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1 | INTRODUCTION

Shwachman-Diamond syndrome (SDS) is a rare
genetic syndrome characterized by multiorgan dys-
function primarily involving the bone marrow and
exocrine pancreas. Common features of SDS include
cytopenias due to bone marrow hypoplasia, exocrine
pancreatic insufficiency, and failure to thrive (FTT)
during infancy. Less commonly, SDS can also present
with elevations in hepatic transaminase levels and/or
hepatomegaly. SDS is an autosomal recessive genetic
caused primarily by mutations in the
syndrome
gene, which is thought to be required for ribosome

disorder
Shwachman-Bodian—Diamond

function and protein translation.

Abstract

Shwachman-Diamond syndrome (SDS) is a genetic disorder caused by
mutations in the Shwachman-Bodian—Diamond syndrome (SBDS) gene.
The syndrome is characterized by multiorgan dysfunction primarily involving
the bone marrow and exocrine pancreas. Frequently overlooked is the
hepatic dysfunction seen in early childhood which tends to improve by
adulthood. Here, we report a child who initially presented with failure to thrive
and elevated transaminases, and was ultimately diagnosed with SDS. A liver
biopsy electron micrograph revealed hepatocytes crowded with numerous
small mitochondria, resembling the hepatic architecture from patients with
inborn errors of metabolism, including mitochondrial diseases. To our
knowledge, this is the first report of the mitochondrial phenotype in an SDS
patient. These findings are compelling given the recent cellular and
molecular research studies which have identified SBDS as an essential
regulator of mitochondrial function and have also implicated SBDS in the
maintenance of mitochondrial DNA.
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2 | CASE PRESENTATION

The patient was born at term after an uncomplicated
pregnancy. Her birthweight and length were normal,
however at 5 months of age she was noted to have
poor weight gain and poor linear growth, and truncal
hypotonia. Due to concerns for FTT, the patient had
subspecialty evaluations with pediatric cardiology,
endocrinology, and pulmonology that were normal. At
6 months of age, she had a gastrointestinal evaluation
that revealed mildly elevated transaminases (AST
190 U/L [normal < 35]; ALT 198 U/L [normal < 45]). Her
fecal qualitative fat, celiac-associated immunoglobu-
lins, bilirubin, GGT, albumin, and INR were within
normal limits. She had genetics evaluations with

(SBDS)
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nondiagnostic microarray, mitochondrial gene panel,
and whole exome sequencing.

At presentation at 11 months of age, she weighed
6.7 kg (<1%ile, WHO Girls), and her length was 67 cm
(4%ile, WHO Girls). She was alert and interactive with
age-appropriate fine motor, language, and social skills,
however, she had a persistent gross motor delay. On
physical examination, she appeared small for age with
mild facial dysmorphism that included a broad forehead
with frontal upsweep of hair, epicanthic folds, and
stellate irises (Figure 1A). Notably, she had a small
bell-shaped thorax (Figure 1B). Cardiac, lung, and
abdominal exams were normal.

Due to persistent elevation of transaminases, the
patient had a liver biopsy at 13 months of age. On
microscopic examination with hematoxylin and eosin
stain (H&E), the hepatic architecture showed mild
portal septal fibrosis, and lobules with scattered
small and large droplet steatosis (Figure 2A). Elec-
tron microscopy (EM) revealed relatively normal
histoarchitecture with the notable exception of
hepatocytes filled with numerous small mitochondria
and abundant lipid droplets of variable sizes. The
smooth and rough endoplasmic reticulum, Golgi
complexes, and peroxisomes had normal appear-
ance, and there was normal intracellular content of
glycogen (Figure 2B). The findings were thought to
be consistent with a metabolic disorder, however
screening tests for metabolic conditions including
acylcarnitine profile, plasma amino acids, urine
organic acids, and carbohydrate deficient transferrin
were normal.

(A)

FIGURE 1

Given the nonspecific liver biopsy findings, work up
was broadened to include whole genome sequencing
which revealed compound heterozygous pathogenic
variants in the SBDS gene (maternal ¢.183_184del-
TAiInsCT, p.K62*; paternal ¢.258+2 T > C, p.?) consist-
ent with SDS. Following molecular diagnosis, the
parents noted the onset of pale-colored stools with
increased stool frequency. Pancreatic insufficiency was
confirmed with reduced pancreatic elastase (not
previously assessed), though fecal fat remained
normal. She was started on pancreatic enzyme
replacement with immediate improvement in stool
consistency and weight gain. The patient was also
referred to hematology for further management and
surveillance of cytopenia.

3 | DISCUSSION

SDS is a rare genetic syndrome characterized by
multiorgan dysfunction with typical presenting features
that include exocrine pancreatic, hematologic, and
skeletal abnormalities. Hepatic involvement is present
in up to 40% of patients." A retrospective review of 12
SDS patients found that children under 3 years of age
consistently demonstrated elevations in transaminase
levels.? Fortunately, SDS-related liver disease has an
overall good prognosis, as the elevates transaminases,
hepatosteatosis, and fibrosis tend to normalize around
5 years of age. Adult patients with SDS usually have no
evidence of clinical liver disease, with few rare
exceptions.?®

Patient's physical features. (A) Photograph featuring minor facial dysmorphisms: broad forehead with frontal upsweep of hair,

epicanthic folds, and stellate irises. (B) Photograph featuring bell-shaped thorax.
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FIGURE 2 Pathology specimens from pediatric Shwachman—Diamond syndrome liver biopsy. (A) Representative hematoxylin and eosin
stained high-magnitude magnification (x40) of liver biopsy demonstrating lipid droplets (asterisks); inset magnified for clarity. (B) Representative
electron microscopy demonstrating intrahepatic lipid droplets (asterisks) and numerous small mitochondria (arrowheads); inset magnified for

clarity.

