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Abstract

Image compression and image encryption are two essential tasks in image processing. The

former aims to reduce the cost for storage or transmission of images while the latter aims to

change the positions or values of pixels to protect image content. Nowadays, an increasing

number of researchers are focusing on the combination of these two tasks. In this paper, we

propose a novel joint image compression and encryption approach that integrates a quan-

tum chaotic system, sparse Bayesian learning (SBL) and a bit-level 3D Arnold cat map, so-

called QSBLA, for such a purpose. Specifically, the QSBLA consists of 6 stages. First, a

quantum chaotic system is employed to generate chaotic sequences for subsequent com-

pression and encryption. Second, as one method of compressive sensing, SBL is used to

compress images. Third, an operation of diffusion is performed on the compressed image.

Fourth, the compressed and diffused image is transformed into several bit-level cubes.

Fifth, 3D Arnold cat maps are used to permute each bit-level cube. Finally, all the bit-level

cubes are integrated and transformed into a 2D pixel-level image, resulting in the com-

pressed and encrypted image. Extensive experiments on 8 publicly-accessed images dem-

onstrate that the proposed QSBLA is superior or comparable to some state-of-the-art

approaches in terms of several measurement indices, indicating that the QSBLA is promis-

ing for joint image compression and encryption.

1 Introduction

Images can provide rich information to human vision systems and have become one of the

most important ways to transfer information. Currently, thousands of millions of images are

produced every day, determining how to efficiently store and transmit such a large number of

images is a very challenging task. Due to the bulky data capacity of images, the bytes occupied

by images must be reduced to facilitate storage and transmission. The high redundancy and

strong correlation that usually exist in an image afford possibilities for image compression.

The discrete cosine transform (DCT), discrete Fourier transform (DFT), discrete wavelet

transform (DWT), and so on, are widely-used image compression methods [1–3], and some of
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them have become parts of standards of image compression. Image compression is a trending

topic in image processing, and so is image encryption.

Image encryption uses techniques to change the image contents in order to prevent unau-

thorized people from seeing particularly meaningful contents in the images. Much research

has been devoted to image encryption in recent years [4, 5]. Due to the properties of chaotic

systems, such as pseudorandomness, unpredictability, ergodicity, and extreme sensitivity to

parameters and initial values, chaos-based image encryption has become very popular among

image encryption approaches [6, 7]. Individual low-dimensional chaotic systems are easy to

crack and hence decrease the security of image encryption. To cope with this issue, possible

ways include combining two or more low-dimensional chaotic systems [8, 9], adopting high-

dimensional chaotic systems [10], using fractional-order chaotic systems [11, 12], and so on.

Recent research has shown that some quantum chaotic systems can achieve good encryption

performance, partly because of the extremely sensitive dependence to the initial conditions

and/or parameters of quantum chaos [13, 14]. With the chaotic sequences, some schemes such

as Latin cubes, S-Box, Arnold cat maps, and so on, can be used to change the positions and/or

values of image contents and hence encrypt images [4, 15–17].

Although image compression and image encryption are usually treated as two separate

tasks, it is reasonable to combine these two tasks to reduce the image sizes and to prevent the

privacy of images from leaking simultaneously. Therefore, it is necessary to study joint image

compression and encryption, so-called JICE. In recent decades, JICE has been one of the most

acclaimed topics in the field of image processing and information security. Li et al. used a tree

structure for JICE in mobile wireless environments [18], while Ou et al. used FPGA to improve

a JICE system [19]. To achieve good performance, Yuen et al. integrated a chaotic system,

DCT, the Secure Hash Algorithm-1 (SHA-1) and Huffman encoding for JICE, and the experi-

ments confirmed that the presented scheme was efficient for both image compression and

encryption [20]. Tong et al. proposed a JICE approach with high security, a good compression

effect and high encryption speed by combining DWT and a cross-chaotic map [21]. Li and Lo

put forward a JICE scheme based on the JPEG standard, which generated a new orthogonal

transform by embedding an additional rotation angle into the 8 × 8 DCT’s flow graph [22].

Zhang and Tong proposed a new joint lossless image encryption and compression approach

by combining the integer wavelet transform and set partitioning in hierarchical trees (SPIHT),

and the experiments demonstrated that the proposed scheme was able to achieve high security

and ideal lossless compression performance [23]. Landir et al. put forward a robust JICE

scheme using SPIHT and chaotic maps with noninteger order [24].

Compressive sensing (CS), also referred to as compressive sampling, compressed sensing,

or sparse sampling, is an emerging technique in the signal processing community that

addresses signal reconstruction by finding sparse solutions to an underdetermined linear sys-

tem [25–27]. The sparsity of the solutions can be used for compression, so CS has been widely

applied for JICE. For example, Zhou et al. used the partial Hadamard matrix controlled by cha-

otic maps as a measurement matrix for scrambling, and the experimental results demonstrated

the validity and reliability of the proposed scheme [28]. The authors also used key-controlled

measurement matrix in CS for JICE, and the simulation results demonstrated the scheme was

effective and secure [29]. Liu et al. put forward a novel JICE algorithm with fusion for multi-

modal images [30]. Zhang et al. proposed a JICE scheme for medical images by CS with a

chaos-based Bernoulli measurement matrix and pixel-swapping permutation [31]. A secure

and robust JICE algorithm was proposed by integrating DWT, memristive chaotic system, CS

and elementary cellular automata (ECA) [32]. Chai et al. used wavelet transformation, zigzag

operations, CS and chaos-based measurement matrices to compress and encrypt images [33].

Other JICE approaches with CS and chaotic systems are associated with the Fibonacci-Lucas
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transform [34], the optimized tensor CS and 3D Lorenz system [35], the 2D CS with a discrete

fractional random transform [36], and so on [37–40].

As one type of CS, sparse Bayesian learning (SBL) has shown its superiority in physiological

signal analysis [41–43], pattern recognition [44], visual tracking [45] and time series forecast-

ing [46–50] since it was proposed [51, 52]. The existing study has shown that SBL has many

advantages over some other compressive sensing models [44, 52, 53]. Regarding image encryp-

tion, diffusion and permutation are two typical types of operations that change the values and

the positions of pixels in images, respectively [54, 55]. Image compression is naturally an oper-

ation of diffusion because it can encode the original images into images with fewer sizes. The

Arnold cat map is a popular way to permute the pixels for image encryption [56–59]. As far as

the processing unit is concerned, image encryption is usually performed on blocks of pixels, at

the pixel level, DNA level (two bits) and bit level. Generally speaking, for a fixed processing

power, encryption on lower-level data often involves more pixels to ensure better encryption

results can be achieved [15, 60].

