector corresponding to the jth 

SVM. l is the total number of training samples. Θ denotes the uncertainty of recognition result. The 

normalization result of m(A) is shown as follows:  

1

( ) ( ) / ( )
k

i j i j i j
j

m A m A m A
=

′ =   (9) 

In this way, we can get the BPA function ݉௜ᇱ corresponding to ith test sample point. In the practical 

process of pipeline leak detection, the closer the sensor node is to the leak point, the more reliable the 

detection result is. In contrast, the result is less reliable when the sensor node is farther from the leak 

point as a result of more interference in leak signals. In order to reduce the effect of the unreliable 

evidence on combination result and promote the degree of focus of the correct proposition, the BPA 

function values produced as outputs from SVM multiple classifiers need to be preprocessed before 

evidence combination. Here the preprocessing method is based on node reliability degree: we suppose 

the distance between the ith node and the leak point is di and the degree of reliability of the node 

closest to the leak point is 1. The reliability degrees of other nodes are given as follows:  

min

min

min( )        

/   

i

p
i i

d d

Cred d d

=
 =

 (10) 

where p is the impact factor of reliability degree. After a great deal of experimental research, p = 8 in 

this paper. In order to meet the requirement of the sum of BPA function of each proposition is 1, we 

process the BPA function via reliability degree expression:  

( ) ( ),    

( ) 1 ( )           
j

i j i i j j

i i j
A

m A Cred m A A

m m A
Θ

Θ

∗

∗ ∗

⊂

′ = ≠ ∅
 = −


  (11) 

(3) Evidence Combination 

Suppose m1 and m2 respectively represent the BPA function of the same frame of discernment, focal 

elements of which are Ai and Bj. The combination rule of A and B are shown: 

1 2

1 2

1 2

( ) 0,     

( ) ( )

( )
1

i j

i j
A A A

m A A

m A m B

m A
K

⊕

=
⊕

= = ∅


 =
 −




 (12) 

where ܭ ൌ ∑ ݉ଵሺܣ௜ሻ݉ଶ஺೔ځ஺ೕୀథ ሺܤ௝ሻ denotes the conflict weight. 
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(4) Decision Making Based on Maximum Trust Degree 

According to evidence combination results from Equation (12), we adopt maximum trust degree 

method to make final decision. 

∃A1, A2 ⊂ θ, m(A1) = max{m(Ak), Ak ⊂ θ} and m(A2) = max{m(Ak ，) Ak ⊂ θ，且Ak ≠ A1}. If the 

following relationship expression is satisfied:  

1 2 1

2

1

( ) ( )

( )

( ) ( )

m A m A

m

m A m

ε
Θ ε

Θ

− >
 <
 >

 (13) 

A1 is the decision result, where, ε1 and ε2 are threshold values. In this paper ε1 = 0.15 and ε2 = 0.1. 

4.2. Leak Point Localization Algorithm 

4.2.1. Principle of Time Difference of Arrival 

The localization method based on time difference of arrival (TDOA) is described as follows [41]: 

Several sensor nodes are placed at fixed points to make up the sensor array in accordance with some 

geometric relationship. These nodes measure and calculate the relative time difference of signal waves 

transmitting to each sensor node. Then time differences are substituted into the equations which satisfy 

the geometric relationship of sensor array for solving the leak point coordinate. Furthermore, leak 

signals will lose some energy during the process of propagation, that is to say, signal intensity will 

decline with the increase of the distance between leak point and sensor position. According to this 

feature, the leak source region can be roughly determined via the signal intensity received by sensor 

nodes and leak points can be accurately localized by analyzing the signal attenuation characteristics. 

Figure 4 shows the principle of TDOA localization through two sensor nodes. The location Equation 

of leak point is: 

2

L t
X

α− Δ=  (14) 

where X denotes the distance between the leak point and the nearest node. Because all the nodes in the 

monitoring networks have definite location coordinates, the location of the leak point could be 

determined according to X. L is the distance between upstream and downstream nodes, the value of 

which is certain when the networks are deployed. α denotes the wave propagation speed and the value 

of α is able to be obtained from engineering handbook or practical measurement. Δt denotes time 

difference of leak signal arriving at upstream and downstream nodes, which is the key problem of time 

of arrival localization. 

