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Classification for psychiatric disorders including schizophrenia, bipolar
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Schizophrenia (SCZ), bipolar disorder (BP), and major depressive disorder (MDD) are the most common
psychiatric disorders. Because there were lots of overlaps among these disorders from genetic epidemi-
ology and molecular genetics, it is hard to realize the diagnoses of these psychiatric disorders. Currently,
plenty of studies have been conducted for contributing to the diagnoses of these diseases. However, con-
structing a classification model with superior performance for differentiating SCZ, BP, and MDD samples
is still a great challenge. In this study, the transcriptomic data was applied for discovering key genes and
constructing a classification model. In this dataset, there were 268 samples including four groups (67 SCZ
patients, 40 BP patients, 57 MDD patients, and 104 healthy controls), which were applied for constructing
a classification model. First, 269 probes of differentially expressed genes (DEGs) among four sample
groups were identified by the feature selection method. Second, these DEGs were validated by the liter-
ature review including disease relevance with the psychiatric disorders of these DEGs, the hub genes in
the PPI (protein–protein interaction) network, and GO (gene ontology) terms and pathways. Third, a clas-
sification model was constructed using the identified DEGs by machine learning method to classify dif-
ferent groups. The ROC (receiver operator characteristic) curve and AUC (area under the curve) value
were used to assess the classification capacity of the model. In summary, this classification model might
provide clues for the diagnoses of these psychiatric disorders.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In psychiatric disorders, schizophrenia (SCZ), bipolar disorder
(BP), and major depressive disorder (MDD) are multigenic diseases
with complex etiology [1]. These four psychiatric disorders are
associated with high rates of morbidity, mortality, and suicide.
There were evident differences among these psychiatric disorders.
SCZ is a severe mental disorder and can cause delusions and hallu-
cinations [2]. SCZ affects approximately 1 % of the world’s popula-
tion and generally appears in subjects aged 15 to 25 years [3]. BP is
known as one disabilities worldwide and is characterized by a high
suicide rate, sleep problems, and dysfunction of psychological
traits [4]. BP is characterized by alternating episodes of mania
interspersed with periods of depression [5]. MDD is the leading
cause of disability resulting in the overall burden of disease.
MDD is characterized by symptoms and causes emotional distress,
functional impairment, and suicide [6].

There are many similar symptoms of these psychiatric disorders
such as suicidal ideation, sleep disturbances, and cognitive deficits.
The diagnostic boundaries among these psychiatric disorders
remain difficult to define because of this similarity. Therefore, psy-
chiatry is the last medicine area because the diagnosis only uses
the symptoms due to a lack of biomarkers to assist the diagnosis
[7]. Using these biomarkers, underlying molecular pathologies
using biomarkers is necessary to address the burden of psychiatric
diseases. For psychiatric disorders, developing more effective
method for objective diagnoses has been a major international
public health priority [8,9].

Identification of molecular measures (biomarkers) will provide
insight into the biology underlying the shared symptoms and is
beneficial to the diagnosis of psychiatric disorders [10]. To seek
objective biomarkers, transcriptomic data has become a powerful
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technology for detecting gene expression [11]. Recently, there are
plenty of studies exploring molecular biomarkers based on tran-
scriptomics [12]. For instance, in the research of Lanz et al. [13],
the STEP level is unchanged in the pre-frontal cortex and associa-
tive striatum of post-mortem human brain samples of SCZ, BP,
and MDD subjects. As reported by Higgs et al. [14], the database
including SCZ, BP, and MDD samples can offer an efficient tool
for data mining, such as biomarkers elucidation for target discov-
ery. However, a classification model based on machine learning
is still highly necessary and beneficial to the diagnoses of psychi-
atric disorders.

In this work, one combined dataset including SCZ, BP, MDD, and
healthy controls was obtained by integrating three transcriptomic
studies. First, there were 268 samples in this dataset including 67
SCZ subjects, 40 BP subjects, 57 MDD subjects, and 104 healthy
controls. The differentially expressed genes (DEGs) were discov-
ered by the partial least squares-discriminant analysis (PLS-DA),
and 269 probes of DEGs were identified for psychiatric disorders
(SCZ, BP, MDD, and healthy controls). Second, these DEGs were val-
idated by the literature review including disease relevance with
the psychiatric disorders of these DEGs, the hub genes of the PPI
(protein–protein interaction) network, GO (gene ontology) terms,
and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways.
Third, a classification model was constructed applying machine
learning method for classifying four groups based on the identified
DEGs. Based on the independent set, the AUC (area under the
curve) value and the ROC (receiver operator characteristic) curve
were used for assessing the classification capacity of this model.
2. Materials and methods