Inspired by the extreme sensitivity of quantum chaos, compression ability of CS and per-

mutation power of Arnold, this paper proposes a novel approach that integrates a quantum

chaotic system, sparse Bayesian learning and a bit-level 3D Arnold cat map, namely, QSBLA,

for joint image compression and encryption. Specifically, the proposed QSBLA consists of 6

stages: 1) a quantum chaotic system is employed to generate a chaotic sequence for subsequent

different operations of compression and encryption; 2) SBL is used to compress the original

image; 3) a diffusion operation called CDCP is performed on the compressed image; 4) the

compressed and diffused image is transformed into a bit-level cuboid, and then, the cuboid is

reshaped to one or more bit-level cubes; 5) for each bit-level cube, a 3D Arnold cat map is

applied to permute the bits; and 6) all the bit-level cubes are integrated into a bit-level cuboid

and then transformed into a pixel-level compressed and encrypted image. The QSBLA is

applied to eight publicly accessed test images, and the results indicate that it can achieve good

compression performance and has the ability to resist several types of attacks.

The remainder of this paper is structured as follows. Section 2 describes some concepts of

the proposed approach. The QSBLA approach is proposed in detail in Section 3. Then, we

report and analyze the experimental results in Section 4. Finally, we conclude the paper in Sec-

tion 5.

2 Preliminaries

2.1 Quantum chaotic system

A quantum logistic map can be constructed with quantum corrections, as dissipative quantum

systems are often coupled to a path of harmonic oscillators [13, 14]. It has been shown that a

chaotic map can be created through the very lowest-order quantum corrections by Eq (1) [13].
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0
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0
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0
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where x0 = hαi, y0 = hδα + δαi, z0 = hδαδαi. δα shows a quantum fluctuation about hαi, and β is

a dissipation parameter. Usually, x0n, y0n and z0n are complex numbers with x0�n of the complex

conjugate of x0n, similarly for z0n. After setting r and β, we can iterate Eq (1) with initial parame-

ters x0; y0; z0; x�0 and z�
0

to produce a chaos sequence. In the experiment, once x0, y0 and z0 are

set to real numbers, x�
0

and z�
0

are the same as x0 and z0, and then they will be replaced by x0
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and z0.

x0nþ1
¼ ð1 � �Þ�ðx0nÞ þ ��ðy

0

nÞ;

y0nþ1
¼ ð1 � �Þ�ðy0nÞ þ ��ðz

0

nÞ;

z0nþ1
¼ ð1 � �Þ�ðz0nÞ þ ��ðx

0

nÞ:

ð2Þ

Iterating Eq (2) with real initial parameters x0, y0, z0 and the real constant �, the chaos

sequence of real numbers is produced.

2.2 Arnold cat map

Arnold’s cat map is one of the well-known chaotic maps, and the name was from the fact that

Vladimir Arnold demonstrated its effects on an image of a cat in the 1960s [61, 62]. When

applying the map to encrypt an image, the image appears to be randomly permuted. However,

if the map is repeated a certain number of times, the original image will appear again. The 2D

Arnold cat map, formulated as Eq (3), has been widely used in image encryption.
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where a and b are two specified positive integers, (x0, y0) is the new position of the original

image position (x, y), and N is the size of the original square image. By adding two extra

parameters c and d, we can obtain a 3D Arnold cat map, as defined by Eq (4):
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where a, b, c and d are four specified positive integers, N is the size of the cubic image, and x, y,

and z represent the original positions in the direction of height, width and depth, respectively.

Likewise, x0, y0 and z0 stand for the new positions in the direction of height, width and depth,

respectively.

Accordingly, the inverse transformation of Eq (4) can be formulated as Eq (5).
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3 QSBLA: The proposed joint image compression and encryption

approach

3.1 Quantum chaotic sequence generation

The quantum chaotic sequence of QSBLA is generated from Eqs (1) and (2). When the param-

eters (�, r, β) = (0.001, 8, 3.32) and initial values (x0, y0, z0) = (0.4239, 0.0239, 0.0239) for Eqs

(1) and (2), the attractors of the quantum chaotic system are shown in Fig 1. r is a very impor-

tant parameter that affects the attractors’ distribution area in the quantum chaotic system
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significantly, which can be lines or random points. Fig 1 shows that the map has good chaotic

characteristics and randomness. In quantum chaotic theory, chaos cannot be measured in the

same way as defined in classical dynamics (i.e., through Lyapunov exponents) because the evo-

lution operator in quantum mechanics is coupled. Here, Fig 1 verifies the chaotic property of

the quantum system by the random distribution of the points.

Then, sequence K is composed of x0n, y0n, z0n, formulated as Eq (6).

K ¼ ½ðx0
1
; y0

1
; z0

1
Þ; ðx0

2
; y0

2
; z0

2
Þ; � � � ; ðx0n; y

0

n; z
0

nÞ; � � ��: ð6Þ

The purposes of the sequence K for JICE are twofold: (1) sorting the subsequence of K to

obtain the index of the original data for permutation and diffusion; and (2) using the subse-

quence of K to form the measurement matrix for SBL. In the proposed approach, the i-th

point in K is mapped to the integral range of [0, 255] by Eq (7) for both purposes.

ki ¼ modðbmodððjkij � bjkijcÞ � 1015Þ; 108Þc; 256Þ; ð7Þ

where mod and |�| are the modulo and the absolute value operation respectively, and b�c

denotes the flooring operation [12]. The discretization through Eq (7) can improve the ran-

domness of K to enhance the encryption.

3.2 Sparse bayesian learning

Sparse Bayesian learning (SBL) was first proposed for regression and classification by Tipping

in 2001, and its main idea is to obtain sufficiently sparse solutions from the data in a mapped

high-dimensional space via kernel-tricks by a Bayesian framework [51]. Later, the nonkernel

SBL was proposed and widely applied to signal recovery, compressive sensing and sparse

representation [41, 52].

Fig 1. Chaotic attractor of the quantum chaotic system.

https://doi.org/10.1371/journal.pone.0224382.g001
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From the perspective of compressive sensing, if the sparsity exists in the original signal or

in its corresponding transform domains, the high-dimensional signal has the potential to be

projected into a low-dimensional space by a dictionary (also known as a measurement matrix)

to achieve compression [32]. Moreover, the original signal can then be recovered as close as

possible via the compressed signal.

Mathematically, sparse signal recovery can be defined by Eq (8):

y ¼ Yxþ �; ð8Þ

where Θ 2 RP×Q is a measurement matrix with P samples and each has Q features, and y = [y1,

y2, � � �, yP]T is a target vector, � is noise and x = [x1, x2, � � �, xQ]T is the vector to be resolved to

quantify the weights of the columns inF. SBL aims to seek a vector x that has as many zero

entities as possible while it still approximates the targets y accurately [48, 52].

With an approximative zero-mean Gaussian noise (� in Eq (8)) with unknown variance σ2,

the framework of SBL assumes the Gaussian likelihood model as Eq (9):

pðyjx; s2Þ ¼ ð2ps2Þ
� P

2expð�
1

2s2
jjy � Fwjj2Þ: ð9Þ

Now, the task of seeking maximum likelihood estimates for x is transformed into the task

of seeking the minimum ℓ2-norm solution to Eq (8). However, it can usually find nonsparse

solutions. To cope with this issue, the SBL estimates a parameterized prior, instead of using a

fixed prior as adopted in some other compressive sensing approaches, over weights from the

data by Eq (10):

pðx; gÞ ¼
YQ

i¼1

ð2pgiÞ
�

1

2expð�
x2
i

2gi
Þ; ð10Þ

where γ = [γ1, γ2, � � �, γQ]T is a vector to control the prior variance of each weight, and Q hyper-

parameters need to be estimated in total. There are two key steps to estimate these hyperpara-

meters, i.e., marginalizing over the weights as well as performing the maximum likelihood

optimization algorithm.