4.2.2. Process of Leak Point Localization 

Leak point localization is accomplished at the sink. The localization process is divided into three 

parts: signals grouping, determination of time difference and weighted average localization. 
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Figure 4. Principle of TDOA localization. 

 

(1) Signals Grouping 

Related research shows that with the increase of the transmission distance, the energy of leak 

signals will gradually decline, which reflects in the decrease of average amplitude of the signal 

waveform. Suppose there are N sensor nodes near the leak point detecting the abnormal signals when 

the leak happens. The distances between neighboring nodes are all D0, and the distance between leak 

point and two nearest nodes from both sides are X1 and X2, respectively (shown in Figure 5). All the 

sensor nodes, which detect the leak signals, send single mode signals, their own ID and location to  

the sink. 

Figure 5. Multi-node integrated localization. 

 
 

Suppose X1 < X2, the characteristic function method is used to calculate the RMS amplitude of each 

signal, and the Equation is: 

2

0

1
( )

T
V V t dt

T

Δ
=

Δ   (15) 

where ΔT denotes signal sampling time. We compare all the signals’ average amplitude  

Vi (i = 1,2,…,N) and obtain that: 

1 1 2 1i i i iV V V V V− + −> > > > >  (16) 

As can be seen from Figure 5, node i is the closest to the leak point, so its amplitude Vi is the 

largest. In contrast, node 1 is the farthest to the leak point, so the amplitude V1 is the smallest. Then the 

signals above are divided into two groups according to an interval grouping criterion. One group 
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contains the signals collected by sensor nodes on the left of the leak point, whereas the other includes 

the signals collected by nodes on the right of the leak point. That is: 

1 2 1 1{ , , , },        { , , , }i i i i NU S S S W S S S− − += =   (17) 

where Si (i = 1,2,…,N) denotes the signal sent to the sink by node i. If NU and NW respectively denote 

the signal numbers in group U and W, the number of signal pairs can be obtained from the following 

Equation: 

( 1) ( 1)P U WN N N i N i= ⋅ = − × − +  (18) 

(2) Determination of Time Difference 

The original leak signal is generally a sort of continuity signal, so it is definitely difficult to obtain 

the exact time when nodes receive the leak signals. In this situation, we adopt cross correlation 

analysis for signals to get the time difference of the signal arriving at upstream and downstream nodes. 

Suppose cross correlation function RAB(τ) between wave A(t) and wave B(t+τ) with delay time τ is 

expressed as follows: 

0

1
( ) ( ) ( )

t

ABR A t B t dt
T

τ τ= +  (19) 

where T denotes the finite time interval. It will be seen from the Equation (19) that if τ is a variable, 

RAB(τ) is a function of τ.  

Divide A(t) and B(t) into n equal time units separately. Suppose t = ti, A(t) = ai, B(t) = bi,  

i = 0,1,2,…,n. If B(t) has a time delay τ' relative to A(t): 

0
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 (20) 

According to Equation (19), RAB(τ) is an integral in a limited time range. In the practical application, 

data sampling only utilizes the limited part of each wave while wave amplitude of unused part is set to 

0. Namely, if i > n, ai = bi = 0; if j > 0 and i + j > n, ai+j = 0; if j < 0 and i − j > n, bi−j = 0. As a 

consequence, when |݆|  increases, the number of items in (19) becomes increasingly less and the 

amplitude of RAB(τj) declines gradually. Eventually, when |݆| > n, ai+j = bi-j = 0 and RAB(τj) = 0. When  

τj = τ', RAB(τj) arrives at the maximum as a result of the same phase between A and B. Thus we obtain 

the delay time at the peak point of RAB(τj).  