2.1. Transcriptomic dataset for the psychiatric disorders

Based on popular databases including GEO (Gene Expression
Omnibus) and SMRI (Stanley Medical Research Institute), the data-
sets of the prefrontal cortex from the Brodmann Area 9, 10, and 46
in the brain were collected by searching the keywords (schizophre-
nia, bipolar disorder, and major depressive disorder). As a result,
three microarray datasets were used in this study, and each dataset
included four sample groups (SCZ, BP, MDD, and healthy controls).
As shown in Table 1, detailed information on these datasets was
provided, such as dataset ID and the number of samples. The data
analysis of the raw data for these datasets was performed using the
R language. Herein, these three studies were integrated as a com-
prehensive dataset by matching the probe ID of the gene. After
integration, the batch effects were removed for the comprehensive
studies [15]. The combat function in the sva package was used to
remove the batch effects for three different datasets [16]. This
comprehensive dataset was used to identify the DEGs among dif-
ferent sample groups of SCZ, BP, MDD, and healthy controls.

2.2. Identifying DEGs for SCZ, BP, MDD, and healthy controls

To identify the DEGs among four sample groups, a popular fea-
ture selection algorithm, PLS-DA (partial least squares-
discriminant analysis) [17] was applied in this study. PLS-DA was
Table 1
The transcriptomic datasets were collected from three studies of psychiatric diseases.
(schizophrenia), one cohort of BP (bipolar disorder), one cohort of MDD (major depressive

ID No. (SCZ:BP:MDD:
CTRL)

GSE92538 128 (31:12:29:56)
Stanley AltarC 72 (21:11:11:29)
GSE53987 68 (15:17:17:19)
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one of the most well-known machine learning methods as a useful
feature selector [18]. Recently, PLS-DA was widely applied for
identify features for omics data [19]. Because of substantial simi-
larity, the identified DEGs were expected to classify SCZ, BP,
MDD, and healthy subjects. PLS-DA can select differential features
among multiple classes simultaneously. Herein, the DEGs of four
sample groups (SCZ, BP, MDD, and healthy groups) were discov-
ered by the PLS-DA model. The VIP (Variable Importance in the
Projection > 2) value in the PLS-DA model was applied as the index
for the DEGs. And the dysregulated genes among four groups were
identified by the VIP value (>2) of the PLS-DA model [20].
2.3. Functional analysis for the DEGs identified in psychiatric disorders

The functional analysis for the DEGs identified in psychiatric
disorders was conducted in this work. The analysis was conducted
from three different perspectives, including (1) disease relevance
of these DEGs, (2) disease relevance of the hub genes of the PPI net-
work, and (3) disease relevance of the gene ontology terms and
pathways. For these DEGs, the disease relevance with psychiatric
disorders was surveyed by the literature review. A substantial per-
centage of the disease-related genes was expected for these psy-
chiatric disorders. But a certain number of psychiatric disorder-
unrelated genes was unavoidable because of the measurement
variations. The disease relevance was represented by the percent-
age of disease-related genes among all DEGs.

To ensure the hub genes of psychiatric disorders, the STRING
database [21] was used to construct protein–protein interaction
(PPI) network. Using high confidence (0.7), the DEGs discovered
in this study can be mapped into this PPI network. Cytoscape
[22] was used for visualizing the interactions of genes in the PPI
network. The hub genes were discovered from all genes with high
interaction degrees (score � 10) for psychiatric disorders. The role
of the hub genes in psychiatric disorders was confirmed using the
literature review. Moreover, GSEA was used to conduct the enrich-
ment of GO terms and KEGG pathways by the adjusted p-value
(<0.05) [23]. The GO terms and KEGG pathways overrepresented
were identified, and a comprehensive literature review was con-
ducted to reveal the important role of these terms and pathways
in psychiatric disorders.
2.4. Constructing classification model using Machine learning

It remains difficult to define the diagnostic boundaries among
psychiatric disorders due to the similarity of symptoms. A classifi-
cation model with superior performance is important for the diag-
noses of SCZ, BP, and MDD samples. Therefore, the DEGs identified
in this study were used to construct a model for classifying differ-
ent groups of psychiatric disorders. A popular machine learning
method, support vector machine (SVM), was a supervised tech-
nique and was applied for classification. Herein, a classification
model applying SVM method was constructed based on the identi-
fied DEGs for SCZ, BP, and MDD groups. This classification model
was validated using fivefold cross-validation. The AUC value and
ROC curve of this model were used to assess the classification
capacity. Using the comprehensive dataset, the fivefold cross-
No. referred to the number of samples. Each dataset contained one cohort of SCZ
disorder), and one cohort of CTRL (control) samples.