When compared with other CS algorithms, SBL has the following advantages: 1) The recov-

ery performance is robust to the characteristics of the measurement matrix; 2) SBL usually out-

performs some other CS algorithm regarding local and global convergence; 3) The solutions of

SBL are sparser than those of LASSO-type algorithms; and 4) Some robust learning rules can

be used to automatically estimate the regularization term of SBL to achieve good results of

compressive sensing. Therefore, SBL is suitable for image compression [44, 53]. For more

details, interested readers can refer to [52].

3.3 SBL-based image compression

The traditional image lossy compression methods, such as FT, DCT, DWT and so on, have

been successfully applied to some compression standards such as JPEG, MPEG, H.26X and so

on. With ever-increasing applications of these methods, some of their disadvantages have

emerged. For example, when the compression ratio (CR) is very high, the decompression

image will have such extensive obvious rectangle block shapes that difficulties in introducing

human visual characteristics arise. Therefore, improving the quality of decompression images,

increasing the CR and speeding up the encoding and decoding procedure are consistent direc-

tions followed by researchers.
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CS can efficiently reconstruct a signal from very few samples by finding solutions to under-

determined linear systems.

This signal technique fully exploits the sparsity of a signal to compress information when

receiving.

For a given sparse signal x of length N, it can be expressed as Eq (11):

x ¼ Cs; ð11Þ

where s is a transform coefficient vector of length M (M� N), and C is an orthogonal trans-

form matrix, also known as a sparse basis matrix.

Assuming � = 0, Eq (8) is deduced to as follows

y ¼ Fx ¼ FCs ¼ Ys; ð12Þ

where F is called the measurement matrix as in Section 3.2. In the scheme, sparse signals s rep-

resent the plain image I. The sparse representation of original signals s byC is executed by

DCT. The measurement matrix F is formed by the random integers from the quantum chaotic

sequence K, and F is rescaled within [−0.5, 0.5] by the following Eq (13).

Frh�h (
K � minðKÞ

maxðKÞ � minðKÞ
� 0:5; ð13Þ

Thus, for a pixel-level image I with size of h × w and different compression ratios CR = r, 0

< r< 1, we choose the top r × h rows from the image after the sparse representation result to

compress it. Then, the size of C is h × h, and the size of F is rh × h.

After the transformation of I with FC, the data type of y is double. The y has to be stored as

an unsigned 8-bit integer. Here, we need to map y within [0, 255] and record the rounded

result as integers by Eq (14). By doing so, we can save 50% of the storage space for the

encrypted image and one pixel only needs a one-byte space. Therefore, the maximum and

minimum of y need to be stored as keys.

y(
y � minðyÞ

maxðyÞ � minðyÞ
� 255

� �

: ð14Þ

Finally, the steps of SBL compression are the following.

Step 1: Generate a sparse representation matrix C.

Step 2: Generate a measurement matrix F and scale it by Eq (13).

Step 3: Generate a compressed image y by Eq (12) and map y to [0, 255] by Eq (14).

In contrast, the steps of SBL decompression are listed below:

Step 1: Rescale y to the real numbers within the original minimum and maximum.

Step 2: Generate the measurement matrix F in the same way from K and scale it within [−0.5,

0.5].

Step 3: Likewise, generate the sparse transformation matrix C with DCT.

Step 4: Compose Θ = FC.

Step 5: Learn μ through y and Θ by SBL.

Step 6: Recover Î ¼ ŝ ¼ C
T
m. Here, Î is the reconstructed lossy image.
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Moreover, the pseudo code of SBL compression and decompression is demonstrated in

Algorithm 1 and Algorithm 2 which provide more details of SBL-based image compression.

3.4 Bit-level 3D Arnold cat map

Since the 3D Arnold cat map transformation can be conducted on cubes only, an image has to

be reshaped to one or several cubes before encryption. For a pixel-level image with a size of h ×
w, where h and w indicate the height and width of the image, respectively, we first transform it

into a bit-level cubic with a size of h × w × 8. Then, we transform the bit-level cubic into one or

more cubes using a previously proposed I2C algorithm [15]. For example, a pixel-level image

with size 512 × 512 can be transformed into a bit-level cubic with a size 512 × 512 × 8, and

then it can be further transformed into a bit-level cube with size 128 × 128 × 128. Similarly, a

256 × 256 pixel-level image can be transformed into 2 64 × 64 × 64 bit-level cubes.

Once we obtain the cube(s), bit-level permutation can be conducted via the 3D Arnold cat

map defined by Eq (4). For example, given a 3 × 3 × 3 input cube and parameters (a, b, c, d) =

(1, 2, 3, 4), the original 27 positions are 000, 001, 002, � � �, 222. With the 3D Arnold cat map

permutation, we can obtain new values for the 27 positions by (0,0,0)! (0,0,0), (0,0,1)!

(1,0,0), � � �, (2,2,2)! (1,2,0), i.e., the value on the left side of the arrow is moved to the corre-

sponding right side, as shown in Fig 2:

3.5 QSBLA: The proposed joint image compression and encryption

approach

The flowchart of the QSBLA is shown in Fig 3. After generating the quantum chaotic sequence,

the JICE procedure consists of five steps: 1) SBL compression, 2) ciphertext diffusion in the

crisscross pattern (CDCP) diffusion [54], 3) transformation from a 2D pixel-level image to bit-

level cubes [15], 4) 3D Arnold cat map permutation, and 5) transformation from bit-level

cubes to a 2D pixel-level image. The diffusion aims to change the pixel values while the permu-

tation aims to rearrange the positions of bits.

The procedure of the proposed QSBLA is described in detail as follows:

Step 1: Generating the quantum chaotic sequence: Generate the quantum chaotic sequence

with initial keys by Eqs (1) and (2).

Fig 2. An example of the 3D Arnold cat map.

https://doi.org/10.1371/journal.pone.0224382.g002
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Step 2: SBL compression: Compress the plain image through Eq (8) detailed in Section 3.3.

The DCT transformation is used for sparse representation. Measurement matrix F is com-

posed of the chaotic sequence K.

Step 3: CDCP diffusion: Conduct CDCP operations on the compressed image following the

steps in [54].

Step 4: Transformation from a 2D pixel-level image to bit-level cubes: Use the I2C algorithm

proposed in [15] to transform the 2D pixel-level compressed and diffused image to several

bit-level cubes for the convenience of the subsequent 3D Arnold cat map.

Step 5: 3D Arnold cat map permutation: For each bit-level cube, the 3D Arnold cat map is

used to permute the bits as in Section 3.4. Since the permutation on bits can result in the

change of corresponding pixel values, such an operation also has the effect of diffusion.

Step 6: Transformation from bit-level cubes to a 2D pixel-level image: All the bit-level cubes

are first merged into a bit-level cuboid, and then the cuboid is transformed to a pixel-level

2D image, i.e., the compressed and encrypted image.

