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Antagonism of nicotinic acetycholinergic receptors by
CN-105, an apoE-mimetic peptide reduces stroke-induced

excitotoxicity

Dear Editor:

This letter describes our work identifying the neu-
ronal targets of a clinical-stage stroke therapeutics CN-
105, and proposing a novel neuroprotective strategy involv-
ing nAChR antagonism. Stroke is a devastating disease
with high morbidity and mortality. CN-105 was origi-
nally designed to mimic the anti-inflammatory activities
of endogenous apolipoprotein E (apoE). Despite its proven
efficacy in various animal models of brain injury and well-
established safety profile in clinical trials,"* our under-
standing of CN-105’s mechanism of action remains incom-
plete. Early reports suggested that apoE-derived peptides
and a number of oligoarginine species may interact directly
with various neuronal targets including the nicotinic
acetylcholine receptors (nAChR).>* The long-held view
regarding nAChR was that its activation was neuroprotec-
tive, best exemplified by the cognitive-enhancing effects
of nAChR agonists or positive allosteric modulators.” One
common role of nAChR, which received limited atten-
tion in stroke, is its potentiation of glutamate release at
the presynaptic terminal.® Glutamatergic neurotransmis-
sion is arguably the primary reason for the propagation of
excitotoxicity in stroke.”® Although postsynaptic nAChR
activated by ACh or nicotine could desensitize proximal
NMDA receptors,” we hypothesized that acute action of
nAChR antagonist on presynaptic neurons may serve to
downregulate the detrimental cascade associated with glu-
tamate excitotoxicity.

After given supratherapeutic dosing of CN-105 several
orders of magnitude higher than clinical practice, Cynol-
ogous monkey exhibited symptoms of mydriasis and pto-
sis. A gradual recovery to normal activity took about two
serum clearance half-lives of CN-105 (4 h, Table S1; Fig-
ure S1). In C57BL6 mice, CN-105 had an LDy of 25 mg/kg
(Figure 1A) with symptoms of spasm and respiratory sup-
pression. Following intubation and mechanical ventila-
tion, dosing of 50 mg/kg was not associated with mortality

(Figure 1A), but led to extended sedation after the removal
of isoflurane anaesthesia (Movie S1).

Given apoE-peptides’ antagonistic activity upon
nAChR,>'® we hypothesized that the respiratory sup-
pression of CN-105 was due to its inhibition of nAChRs
present in various respiratory control pathways. An initial
electrophysiological study using an HEK293 cell line
overexpressing a7-nAChR showed that 10 uM CN-105
strongly suppressed the ACh induced current, similar to
the inhibitory effect of apoE (Figure S2). In the presence of
10 nM to 10 uM CN-105, we observed a typical antagonistic
suppression of the ACh-induced currents (Figure 1B).
Such effect was sub-type specific, as the IC5, of CN-105
differed by two orders of magnitude for a7-, a432- and
alfB1ée-nAChR (Figure 1C), the latter of which might be
responsible for CN-105’s respiratory toxicity at suprather-
apeutic dosage. The voltage dependency of CN-105 was
measured in parallel with apoE130-149 (Figure 1D), in
which we observed maximal inhibition at -80 mV. In
the primary culture of rat neurons, 1 mM ACh triggered
strong calcium influx, which was significantly diminished
by a priori incubation with CN-105 prior to ACh infusion
(Figure 1E). These results indicated that CN-105 may block
the ACh-induced influx of Ca?* and the propagation of
action potential (AP).

Based on the reported binding site of the apoE140-148
peptide on nAChR,'” we constructed a model of the a7
nAChR-CN-105 complex. The putative binding site of CN-
105 was proximal to the orthosteric binding site for ACh
(Figure S3A) and would most likely block the binding
of ACh. Unsurprisingly, the arginine side chains of CN-
105 were involved in extensive hydrogen bonds (Figure
S3B). Poisson-Boltzmann analyses of the complex struc-
ture (Figure 2A) showed that positive charges of CN-105
significantly weakened the negative electric field that is
critical for the passage of cations, diminishing the propen-
sity of cation inflow. The two preceding neutral residues
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FIGURE 1 (A)Mortality rates of C57BL6 mice after a single tail vein injection of CN-105. Red triangles corresponded to mice under
mechanical ventilation with isoflurane anaesthesia. The numbers of mice died from respiratory suppression over the total numbers of the test
mice were marked beside each datum. (B) Dose-response curves of ACh stimulation of a7-nAChR in the presence of various concentrations
of CN-105. All current data were normalized to the current induced by saturating concentration of ACh (30 uM). The data were fitted to a
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FIGURE 2 (A) Electrostatic potential map of the ECD portion of the a7-nAChR before and after the binding of CN-105. The channel

structure was depicted in surface mode and clipped in the Y-Z plane (dashed line) for a better view of the channel. Graphics were generated in
Chimera. (B) Normalized evoked excitatory postsynaptic current (EPSC) signals of AMPA receptor and NMDA receptor, recorded in the
presence of CN-105, apoE130-149 (3 uM) or apoE3-(1-191) (1 uM). Each datum on the plot was the mean of EPSC data from four replicates,
except that the 200 nM CN-105 data for eEPSC(AMPA) and eEPSC(NMDA) were averages of eight repeats, respectively (Figure S4)

were vital for the nAChR activity (Figure S3B). The pep-
tide in which the first valine was replaced by an arginine
lost most of its nAChR activity (Table S2) in spite of pos-
sessing an extra positive charge.