Tissue Reference
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validation was applied in the classification model. The AUC value
could quantify the classification capacity of the model to distin-
guish different classes. If the AUC value was 1, the classification
capacity of the model to classify different groups was excellent
enough. If the AUC value was 0, the classification capacity of the
model was poor enough.

To validate the classification capacity for generalizing to other
datasets, the independent set was applied in the constructed
SVM model. In this model, the combined dataset (Table 1) was as
the training set, and the independent sets (GSE127711 [24] and
GSE38484 [25]) were as the test set due to a lack of associated
datasets. In the independent discovery cohort of the first dataset
(GSE127711), there were 124 SCZ patients, 260 BP patients, and
112 MDD patients in the blood samples. In the second dataset
(GSE38484), there were 106 SCZ patients and 96 healthy subjects
in human whole blood. To obtain all four groups, these two inde-
pendent datasets were combined as a new independent set. In this
dataset, there were 230 SCZ samples, 260 BP samples,112 MDD
samples, and 96 healthy samples. The gene expression of the com-
prehensive dataset for identifying DEGs was detected in the pre-
frontal cortex of the brain, and the gene expression of the
independent set was detected in the blood samples. To generalize
the model constructed in this study, the blood samples in the inde-
pendent set were applied to measure the classification capacity.

3. Results and discussion

3.1. Comprehensive dataset including SCZ, BP, MDD, and healthy
groups

As shown in Fig. 1, the flowchart of this study included four
parts: (1) the comprehensive transcriptomic dataset; (2) identifica-
tion of DEGs by PLS-DA; (3) functional analysis; and (4) construc-
tion of the classification model. At the beginning of this study,
three datasets (Table 1) were collected for the comprehensive tran-
scriptomic dataset. One dataset (Stanley AltarC) was from the SMRI
database [14] including 72 (21 SCZ, 11 BP, 11 MDD, and 33 healthy
subjects) samples detected by the HG-U133A platform. For dataset
GSE92538 [26] from the GEO database, 128 samples (31 SCZ, 12 BP,
Fig. 1. The detailed information of the flowchart in this study. SCZ: schizophrenia, BP: bip
ROC: receiver operator characteristic, AUC: area under the curve.
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29 MDD, and 56 healthy controls) were detected by HG-U133 Plus
2 platform. For dataset GSE53987 [13] from the GEO database, 68
samples (15 SCZ, 17 BP, 17 MDD, and 19 healthy controls) were
detected by HG-U133 Plus 2 platform. After each dataset was pro-
cessed and analyzed using the R language, the comprehensive
dataset was combined by removing batch effects. In this compre-
hensive dataset by combining these three datasets, there were
22,277 probes of genes and 268 samples of prefrontal cortex
including 67 SCZ patients, 40 BP patients, 57 MDD patients, and
104 healthy subjects.

3.2. DEGs identified for psychiatric disorders using the comprehensive
dataset

DEGs were discovered by the PLS-DA method to classify differ-
ent groups of psychiatric disorders simultaneously based on the
comprehensive transcriptomic data. Using the cutoff of VIP value
(�2) of the PLS-DA model, there were 269 probes of DEGs identi-
fied in this study (as shown in Supplementary Figure S1). As shown
in Table 2, detailed information on the top 20 DEGs with the high-
est VIP values was provided. The dysregulated information of all
DEGs between two groups (including between SCZ and BP,
between SCZ and MDD, as well as between BP and MDD) was
shown in Supplementary Table S1. As demonstrated in Fig. 2, the
boxplots were applied to visualize and compare the differential
expression of the top 9 DEGs among four groups directly. For
example, the gene expression of NEK1 with the highest VIP value
(VIP = 3.00) has a strong association with a chromosome 4 genetic
locus identified as significantly associated with SCZ [27]. It showed
an increase in NEK1 after antidepressant treatment in responders
[28]. Moreover, it was reported that the expression of CDC42BPA
with the second highest VIP value (VIP = 2.95) differed significantly
among SCZ, BP, and controls [29].