The decryption and decompression is the inverse procedure of the compression and

encryption. In addition, the pseudo codes of the QSBLA and the corresponding decryption

and decompression procedures are listed in detail in Algorithm 1 and Algorithm 2,

respectively.

Algorithm 1 QSBLA Compression and Encryption
Input: K (Chaos sequence), I (Plain image), CR (Compression Rate)
Output: C (The compressed and encrypted image)
1: Begin:
2: //SBL Compression
3: [h, w]  SIZE(I)
4: N  CR × h
5: ψ  Generate the DCT transform matrix of size (w, h)
6: α  ψ × I
7: �  K by Eq (13)
8: y1  � × ψ × α by Eq (12)
9: y2  Scale y1 by Eq (14)
10: //Encryption

Fig 3. The JICE flowchart of QSBLA.

https://doi.org/10.1371/journal.pone.0224382.g003
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11: cd  Conduct CDCP on y2 as in [54]
12: b  Perform bit XOR on cd with K
13: bm  Transform pixel b to a bit matrix as in [15]
14: cu  Divide bit matrix bm to cubes as in [15]
15: mp  Permutate cubes cu by 3D Arnold cat map with K as in Section
3.4
16: C  Transform mp to a pixel image
17: return C
18: End

Algorithm 2 QSBLA Decryption and Decompression
Input: K (Chaos sequence), C (Compressed and encrypted image), CR
(Compression Rate), ymax/ymin (Maximum/minimum of y1 in Algorithm 1)
OutPut: ÎðRecovered imageÞ
1: Begin:
2: //Decryption
3: bm  Transform the compressed and encrypted pixel image C to a bit
matrix as in [15]
4: cu Divide the bit matrix bm to cubes as in [15]
5: mp Reversely permutate cubes cu by 3D Arnold cat map with K as in
Section 3.4
6: Ia  Transform mp to a pixel image
7: b Perform bit XOR on Ia with K
8: Ic  Reversely conduct CDCP on b as in [54]
9: //SBL Decompression
10: [N, w]  SIZE(Ic)
11: h  N/CR
12: ψ  Generate the DCT transform matrix of size (w, h)
13: �  K by Eq (13)
14: y1  Reversely scale Ic, ymax, and ymin by the inverse function of
Eq (14)
15: θ  � × ψ
16: μ Recover signal from y1 and θ as in Section 3.4
17: Î  c

T
� m

18: return Î
19: End

4 Experimental results

4.1 Experimental settings

To measure the performance of the QSBLA, some state-of-the-art image encryption

approaches, such as CDCP [54], the hyperchaotic and DNA sequence-based method

(HC-DNA) [63], a class hyperchaos-based scheme (CHC) [55], and an image cipher scheme

with block-based scrambling and image filtering (IC-BSIF) [64], are tested with some popular

evaluation indices. We also compare with some popular compression and encryption schemes

for some specific images with some evaluation indices. The parameters for the above schemes

are set as those in the corresponding papers. The parameters of the QSBLA are described as

the following. The initial parameters for the quantum chaotic system are x0 = 0.4239, y0 =

0.0239 and z0 = 0.0239. Additionally, the other parameters are � = 0.001, r = 3.99 and β = 6.

The original integral chaotic sequence generated by the quantum chaotic equations is

adopted from the point at which it begins, that is to say, the start position of the chaotic

sequence is 1.

The round of the Arnold transformation is also set to 1. If necessary, the start position of

the sequence and the rounds of the Arnold cat map can be also used as the security keys.
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To demonstrate the performance of the proposed QSBLA, we use 8 images for experiments.

The names and sizes of the testing images are listed in Table 1. All the images are publicly-

accessed and are very popular in the literature on image processing [65–67].

In the experiments, we use the structural similarity (SSIM) and the peak signal-to-noise

ratio (PSNR) for compression effect analysis, the key space and sensitivity for security key

analysis, histogram, information entropy and correlation for statistical analysis, the number of

pixels change rate (NPCR) and the unified average changing intensity (UACI) for differential

attack analysis, and noise and data loss for robustness analysis. Furthermore, we analyze

known-plaintext and chosen-plaintext attacks, as well as computation time.

All the experiments were conducted with MATLAB 2016b on a 64-bit Windows 7 with 8

GB memory and an i3 CPU at 3.4 GHz.

4.2 Encrypted images and decrypted images

With the QSBLA, the encryption images of Finger, Cameraman and Barbara, and their corre-

sponding recovered images are shown in Figs 4–6, respectively. From the first column to the

third column, their CRs are 0.25, 0.5 and 0.75. The heights of compressed and encrypted

images are 1/4, 1/2 and 3/4 of their corresponding original images, as shown in the first row.

The second row shows the corresponding recovered images from the first row.

As can be seen from Figs 4–6, when the CR increases, the recovered images gradually

achieve better quality. When CR = 0.75, it is hard to find out the difference between the plain

images and the corresponding recovered images based on human vision.

When we compare the results of Cameraman by QSBLA and those by Ref. [29], we can find

that the pixels in compressed and encrypted image by QSBLA distribute more uniformly than

those by Ref. [29]. At the same time, the quality of the recovered Cameraman by QSBLA is bet-

ter than that by Ref. [29]. Similar results can be found from the results of Barbara by QSBLA

and those by Ref. [32].

4.3 The effect of the compression

4.3.1 Structural similarity (SSIM). The structural similarity index (SSIM) defined with

Eq (15) is used to measure the quality of the decompression and decryption image [60].

SSIMðx; yÞ ¼
ð2mxmy þ C1Þð2sxy þ C2Þ

ðm2
x þ m

2
y þ C1Þðs

2
x þ s

2
y þ C2Þ

; ð15Þ

where x and y are two images, μx and μy are the average values of x and y, s2
x and s2

y are the var-

iance of x and y, respectively, and σxy is the covariance of x and y. In addition, C1 = (0.01 × L)2,

C2 = (0.03 × L)2, where L = 255 is the gray level of the pixel value. The smaller the SSIM is, the

greater the difference of both images and the less the similarity.

The SSIM values of the testing images by the proposed QSBLA are shown in Table 2. From

this table, with the compression ratio increasing, the variation of SSIM are consistent with the

Table 1. Testing images.

Image Size (w × h) Image Size (w × h)

Finger 256 × 256 Cameraman 256 × 256

Barbara 512 × 512 Airfield 512 × 512

Baboon 512 × 512 Peppers 512 × 512

Texture 512 × 512 Boats 512 × 512

https://doi.org/10.1371/journal.pone.0224382.t001
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Fig 4. The encryption images of Finger and their recovered images with different CRs of 0.25, 0.5 and 0.75. The first row shows their

compressed and encrypted images by QSBLA while the second row shows their corresponding recovered images.

https://doi.org/10.1371/journal.pone.0224382.g004

Fig 5. The encryption images of Cameraman and their recovered images with different CRs of 0.25, 0.5 and 0.75. The first row shows

their compressed and encrypted images by QSBLA while the second row shows their corresponding recovered images.

https://doi.org/10.1371/journal.pone.0224382.g005
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compression data storage, showing that lower CR results in lower quality of the recovered

image. Although the values of SSIM in Table 2 are all less than 0.9, the decompression and

decryption images in Figs 4 to 6 appear very similar to the results in Ref. [29] and Ref. [32],

whose mean SSIM (MSSIM) is greater than 0.96.