For any functions A(t) and B(t) with a delay time τj, the cross correlation function RAB(τ) of A(t) and 

B(t+τ') includes the maximum value at τj = τ', so this kind of method is applicable to localization of 

continuous leak signals. For instance, node A receives the signal wave A(t) whereas node B receives 

the wave B(t+τ') with a delay time τ' relative to A(t), hence leak signal arrival time difference from the 

leak point to upstream and downstream nodes could be acquired at the peak of RAB(τ). Namely, ΔtAB = τ'. 
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Equation (14) is used to calculate the position coordinates of leak point according to ΔtAB, where 

wave velocity α is also an important parameter. Practically, the spread velocity of the signal wave is 

affected by many complicated factors, so α is determined by actual measurement in the experiment. 

(3) Weighted Average Localization 

All the single mode signals are divided into NP pairs by signal grouping algorithm, which can 

generate NP coordinates according to cross correlation time difference localization method. However, 

it may generate errors during the process of signal processing. Therefore NP kinds of localization 

results are not quite similar. In order to minimize the interference of errors and improve the 

localization accuracy, weighted average localization algorithm is introduced to work out position 

coordinates of leak point. The localization Equation is shown as follows: 

1

      (1 )
PN

leak j j c
j

P P j Nμ
=

= ≤ ≤  (21) 

where Pleak represents the final position coordinate of leak point. Pj denotes position coordinate of leak 

point calculated by signals in pair j. μj is the weight factor, which signifies credibility of leak point 

position determined by signals in pair j. 

It can be seen from signal attenuation theory and network deployment mode that the farther the 

distance between two sensor nodes is, the greater the attenuation of received signal is, which results in 

the decline of μj. Therefore, μj is inversely proportional to the distance between two sensor nodes. To 

maintain the precision of final position of leak point, the sum of μj (1 ≤ j ≤ NP) should be 1. Hence the 

Equation of weight factor μj is: 

                     1

     (1 )

1
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j
j

cN

j
j

Con

L
j N

μ

μ
=

 =
 ≤ ≤
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 (22) 

where Lj denotes the distance between two nodes in pair j. And Con is a constant, which is used to 

assure that the sum of μj is 1. When values of NP and Lj are certain, Con could be acquired from the 

following Equation: 

1

1

1PN

j j

Con

L=

=


 

(23) 

5. Simulation Experiments  

5.1. Experimental Facilities 

The outside diameter of the pipeline is 160 mm, the wall thickness of the pipeline is 6 mm and the 

length of the pipeline is 25 m. The pipeline is filled with a high pressure gas and the pressure is  

0.2 Mpa. The leak process is simulated by a leak valve. There are five nodes with the same spacing 

placed near the leak point. The coordinates of nodes and leak point are 0, 5 m, 10 m, 15 m, 20 m and 
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12 m, respectively. To make it simple, all nodes are equipped with acoustic sensors. We set the 

sampling number at 2,048 during a sampling process, sampling frequency is 1 MHz, sampling instant 

is 2.048 × 10−6 s and wave velocity is 4,870 m/s. 

5.2. Result of Leak Detection Experiment 

When a leak happens along the pipeline, signal waves received by the five sensor nodes are shown 

in Figure 6. As can be seen from the Figure 6, the original signals are continuous acoustic emission 

signals mixed with a great deal of noise and other interference, so it is difficult to distinguish the leak 

characteristics from these signals. 

Figure 6. Original signals received by five sensor nodes. 

 
 

Additionally, the average amplitudes of original signals obviously decline with the increasing 

distances between sensor nodes and the leak point. In order to further analyze the leak signals, we use 

multi-scale wavelet transform algorithm to divide the original signals into five levels. The results are 

shown in Figures 7–11, where we can see that the signals in the fourth and fifth levels have obvious 

periodical variation, which can reflect leak characteristics. The signals in the fifth level contain the 

most energy of the original signals. Therefore, we take the high frequency signals in the fifth level as 

single mode signals to extract leak characteristic parameters. The results of five original signals dealt 

with by wavelet transform are shown in Figure 12. Each signal waveform in Figure 12 corresponds to 

high frequency signal in the fifth level in Figures 7–11. Consequently, the operation above fulfills the 

preprocessing of original signals, which includes decomposing the signals in multi-scale, eliminating 

the effect by background noise and extracting the signal ingredients with leak characteristics for 

further data processing.  
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Figure 7. Signal decomposition of node 1. 