The hepatic pathology of patients with SDS has not
been well characterized. To our knowledge, there have
been three descriptions of SDS liver biopsy results
which described periportal fibrosis, microsteatosis, and
inflammation.2* The prior reports of cellular-level
hepatic pathology are similar to that seen for the
patient described herein. However, ultrastructural
analysis of SDS-related hepatic pathology has not
been previously reported. In our patient, EM on liver
biopsy specimens was notable for numerous small
mitochondria that were densely packed within the
cytoplasm, reminiscent of “oncocytic transformation”
usually seen with the primary mitochondrial condition,
mitochondrial DNA depletion syndrome.>® Mitochon-
drial DNA depletion syndrome is caused by particular
mutations in mitochondrial genes that cause

quantitative reduction of mitochondrial DNA and
dysfunctional oxidative phosphorylation; notably this
syndrome is also associated with hepatic dys-
function.>® Another relatively common pediatric mito-
chondrial disorder, Pearson Syndrome, is caused by
large contiguous deletions of mitochondrial DNA. The
cellular phenotype for Pearson Syndrome is more often
associated with large mitochondria (i.e., megamito-
chondria) that have reduced and abnormal cristae
morphology.” Despite this difference in mitochondrial
morphology, it is fascinating that the primary clinical
features of both SDS and Pearson syndrome are
marrow suppression and pancreatitis.

The SBDS protein is thought to play various roles in
essential cellular pathways including ribosomal bio-
genesis,® ' mitotic spindle stabilization,’"'? actin
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TABLE 1
terms with phenotypes utilized during analysis of initial whole exome
sequencing (WES) and whole genome sequencing (WGS).

Comparison of human phenotype ontology (HPO)

Relevant OMIM
phenotypes

WES HPO terms
utilized

WGS HPO terms
utilized

Developmental delay Gross motor delay ~ Gross motor delay

Failure to thrive Failure to thrive Failure to thrive

Abnormal liver Elevated liver Elevated liver

function tests enzymes enzymes
Narrow thorax Small
thoracic cage
Smaller OFC (relative Mild microcephaly
microcephaly)
Nonoverlapping terms
Elevated Generalized
thyroglobulin hypotonia
levels Hepatic fibrosis

Hepatic steatosis
Hypertelorism
Epicanthal folds
Bulbous nose

Note: The HPO terms associated with genetic disorders on the curated
database Online Mendelian Inheritance of Man (OMIM) are generally
considered to be the clinical standard. For complete list of OMIM phenotypes
associated with SDS, visit https://omim.org/clinicalSynopsis/260400.

Abbreviation: OFC, orbital frontal cortex.

polymerization,'® and mitochondrial function.’®'® The
link between SBDS protein function and mitochondrial
health was first described in 2013 when yeast biologists
noted that cells lacking the yeast ortholog of SBDS
(SDO01) had impaired respiratory function as measured
by increased production of reactive oxygen species.'
The study authors also demonstrated similar deficits in
respiratory function in human cells depleted of SBDS.™
Interestingly, further yeast studies found that lack of
functional SDO1 resulted in depletion of mitochondrial
DNA (mtDNA), with the authors hypothesizing that the
maintenance of mtDNA was compromised due to
oxidative damage.'® Human lymphoblast cells from
SDS patients were also found to have decreased
Complex IV activity and thereby decreased ATP
production.'®

It is noteworthy that the patient's initial genetic testing,
including WES, did not uncover the diagnosis of SDS.
While WES can detect most pathogenic variants, it is
limited to those variants found in coding regions (exons)
as well as splice-site mutations. On the other hand, WGS
can additionally detect intronic and other noncoding
variants, as well as copy number variants and tri-
nucleotide expansions, and has an increased diagnostic
rate of about 20%.'” Interestingly, the SBDS gene
variants that were ultimately identified on the patients
WGS were within genetic regions that could have been
identified on WES, with one variant within exon 2
(c.183_184delTAinsCT), and the other a 5’ donor
splice-site mutation between exons 2 and 3 (c.258 + 2T >

C). This is significant because ¢.183_184delTAinsCT and
€.258 + 2T > C are two of the most common pathogenic
variants in SBDS.'® Another consideration for WES and
WGS are the human phenotype ontology (HPO) terms
that are input to the analytical pipeline. In this case, the
WGS testing included two additional terms that may have
provided the necessary clinical information for the
diagnosis (Table 1). While the clinical laboratory declined
to clarify the technical or analytic reasons for the missed
diagnosis, there is a known complication of misalignment
between sequence reads of the SBDS gene and its
pseudogene, SBDSP1 due to sequence homology which
can potentially raise the threshold of detection.®

4 | CONCLUSION

Here, we report a child with SDS that initially appeared to
have clinical features of a mitochondrial disorder includ-
ing FTT and elevated transaminases, and a liver biopsy
with ultrastructural features resembling mtDNA depletion
syndrome. To our knowledge, this is the first report of the
cellular mitochondrial phenotype in an SDS patient, with
numerous small mitochondria found on hepatic biopsy.
Given these findings, it is fascinating that recent cellular
and molecular studies have identified SBDS as an
essential regulator of mitochondrial health, and in the
maintenance of mtDNA. Perhaps it is not coincidental
that SDS and primary mitochondrial disorders affecting
pediatric patients share significant clinical overlap, as
these disease processes may share impaired mitochon-
drial respiration as an underlying pathology.
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