4.3.2 Peak signal-to-noise ratio (PSNR). The peak signal-to-noise ratio (PSNR) is a

widely used index to quantify the similarity between the plain image and the recovered image

after processing to judge the effectiveness of compression, which is computed by Eqs (16) and

(17) [60].

MSE ¼
1

N

Xh

i¼1

Xw

j¼1

ðIði; jÞ � Eði; jÞÞ2; ð16Þ

PSNR ¼ 10� log 10ð
255� 255

MSE
Þ; ð17Þ

where I(i, j) and E(i, j) are the pixel gray values of the plain image and the recovered image,

Fig 6. The encryption images of Barbara and their recovered images with different CRs of 0.25, 0.5 and 0.75. The first row shows their

compressed and encrypted images by QSBLA while the second row shows their corresponding recovered images.

https://doi.org/10.1371/journal.pone.0224382.g006

Table 2. The SSIM values of different images under different compression ratios.

Image Finger Cameraman Barbara Airfield Baboon Peppers Texture Boats

CR = 0.25 0.5044 0.5237 0.5993 0.5107 0.4662 0.6501 0.5749 0.6955

CR = 0.50 0.7419 0.6882 0.7979 0.7162 0.6581 0.7826 0.7721 0.8634

CR = 0.75 0.8838 0.7580 0.8822 0.8334 0.8045 0.8368 0.8966 0.8908

https://doi.org/10.1371/journal.pone.0224382.t002
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respectively, the MSE is the mean variance of the plain image and the recovered image,

N = w × h is the pixel number of the image, and w and h is the width and height of the image,

respectively.

The PSNR of the QSBLA is compared with the methods of Ref. [29] and Ref. [32], and the

results are listed in Table 3. From Table 3, it can be seen that the PSNR by the QSBLA with the

image Cameraman increases steadily as the CR varies from 0.25 to 0.75. Although the PSNR

values of Cameraman by QSBLA are not as good as those of Ref. [29] and Ref. [32], they are

very close to the best results, showing that the proposed QSBLA is comparable to the competi-

tive approaches in terms of the compression effect.

4.4 Security key analysis

An effective encryption scheme should be extremely sensitive to any small changes in its secu-

rity key and has an enough large key space. Therefore, key space and sensitivity to the security

key are two important factors in image encryption. Both a large key space and extreme sensi-

tivity is very helpful to resist any brute-force attacks.

4.4.1 Key space. The security keys of the proposed QSBLA include 6 values to generate

the chaotic sequence, i.e., ðx0
0
; y0

0
; z0

0
; r; b;2Þ, as well as the maximum and minimum of y1 in

Algorithm 1, i.e., (ymax, ymin). That is to say, the security keys are composed of 8 values, i.e.,

ðx0
0
; y0

0
; z0

0
; r; b;2; ymax; yminÞ. If each initial value has a precision of 10−15, the size of the key

space is 1015 × 8 = 10120� 2399. From the view of cryptology, the key space whose size is larger

than 2100 implies high-level security [68, 69]. Therefore, the key space of the proposed QSBLA

is so large that it can resist all kinds of brute-force attacks. Moreover, the start position and

rounds of the chaotic sequence to form the measurement matrix of CS or the Arnold trans-

form matrix can also be used as security keys to further expand the key space of the QSBLA.

4.4.2 Sensitivity to the security key. An image encryption algorithm with an extreme sen-

sitivity requires that any tiny changes in the keys will produce a completely different cipher

image, that is to say, if the security key changes slightly, the recovered image will become

totally different from the plain image.

To verify the sensitivity to the security key of the QSBLA, we decrypt the encrypted images

twice but with slightly different keys to result in two encrypted images. First, the encryption

keys (x0
0
¼ 0:4239, y0

0
¼ 0:0239, z0

0
¼ 0:0239, r0 = 3.99, β0 = 6, �0 = 0.001, ymax, ymin) are used

to decrypt the encrypted images, where ymax and ymin are associated with the contents of the

corresponding plaintext image. Then, the encrypted compression images are decrypted with

slightly different keys ðx1
0
¼ 0:4239þ 10� 15, y1

0
¼ 0:0239, z1

0
¼ 0:0239, r1 = 3.99, β1 = 6, �1 =

0.001, ymax, ymin). The experimental results of Finger, Cameraman, Barbara and Baboon are

shown in Fig 7. As seen, even a very slight change of 10−15 with the correct keys results in

completely different recovered images from the decrypted images. The wrong decrypted

decompression images resemble a random number map and show no visual information

about the plain images. It validates that the QSBLA is extremely sensitive to the security key.

Table 3. The compression performance PSNR of different algorithms.

Image CR QSBLA Ref. [29] Ref. [32]

Cameraman CR = 0.25 22.22 22.64 25.23

CR = 0.5 26.65 26.71 29.43

CR = 0.75 29.80 30.85 28.93

https://doi.org/10.1371/journal.pone.0224382.t003
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4.5 Statistical analysis

For the purpose of performance evaluation of the QSBLA, some typical statistical analysis,

such as histogram analysis, information entropy and correlation analysis are adopted in the

experiments.

4.5.1 Histogram analysis. Histograms are popular and effective ways to measure the dis-

tribution of all the pixel values in an image. In general, the histogram of a plain image is

unevenly distributed, while that of an encrypted image produced by a good encryption method

should have a uniform distribution. A uniform distribution of a histogram always represents a

totally random-like image with relatively low correlations among neighborhood pixels and has

the least probability of hacking the encrypted image to recover the corresponding plain image.

In other words, the more even the histogram of the encrypted image is, the better the encryp-

tion scheme is in resisting histogram attacks.

The plain images, encrypted images and recovered images, and their corresponding histo-

grams are shown in Fig 8. The histograms in the second column are from the plain images in

the first column. These histograms have shapes that resemble some peaks or valleys, while all

the histograms in the fourth column of encrypted images distribute very evenly and almost

uniformly. The third column shows the encrypted images, of which the CR is 0.25 and the

height is 1/4 of the original image. The recovered images are listed in the fifth column, while

the corresponding histograms are listed in the sixth column. Because we use lossy SBL to com-

press the image with CR = 0.25, the recovered image in the fifth column is slightly blurred, and

the histograms have lost some details with the peaks or valleys.

Nevertheless, these almost even histograms of encrypted images indicate that the QSBLA

has a strong ability to resist histogram attacks. Moreover, the proposed approach can encrypt

any images to flat and even histograms without exception. These results confirm that the

QSBLA works very well for any types of image.