 

Figure 8. Signal decomposition of node 2. 
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Figure 9. Signal decomposition of node 3. 

 

Figure 10. Signal decomposition of node 4. 
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Figure 11. Signal decomposition of node 5. 

 

Figure 12. Single mode signals extracted from five original signals. 
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Then, characteristic parameters are calculated according to the single mode signals. As 

characteristic input vectors, they are sent to SVM multiple classifiers for initial recognition. In this 

paper, 120 groups of data are selected independently as the sample set, which contains 40 groups of 

large leak state sample, 40 groups of small leak state sample and 40 groups of normal state sample. 

Among the sample set, 20 groups of each type of pipeline state (60 groups in total) are randomly 

chosen as the training sample set and the others make up the testing sample set. Table 1 gives the 

signal examples of three sorts of states: groups 1 and 2 are signals in normal state; groups 3 and 4 are 

signals in small leak state; groups 5 and 6 are signals in large leak state. We use SVM toolbox in 

Matlab to train classifiers. Then test samples are sent to multiple classifiers for pipeline state 

recognition. Output results are normalized finally. 

Table 1. Signal sample. 

Peak 
value 

Average 
amplitude 

Variance 
Root 

amplitude
Peak 
factor 

Pulse 
factor 

Margin 
factor 

Skewness 
factor 

Kurtosis 
factor 

0.04729 0.01272 0.00025 0.01077 2.96782 0.41931 3.71730 −1.4047 2.69521 
0.04496 0.01395 0.00029 0.01195 2.62446 0.38066 3.22298 −1.4020 2.53662 
0.07940 0.01381 0.00033 0.01126 4.33524 0.67553 5.74708 −1.3712 3.26362 
0.07187 0.01295 0.00028 0.01077 4.28256 0.63152 5.54897 −1.4185 3.13221 
0.11165 0.01607 0.00046 0.01320 5.17711 0.88072 6.94743 −1.2839 3.71906 
0.12724 0.01649 0.00055 0.01307 5.41933 0.99074 7.71438 −1.5390 4.92900 

 

When there is a small leak happening along the pipeline, basic probability assignments determined 

by SVM multiple classifiers as the initial recognition results are shown in Table 2. From Table 2, 

uncertainty degrees in leak detection become increasingly large with the increase of distances between 

sensor nodes and leak point. In addition, the initial recognition result of Node 4 disagrees with that of 

others so that it is difficult to make a decision according to Equation (13). There are two factors 

contributing to the phenomenon. One is that sensor nodes have self problems which may lead to the 

error in characteristic input vectors of SVM multiple classifiers. The other is that the number of 

samples is so small that the samples could not include all the possible situations and this can cause 

recognition error of classifiers. To resolve evidence conflict problems, we use an improved evidence 

combination rule for the final decision. 

Table 2. Initial recognition result by SVM multiple classifiers. 

BPA A1 A2 A3 Θ 
m1 0.2614 0.3400 0.2614 0.1372 
m2 0.2465 0.3210 0.2465 0.1860 
m3 0.2397 0.3118 0.2397 0.2088 
m4 0.2344 0.2344 0.3047 0.2265 
m5 0.2279 0.2964 0.2279 0.2478 

 

It can be seen from Table 3 that after evidence combination, the degree of support of proposition A2 

rises to 0.4638. Comparing with the result of single node, the support degree has increased by 37%. In 

the meantime, the uncertainty degree declines to 0.044, which meets the requirement of Equation (13). 

Therefore, the diagnosis result supports proposition A2, which is “small leak”. 
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Table 3. Result of decision making. 

BPA A1 A2 A3 Θ 

m1,2 0.2742 0.4040 0.2742 0.0476 

m1,2,3 0.2667 0.4469 0.2667 0.0197 

m1,2,3,4 0.2601 0.4296 0.3012 0.0091 

m1,2,3,4,5 0.2467 0.4638 0.2851 0.0044 

5.3. Result of Leak Point Localization Experiment 

In this part, we use signal mode signals extracted from the original leak signals as the processing 

objects. According to the process of leak point localization algorithm in Section 4.2, five sensor nodes 

send their signal preprocessing results to the sink.  