We next studied whether CN-105’s inhibition of nAChR
and nAChR-mediated calcium influx would affect down-
stream release of glutamate. In rat hippocampal brain
slices, evoked excitatory postsynaptic current (eEPSC)
mediated by NMDA receptor and AMPA receptor were

significantly lower in the presence of CN-105 than the
control levels (Figure 2B, Figure S4). CN-105 did not
directly inhibit glutamate-induced currents in NMDA or
AMPA receptors (Figure S5). Rather, CN-105’s attenua-
tion of the spontaneous EPSC (SEPSC) frequency and the
reversion by the cholinesterase inhibitor donepezil (Fig-
ure 3A), suggested an intercellular and most likely presy-
naptic action of CN-105. Confining the agonistic effect
of donepezil to nAChR by adding the muscarinic AChR

three-parameter logistic model in R with the drc package. The EC5, for ACh with CN-105 concentration from 0 to 10 uM were: 0.80 + 0.05 uM,
0.88 + 0.07 uM, 1.76 + 0.35 uM, 1.74 + 0.50 uM, 2.23 + 1.06 uM, with p-values being <0.001, <0.001, <0.001, 0.003 and 0.51, respectively. (C)
Dose-response curves of CN-105’s inhibition of a7-, a1f18¢- and a452-nAChR. The data were fitted to a four-parameter logistic model in R

with the drc package. The p-values of data fitting for the three subtypes were <0.001, 0.43 and <0.001, respectively. (D) Voltage dependencies
of a7-nAChR inhibition by CN-105 (40 nM) or ApoE130-149 (500 nM), both at concentrations close to their respective ICs,. (E) Calcium influx
imaging with the Ca?* sensitive dye AM4 on rat primary neuron stimulated by 1 mM ACh. CN-105 at various concentrations was added to cell
culture prior to the imaging experiment. For a better comparison between groups, fluorescence intensities were normalized to the maximum

mean fluorescence intensity of the 0 M CN-105 group. All plots were shifted so that the fluorescence intensity immediately prior to ACh

injection was zero. Each curve was the mean of five replicates with the 95% confidence interval depicted in the same colour
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FIGURE 3
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(A) Excitatory postsynaptic current (EPSC) amplitudes and event frequencies of rat hippocampal brain slice recorded in the

spontaneous mode (SEPSC). CN-105, donepezil and atropine concentrations were 200, 20 and 1 uM, respectively. (B) EPSC amplitudes and
event frequencies of rat hippocampal brain slice recorded in the presence of TTX (mEPSC). CN-105, donepezil (labelled as “D”) and atropine
(labelled as “A”) were 200, 20 and 1 uM, respectively. Statistics (¢-test) and empirical cumulative distribution functions (ECDF) were

calculated using the “rstatix” and “ggpubr” packages in R
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(A) Ratios of infarct volume over the total volume of ipsilateral hemisphere determined on Day 8 after the

ischemia-reperfusion injury. (B) The density of CHRNA7* cells in a 1 mm? sample area located on the margin of infarct determined on Day 8.
(C) Density of GBRB3™ cells in a 1 mm? sample area located on the margin of infarct determined on Day 8. (D) Density of NeuN* cellsin a1
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inhibitor atropine exhibited a similar effect to adding
donepezil alone, indicative of an nAChR-dependent mech-
anism. When tetrodotoxin was added to block all AP fir-
ings, CN-105 was no longer able to affect the NMDA
receptor-mediated EPSC (Figure 3B). These results sug-
gested that CN-105 could suppress the presynaptic release
of glutamate in an AP- and AChR-dependent manner. That
is, nAChR* glutamatergic neurons may be the primary
cellular target of CN-105 in suppressing excitatory neuro-
transmission in the brain.

In a rat model of transient ischemic stroke, CN-105 (0.1
to 0.4 mg/kg) significantly reduced the infarct volume,
similar to the group given the free-radical scavenger edar-
avone (Figure 4A). At the infarct margin of the primary
somatosensory cortex, we enumerated the a7-nAChR*
cells which had higher density in the CN-105 treated
groups than in the vehicle-treated groups (Figure 4B). The
number of 33-GABA,RY cells in this area was unaffected
by CN-105 (Figure 4C). Similar to the trend of 7-nAChR™*
cells, the overall density of viable neurons (as NeuN™ cells)
was higher in CN-105 treated groups (Figure 4D), which
suggested that specific interactions between CN-105 and
neurons carrying a7-nAChRs in the somatosensory cor-
tex may help protect neuronal tissues from the ischemic-
reperfusion injury. Our current understanding of CN-105’s
neuronal mechanism of action is depicted in Figure 4E.
Although chronic inhibition of the cholinergic pathway
may be detrimental, our results demonstrated that acute
and selective antagonism of nAChR may actually protect
the brain from excitotoxicity.

In conclusion, we demonstrated that one of the neuro-
protective mechanisms of CN-105 was the dampening of
presynaptic glutamate release via nAChR inhibition, aris-
ing from a unique electrostatic gating effect on the cation
channel. Our current observations emphasize that, in addi-
tion to its effects on glia, the direct interaction between
apoE (and the peptide derivatives) and neuronal ion chan-
nels may play an important role in mediating its neuro-
protective effects. Our results also suggest that it may be
worthwhile to reconsider the role of nAChR as a potential
therapeutic target for stroke neuroprotection.
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