3.3. Functional analysis for DEGs identified among multiple psychiatric
disorders

The functional analysis of the DEGs was performed from three
different perspectives including (1) disease relevance for the DEGs,
olar disorder, MDD: major depressive disorder, DEGs: differentially expressed genes,



Table 2
Detailed information on the top 20 DEGs identified by the PLS-DA (partial least squares discriminant analysis) method with the cutoff of Variable Importance in the Projection
(VIP > 2). SCZ: schizophrenia, BP: bipolar disorder, and MDD: major depressive disorder.

Order Probe ID Entrez ID Symbol VIP Up-or Down -Regulated

SCZ vs BP SCZ vs MDD BP vs MDD

1 213328_at 4750 NEK1 3.00 Down Down Up
2 214464_at 8476 CDC42BPA 2.95 Down Down Up
3 205472_s_at 1602 DACH1 2.92 Down Down Down
4 208425_s_at 26,115 TANC2 2.84 Down Down Down
5 202905_x_at 4683 NBN 2.84 Down Down Up
6 208993_s_at 9360 PPIG 2.84 Down Down Up
7 219437_s_at 29,123 ANKRD11 2.78 Down Down Up
8 212079_s_at 4297 KMT2A 2.78 Down Down Up
9 208003_s_at 10,725 NFAT5 2.76 Down Down Up
10 213850_s_at 9169 SCAF11 2.75 Down Down Up
11 210479_s_at 6095 RORA 2.74 Down Down Up
12 213638_at 221,692 PHACTR1 2.74 Down Down Down
13 212758_s_at 6935 ZEB1 2.74 Down Down Up
14 212650_at 23,301 EHBP1 2.74 Down Down Down
15 220462_at 80,034 CSRNP3 2.72 Down Down Down
16 202040_s_at 5927 KDM5A 2.72 Down Down Up
17 209945_s_at 2932 GSK3B 2.72 Down Down Up
18 201996_s_at 23,013 SPEN 2.71 Down Down Up
19 220940_at 57,730 ANKRD36B 2.67 Down Down Up
20 209376_x_at 9169 SCAF11 2.67 Down Down Up
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(2) disease relevance for the hub genes of the PPI network, and (3)
disease relevance for the enriched GO terms and KEGG pathways.

(1) Disease relevance with psychiatric disorders for the DEGs.
To evaluate the disease relevance of the DEGs discovered

among multiple disorders, the top 20 DEGs among different groups
were surveyed by the comprehensive literature review. The disease
relevance between each DEG and psychiatric disorders (SCZ, BP,
MDD, or cognition) was described in Supplementary Table S2. A
great disease relevance (90 %) of the top 20 DEGs was verified.
For these DEGs, it was reported that DACH1 was a transcription
factor acting as a neurogenic cell-fate determining factor [30].
The mutations of TANC2 were associated with both pediatric neu-
rodevelopmental and adult neuropsychiatric disease [31].
ANKRD11 was a nuclear coregulator in the developing brain, which
determined precursor proliferation, neurogenesis, and neuronal
positioning [32]. It was reported that KMT2A, NFAT5, SCAF11,
and GSK3B were upregulated in neurons of BP [33]. Several genetic
variants of RORA were associated with BP [34], and the polymor-
phisms of RORA were associated with risk for various forms of psy-
chopathology including BP and MDD [35]. PHACTR1 showed the
association with SCZ in the combined analysis and the locus was
located in an SCZ linkage region [36]. ZEB1 was an element of a
common pathway involved in SCZ [37]. EHBP1 was down-
regulated in the medial prefrontal cortex of adult SHANK3-
overexpressing mice, and variants of SHANK3 were causally asso-
ciated with numerous neurodevelopmental and neuropsychiatric
disorders including BP and SCZ [38]. CSRNP3 was a mapped gene
of 2q24.3 and genome-wide significant loci associated with BP
[39]. KDM5A was one of the best candidates for explaining epi-
lepsy, intellectual disability, and SCZ [40]. Seven risk genes (CTCF,
HNRNPU, KCNQ3, ZBTB18, TCF12, SPEN, and LEO1) were associated
with neurodevelopmental disorders based on the large-scale tar-
geted sequencing [41].