Then the sink compares the average amplitudes of single mode signals and divides the signals into 

two groups S1 and S2. S1 = {1,2,3} and S2 = {4,5}, where signals in group S1 come from the sensor 

nodes on the left of the leak point, while signals in group S2 are from the sensor nodes on the right of 

the leak point. According to the Equation (18), NP = 6. The six pairs of signals are (1,4), (1,5), (2,4), 

(2,5), (3,4) and (3,5), respectively. The cross-correlation results of above signal pairs are shown in 

Figure 13. 

Figure 13. Correlation result of each pair of signals. 

 
 

It can be seen from the Figure 13 that the cross-correlation function of each pair of signals has 

obvious maximum value. According to the cross-correlation TDOA principle, the position and error of 

leak point calculated by each pair of signal is shown in Table 4. 
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Table 4. Localization result and error of each pair of signals. 

Signal pair (1,4) (1,5) (2,4) (2,5) (3,4) (3,5) 
Node distance (m) 15 20 10 15 5 10 
Δt (μs) 1,672 638 684 378 346 996 
X (m) 3.43 8.45 3.33 6.58 1.63 2.57 
Coordinate of leak point P (m) 11.57 11.55 11.67 11.58 11.66 12.57 
Absolute error (m) 0.43 0.45 0.33 0.42 0.34 0.57 
Relative error 3.58% 3.75% 2.75% 3.50% 2.83% 4.75% 

 

In light of the node distance and the value of NP, we obtain μ1 = 0.11, μ2 = 0.09, μ3 = 0.17, μ4 = 0.11, 

μ5 = 0.34 and μ6 = 0.17. After weight average combination, the final coordinate of the leak point is: 

     (24)
 

Accordingly, the absolute error is 0.21 m and the relative error is 1.75%. It is thus clear that 

weighted average localization method can effectively enhance position accuracy. 

6. Conclusions  

In this paper we study the features of leak monitoring information and the structure of pipeline 

monitoring sensor networks, and present a type of pipeline leak detection and localization method 

based on a hierarchical model. At sensor nodes, to remove the noise disturbance and dispersion 

phenomena, wavelet transformation technology is first used to decompose the original leak signals, 

obtaining single mode signals and characteristic leak parameters. Then we set up a SVM multiple 

classifiers model for the initial recognition of the pipeline state. To enhance the classification effect 

and avoid a slow convergence rate, a bilinear search method is utilized to select optimal model 

parameters, which is of great importance for the recognition result. Moreover, a sigmoid function 

converts the initial recognition results to probability values, achieving the objectivation of the BPA 

function. At the sink, an improved evidence combination rule is designed for making final decision 

according to the recognition results from different nodes. The new rule can tackle the evidence conflict 

problem and increase the degree of focus of the correct proposition. To get the accurate position of a 

leak point, a weighted average localization algorithm based on cross-correlation TDOA is introduced. 

Through weighted combination of localization results of multiple groups of nodes, the position 

accuracy of the leak point is dramatically improved. Experimental results show that hierarchical method 

can obviously increase the accuracy of pipeline leak recognition (the focal degree of the right proposition 

has increased from 0.2344 to 0.4638) and avoid the problem of difficult decision making. Additionally, 

weighted average localization remarkably reduces the process error which is beneficial to localization 

accuracy (the maximum relative error has decreased from 4.75% to 1.75%). In this paper, we mainly 

focus on the linear pipeline without considering other pipeline cases. Hence in the future, we plan to 

carry out a large amount of research on leak detection and localization approaches of pipelines with 

special structures such as zig-zag or bent pipelines. Besides, we will do a number of experiments to 

exploit the feasibility and validity of our approach used in pipelines of other materials such as water 

and oil as well as underground pipelines, finally extending our method to industrial applications. 

1
1

11.79
cN

leak j
j

P Pμ
=
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