The results in this section verify that it is impossible to recover the plain image after encryp-

tion through the cryptosystem by analyzing its histogram and to make the statistical analysis

Fig 7. Decrypted decompression images of CR = 0.75 with the right key (1st row) and the wrong key (2nd row). Only 10−15 is added to

x0 of the right key to form the wrong key.

https://doi.org/10.1371/journal.pone.0224382.g007
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Fig 8. Histograms of the plain images, their corresponding encrypted images and recovered images.

https://doi.org/10.1371/journal.pone.0224382.g008
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attack successful when hackers try to attack the compressed and encrypted images with a very

even histogram in the fourth row of Fig 8.

4.5.2 Information entropy. Information entropy (IE) is the average rate at which infor-

mation is produced by a stochastic source of data. Here, it is used to reflect the complexity or

orderliness of the encryption system. The intensity of an 8-bit grayscale image has 28 possible

values ([0, 255]). The IE is defined as Eq (18) [70]:

IEðQiÞ ¼ �
X255

i¼0

pðQiÞlog2 pðQiÞ; ð18Þ

where p(Qi) is the probability that the pixel gray value Qi exists in an image [63]. The maxi-

mum of IE is 8 when Qi of an encrypted image has the same probability, i.e., 1

256
. The perfect

uniform distribution of the encrypted image has the maximal IE, 8.

The IEs of plain images and corresponding compressed and encrypted images produced by

different encryption schemes are listed in Table 4. The third column under QSBLA shows the

entropies of the final encrypted compression images. It can be seen from this table that the IEs

of the plain images are far below 8, while those of compressed and encrypted images are very

close to the theoretical optimal value of 8. The IEs of QSBLA are within [7.9878, 7.9977].

Although the QSBLA achieves none of the 8 optimal values while both CHC and IC-BSIF

obtain the optimal values 4 times, the IE range of [7.9878, 7.9977] by the QSBLA is very close

to the theoretical optimal value, 8. It can be seen that, as a compression and encryption

approach, the QSBLA is very comparable to the state-of-the-art encryption models regarding

IE.

We further use Peppers to compare the QSBLA with a compression and encryption scheme,

Ref. [71], and the results are listed in Table 5, where LCR and HCR are the compression ratio

of the low-frequency component and the high-frequency component respectively. The IEs of

Table 4. The IE of the testing images.

Image Input Images Cipher images

QSBLA HC-DNA [63] CDCP [54] CHC [55] IC-BSIF [64]

Finger 7.1075 7.9880 7.9964 7.9969 7.9970 7.9974

Cameraman 7.1048 7.9878 7.9964 7.9976 7.9972 7.9977

Barbara 7.6321 7.9974 7.9993 7.9992 7.9992 7.9993

Airfield 7.1206 7.9974 7.9992 7.9992 7.9992 7.9994

Baboon 7.1391 7.9973 7.9992 7.9993 7.9994 7.9993

Peppers 7.5925 7.9977 7.9992 7.9993 7.9994 7.9992

Texture 6.5803 7.9971 7.9984 7.9993 7.9994 7.9993

Boats 7.0333 7.9973 7.9987 7.9993 7.9994 7.9993

https://doi.org/10.1371/journal.pone.0224382.t004

Table 5. The IE compared with Ref. [71].

Image CR QSBLA HCR, LCR Ref. [71]

Peppers CR = 0.25 7.9971 HCR = 0.2, LCR = 0.8 5.5981

CR = 0.45 7.9985 HCR = 0.4, LCR = 0.8 4.8076

CR = 0.50 7.9985 HCR = 0.2, LCR = 0.6 5.5914

CR = 0.55 7.9986

CR = 0.65 7.9990

CR = 0.75 7.9991

https://doi.org/10.1371/journal.pone.0224382.t005
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Peppers by QSBLA are much higher than those by Ref. [71]. All the IEs of Pepper under differ-

ent CRs is greater than 7.997 and the maximum of Ref. [71] is only 5.5981. Although the com-

parison is under different CR, LCR and HCR, their encrypted images of QSBLA and Ref. [71]

are still comparable for entropy performance. The possible reason is that the QSBLA conducts

compression and then encryption while Ref. [71] performs encryption and then compression,

and the latter will discard some less important information (zeros and values close to zero) in

compression, losing the diversity of the information and decreasing the IE values.

4.5.3 Correlation analysis. The grayscale levels of two neighboring pixels in a natural

image are always similar and thus are highly correlated. The correlation of two neighboring

pixels in a natural image is usually close to 1. A good image encryption algorithm should pro-

duce an encrypted image with very low correlation to make sure it is impossible to deduce

information from its neighbors.

The correlation coefficient γ is the most-widely used index to quantify the correlation,

which can be formulated as Eq (19) [72].

EðxÞ ¼
1

N

XN

i¼1

xi;

DðxÞ ¼
1

N

XN

i¼1

ðxi � EðxÞÞ2;

covðx; yÞ ¼
1

N

XN

i¼1

ðxi � EðxÞÞðyi � EðyÞÞ;

g ¼
covðx; yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðxÞDðyÞ

p ;

ð19Þ

where x and y are the grayscale values of two neighboring pixels among the total N pixels in an

image.

As shown in Table 6, we compute the correlation coefficients γ for all plain images and

compressed and encrypted images at three directions, i.e., horizontal γh, vertical γv, and diago-

nal γd [63]. This table shows that the correlation coefficients of all the plain images are close to

1 in all directions, meaning high correlation, whereas those of all the compressed and

encrypted images are slightly greater than 0, showing very low correlation. This result indicates

that the QSBLA is able to effectively reduce the correlation to a very low degree, even with

compression. The QSBLA outperforms the rest of the schemes on 3 out of 24 correlation coef-

ficients, however, the other algorithms, HC-DNA, CDCP, CHC and IC-BSIF, achieve the opti-

mal value 5, 3, 6 and 7 times. By comparing the results, it is obvious that the QSBLA has the

same good performance in terms of correlation of the compressed and encrypted images.

To conduct a correlation analysis further, we also select 2500 pairs of neighboring pixels

randomly in the horizontal direction from the plain images and the corresponding com-

pressed and encrypted images by the QSBLA to show their distribution maps of neighboring

pixels in Fig 9. The correlation values of plain images distribute near the diagonal area of a

coordinate plane, showing strong correlation of the input plain images. In particular, the more

the correlation points are close to the diagonal line that neighboring pixel distribution maps

have, the higher the correlation of an image. For example, for plain images Peppers and Boats,

their maps in Fig 9(j) and 9(l) show that these two images have higher correlation than the

other 6 images. However, the gray values of compressed and encrypted images distribute ran-

domly and evenly on the whole plane, showing very weak correlation of the compressed and
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encrypted images. The experimental results demonstrates that most of the correlation is elimi-

nated by the QSBLA.

4.6 Analysis of resisting differential attacks

Based on the theory of cryptography, differential attack should be well defended by any image

encryption schemes. Hence, any trivial change like a bit or a pixel change in a plain image

should result in a totally different encrypted image.

For differential attack analysis, the number of pixels change rate (NPCR) and the unified

average changing intensity (UACI) are two widely used performance indexes. The NPCR

stands for the variation ratio of two encrypted images when their plain images are slightly

changed on one bit or one pixel. The UACI defines the average intensity of the differences

between the encrypted images from the plain image and the one bit or one pixel changed plain

images. Theoretically, NPCR and UACI between two encrypted images, Q1 and Q2, can be

defined as Eqs (20) and (21), respectively [73].

NPCR ¼
1

wh

Xh

i¼1

Xw

j¼1

dij � 100%; ð20Þ

UACI ¼
1

wh

Xh

i¼1

Xw

j¼1

jQ1
ij � Q2

ijj

255
� 100%; ð21Þ

Table 6. The correlation coefficients γ of the testing images.

Image γ Input images Cipher images

QSBLA HC-DNA [63] CDCP [54] CHC [55] IC-BSIF [64]

Finger γh 0.5562 0.0013 0.0056 0.0006 -0.0002 0.0022

γv 0.6138 0.0111 -0.0021 -0.0059 -0.0031 0.0021

γd 0.4541 0.0125 0.0049 0.0033 0.0053 -0.0024

γh 0.9329 -0.0028 0.0076 -0.0022 -0.0069 -0.0008

Cameraman γv 0.9566 -0.0065 -0.0091 -0.0054 -0.0044 -0.0032

γd 0.9117 0.0018 -0.0012 0.0048 0.0010 -0.0020

γh 0.8940 -0.0013 0.0010 -0.0026 0.0001 -0.0017

Barbara γv 0.9572 -0.0006 0.0004 0.0006 0.0033 0.0022

γd 0.8942 0.0008 -0.0009 0.0005 -0.0014 -0.0013

γh 0.9375 0.0034 -0.0004 0.0010 0.0017 -0.0006

Airfield γv 0.9398 0.0007 0.0002 -0.0033 -0.0003 0.0018

γd 0.9068 -0.0027 -0.0026 0.0013 -0.0008 -0.0005

γh 0.8652 0.0074 0.0050 -0.0021 0.0019 0.0046

Baboon γv 0.7524 -0.0012 0.0030 -0.0001 0.0017 -0.0002

γd 0.7210 0.0011 0.0010 -0.0027 -0.0008 0.0002

γh 0.9733 0.0007 0.0009 -0.0015 -0.0017 -0.0008

Peppers γv 0.9763 0.0042 0.0041 -0.0012 -0.0003 -0.0026

γd 0.9650 -0.0012 0.0008 0.0017 -0.0006 -0.0011

γh 0.7532 0.0003 0.0000 -0.0022 -0.0009 0.0015

Texture γv 0.8491 -0.0003 0.0013 -0.0032 -0.0005 -0.0033

γd 0.7114 -0.0017 -0.0010 -0.0003 -0.0004 0.0033

γh 0.9631 0.0042 0.0010 -0.0010 0.0019 0.0021

Boats γv 0.9824 -0.0018 0.0010 -0.0007 0.0005 0.0004

γd 0.9527 0.0002 0.0002 0.0010 -0.0004 -0.0025

https://doi.org/10.1371/journal.pone.0224382.t006
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Fig 9. The adjacent-pixel distribution maps of the input images and the corresponding encrypted compression images in the horizontal direction.

https://doi.org/10.1371/journal.pone.0224382.g009
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where w and h are still the width and the height of the image, and dij is defined as Eq (22):

dij ¼

(
0; Q1

ij ¼ Q2
ij;

1; Q1
ij 6¼ Q2

ij:
ð22Þ

The NPCR focuses on the number of pixels changing their values in the differential attack.

The UACI concentrates on the average difference between the correct encrypted image and

the encrypted image from differential attack. The expectations of NPCR and UACI of an

encrypted image with 256 grayscale levels are 99.6094% and 33.4635% [73]. Generally, the

more that NPCR becomes close to 100% and the larger that UACI is, the more effectively the

encryption scheme can resist differential attacks.

We randomly choose one pixel in the plain images and only change one bit of the chosen

gray value to compute the NPCR and UACI for one time. This process is repeated 10 times.

And then the averaged NPCR and UACI of QSBLA, HC-DNA, CDCP, CHC and IC-BSIF are

reported in Tables 7 and 8 as the final results.

We can see from Table 7 that regarding NPCR, the QSBLA outperforms HC-DNA, CHC

and IC-BSIF, and it also achieves comparable results with CDCP. QSBLA, CDCP and CHC

achieve 3, 4 and 1 optimal NPCR values respectively. In Table 8, regarding UACI, QSBLA has

one of the best records compared with all the other schemes, whereas HC-DNA still has the

poorest results in all cases and IC-BSIF has 4 of the best records. The values of NPCR and

UACI indicate that the QSBLA is able to resist differential attacks very well. It is worth noting

that the proposed scheme includes compression while the other 4 methods do nothing about

image compression.

Table 7. The average NPCR (%) of running the schemes 10 times.

Image QSBLA HC-DNA [63] CDCP [54] CHC [55] IC-BSIF [64]

Finger 99.6985 52.9581 97.5395 99.5847 99.6124

Cameraman 99.5929 44.0302 99.5425 99.6126 99.6033

Barbara 99.6208 35.5757 99.5206 99.6047 99.6063

Airfield 99.6164 58.0984 99.6182 99.6161 99.6048

Baboon 99.6245 39.6885 99.5498 99.6132 99.6077

Peppers 99.6126 67.1383 99.6583 99.6088 99.6101

Texture 99.6121 65.2708 99.6674 99.6096 99.6123

Boats 99.6121 49.2368 99.6440 99.6078 99.6053

https://doi.org/10.1371/journal.pone.0224382.t007

Table 8. The average UACI (%) of running the schemes 10 times.

Image QSBLA HC-DNA [63] CDCP [54] CHC [55] IC-BSIF [64]

Finger 33.3370 21.7492 33.4814 33.4734 33.5066

Cameraman 33.4427 17.5397 33.5157 33.4502 33.4865

Barbara 33.4140 10.3142 33.4286 33.4632 33.4811

Airfield 33.4823 26.5238 33.5091 33.4644 33.4492

Baboon 33.5939 13.7956 33.4307 33.4501 33.4741

Peppers 33.4477 21.0504 33.4748 33.4817 33.4673

Texture 33.4713 28.0900 33.4650 33.4870 33.4873

Boats 33.4023 16.1896 33.4641 33.4645 33.4712

https://doi.org/10.1371/journal.pone.0224382.t008
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4.7 Robustness analysis

Noise and data loss are inevitable for images during storage and transmission. A good JICE

scheme should be able to resist noise or data loss. Theoretically, the compressed image is more

difficult to be robust because the compression image converges more information into a

smaller storage space. Compared with the encrypted lossless compression algorithms, any

noise or data loss in lossy encryption algorithms should have more effects on the recovered

image and thus lead to less robustness.

The results of robustness analysis by the QSBLA are shown in Figs 10 and 11. We first add

0.5%, 1% and 2% salt & pepper noise into the compressed and encrypted Cameraman with

CR = 0.25, and the corresponding recovered images are shown in the first to the third column

of Fig 10, respectively. It can be seen that, as far as 0.5% and 1% salt & pepper noise is con-

cerned, although the recovered image contains much noise, it can recover the plain image to

some extent. However, when the noise increases to 2%, we can only see some of the outline of

Cameraman. When the encrypted compression image (CR = 0.25) has 0.4%, 1.56%, 6.25% and

25% data loss, the proposed QSBLA can recover Cameraman until data loss reaches 6.25%

even though CR = 0.25 is a comparably high CR for CS, as shown in Fig 11. For 6.25% data

loss, the decrypted image retains some information for us to recognize Cameraman, as shown

in the third column of Fig 11. For 25% data loss, the main information of Cameraman about

its contour is lost and the left information in the Fig 11 is random values. From the analysis,

conclusively, the proposed QSBLA is robust to a certain extent.

4.8 Known-plaintext and chosen-plaintext attack analysis

As analyzed previously, any tiny changes in the plain image can result in a totally different

cipher image, so the proposed QSBLA can resist differential attacks, a typical chosen-plaintext

attack. In addition, the security keys include y max and y min which are associated with the

Fig 10. Robustness analysis results of noise. The compressed and encrypted Cameraman with 0.5%, 1% and 2% salt & pepper noise and its

recovered image.

https://doi.org/10.1371/journal.pone.0224382.g010
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contents of the corresponding plain image. So different plain images will produce different

security keys. Hackers usually use images of all black and all white to crack image encryption

algorithms. The compressed and encrypted images of all black and all white with a size of

256 × 256 with different CRs are shown in Fig 12. It can be seen that all the compressed and

encrypted images are all noise-like and all the corresponding histograms are very close to uni-

form distributions, showing that the proposed QSBLA has good encryption effect for both

images of all black and all white. From the above analysis, we can see that the QSBLA is capable

of resisting known-plaintext and chosen-plaintext attacks.

4.9 Computing time analysis

Different JICE algorithms have different performance on computing complexity. So the

encryption and decryption time of different size images at different CRs is tested, and their

results are listed in Tables 9 and 10. As we can see from the tables, like other JICE algorithms,

generally speaking, the smaller CR or the smaller image size, the less computational time is.

But there is an exception for CR = 0.75 regarding decryption, the decryption time drop signifi-

cantly especially for images Cameraman, Barbara, Peppers. The reason is that SBL converges

to the final solution in a shorter time compared with CR = 0.65 although it needs to compute

more variables when CR = 0.75.

The comparison between QSBLA and Ref. [32] is listed in Tables 11 and 12. When

CR = 0.75, the decryption time of QSBLA is less for Peppers. In other cases, the time is longer

than Ref. [32]. We further compare the compression and encryption time with CR = 0.55 for

Cameraman and Peppers, and the results are shown in Table 13. It can be seen that outper-

forms Ref. [39] but underperforms the other compared schemes. The computing time is possi-

ble improved by using parallel computing to optimize SBL and run it on GPU. This is our

future work.

5 Conclusions

Image compression and image encryption are two important tasks in image processing. In this

paper, we propose a novel approach that integrates a quantum chaotic system, sparse Bayesian

learning and a 3D Arnold cat map, namely, QSBLA, for joint image compression and

Fig 11. Robustness analysis results of data loss. The compressed and encrypted Cameraman with 0.4%, 1.56%, 6.25% and 25% data loss

and its recovered image.

https://doi.org/10.1371/journal.pone.0224382.g011
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encryption. The novelty of the QSBLA is introducing SBL to compress images and using a 3D

Arnold cat map to permute bit-level cubes. The extensive experiments demonstrate that the

QSBLA has the ability to achieve good compression performance and is capable of resisting

several types of attacks, showing that the QSBLA is promising for joint image compression

Fig 12. The compressed and encrypted images and their corresponding histograms with different CRs for all black and all white images. The first row is the plain all

black image, and their corresponding compressed and encrypted images with CR = 0.25, 0.5 and 0.75, and the second row is the corresponding histograms of the images

in the first row. The third and the fourth rows show the corresponding information of the all white image.

https://doi.org/10.1371/journal.pone.0224382.g012
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Table 9. The encryption time of different images under different compression ratios.

Image Finger Cameraman Barbara Airfield Baboon Peppers Texture Boats

CR = 0.25 0.8803 0.8544 3.4274 3.4145 3.3504 3.3952 3.3551 3.3578

CR = 0.45 1.4915 1.5186 5.9977 6.0576 6.0357 5.9701 6.0885 6.0384

CR = 0.50 1.6467 1.6760 6.7649 6.6411 6.6930 6.7148 6.7209 6.6202

CR = 0.55 1.8572 1.8419 7.5312 7.6224 7.4462 7.4166 7.3337 7.4377

CR = 0.65 2.1755 2.1954 8.7269 8.6258 8.7627 8.6462 8.7135 8.7965

CR = 0.75 2.5370 2.4888 9.9600 9.9105 9.8883 9.9209 9.9265 10.0201

https://doi.org/10.1371/journal.pone.0224382.t009

Table 10. The decryption time of different images under different compression ratios.

Image Finger Cameraman Barbara Airfield Baboon Peppers Texture Boats

CR = 0.25 3.2699 3.3078 13.2795 13.7760 14.1945 13.6077 14.1224 12.8280

CR = 0.45 7.2216 7.3246 30.0707 30.0453 30.3387 30.6608 30.4666 29.8126

CR = 0.50 5.8985 7.8638 37.5421 38.3185 38.7335 38.5830 24.4251 36.6059

CR = 0.55 9.2485 9.4215 41.5784 42.1241 23.2554 41.6836 14.7176 41.5421

CR = 0.65 3.4091 11.8130 53.3911 18.4296 15.8421 26.8692 15.1310 52.7939

CR = 0.75 3.7706 3.9803 23.5817 15.7687 13.8143 17.2203 14.4416 54.9036

https://doi.org/10.1371/journal.pone.0224382.t010

Table 11. The encryption time compared with Ref. [32].

Image CR QSBLA Ref. [32]

Finger CR = 0.25 0.8803 0.4536

CR = 0.50 1.6467 0.4605

CR = 0.75 2.5370 0.4545

Peppers CR = 0.25 3.3952 0.9934

CR = 0.50 6.7148 0.9925

CR = 0.75 9.9209 1.0085

https://doi.org/10.1371/journal.pone.0224382.t011

Table 12. The decryption time compared with Ref. [32].

Image CR QSBLA Ref. [32]

Finger CR = 0.25 3.2699 1.1374

CR = 0.50 5.8985 1.1374

CR = 0.75 3.7706 2.8476

Peppers CR = 0.25 13.6077 5.0698

CR = 0.50 38.5830 13.4131

CR = 0.75 17.2203 22.0483

https://doi.org/10.1371/journal.pone.0224382.t012

Table 13. The encryption time of different algorithms with CR = 0.55.

Image QSBLA Ref. [32] Ref. [33] Ref. [39] Ref. [40]

Cameraman 1.8419 0.7134 0.3085 5.5668 0.4980

Peppers 7.4166 0.9988 0.5368 8.9744 0.9382

https://doi.org/10.1371/journal.pone.0224382.t013
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and encryption. In the future, we will study the permutation on DNA-level data and extend

the proposed QSBLA to joint image compression and encryption for color images.
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