(2) Disease relevance with psychiatric disorders for the hub
genes in the PPI network.

STRING database was used for constructing the PPI network
[42], and the hub genes were discovered based on the CytoHubba
[43] of Cytoscape [22]. As shown in Fig. 3A, the PPI network for
all DEGs was constructed. The degree of nodes in this PPI network
was shown in Supplementary Table S3. As shown in Fig. 3B, the top
13 nodes with the highest score (�10) of the network using the
MCC algorithm on CytoHubba were marked with red and yellow
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colors. The intersection between the top 13 genes by the MCC algo-
rithm (as shown in Fig. 3C) and the top 20 genes with high degree
(�10) in this PPI network was regarded as the hub genes. There
were 9 hub genes including ESF1, PAK1IP1, SF3B1, RBM25, KRAS,
SRRM2, CAMK2G, PIK3R1, and PRPF40A. As shown in Fig. 4, the 9
hub genes were validated to confirm the differential expression
among four groups (SCZ group, BP group, MDD group, and healthy
group) using the boxplots. From these boxplots, there were signif-
icant changes for these DEGs.

As shown in Supplementary Table S4, a great disease relevance
(78 %) for the 9 hub genes was discovered between the hub genes
and psychiatric disorders by a literature review. It was reported
that SF3B1 was associated with SCZ and neurodevelopmental dis-
orders in the largest SCZ genome-wide association study [44].
KRAS mutations were associated with depression severity and
higher rates of probable depression in patients with metastatic col-
orectal cancer [45]. A mechanistic pathway involving CAMK2G was
reported in stress and the trauma-related manifestation of anxiety
and depression across species [46]. The interaction effects of the
polymorphisms in hsa-miR-219, CAKM2G, GRIN2B, and GRIN3A
might confer susceptibility to SCZ in the Chinese Han population
[47]. PIK3R1 was the shared susceptibility gene for SCZ and BP,
which might be a potential diagnostic biomarker for BP [48].
PIK3R1 and PRPF40A were identified as the hub genes in the ante-
rior cingulate cortex regions of the brain for MDD [49]. Therefore,
these hub genes discovered using the PPI network had an impor-
tant role in SCZ, BP, and MDD, which showed the reliability of
the DEGs discovered in this work.

(3) Disease relevance with psychiatric disorders for the
Enriched GO terms and KEGG pathways.

Moreover, 33 KEGG pathways have been enriched using the
DEGs discovered in this study (as shown in Fig. 5A and Supplemen-
tary Table S5), including regulation of actin cytoskeleton, neu-
rotrophin signaling pathway, focal adhesion, calcium signaling
pathway, and insulin signaling pathway. The regulation of the actin
cytoskeleton was likely to be shared between SCZ and BP [50]. Rare
variants in the neurotrophin signaling pathway were implicated in
SCZ risk [51]. The evidence for altered motility and focal adhesion
dynamics was consistent with dysregulated gene expression in the
FAK signaling pathway. Alterations in cell adhesion dynamics and
cell motility can affect the trajectory of brain development in SCZ
[52]. A detailed characterization of the risk loci showed that cal-



Fig. 2. The boxplots of the top 9 DEGs with the highest VIP (Variable Importance in the Projection) values were applied to visualize the differential expression in different
groups. The blue, red, green, and purple indicated the SCZ (schizophrenia), BP (bipolar disorder), MDD (major depressive disorder), and CTRL (healthy controls), respectively.
Statistically significant differences in cortical thickness: *p < 0.05, **p < 0.001, ***p < 0.0001. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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cium signaling pathway genes might play pivotal roles in SCZ [53],
and the downregulated signaling pathways in depression mice
included the calcium signaling pathway [54]. It was suggested that
there existed abnormalities of the insulin signaling pathway in SCZ
and that antipsychotic drug effects on this pathway were thera-
peutic in SCZ [55].

As shown in Fig. 5B and Supplementary Table S6, the enrich-
ment analysis of GO terms was performed to discover the biologi-
cal processes (BP) terms. For instance, adult neurogenesis
concerning regulatory signaling molecules would be helpful to
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identify how abnormalities might contribute to the pathophysiol-
ogy of SCZ [56], and altered adult neurogenesis was postulated
as an aetiological mechanism for BP [57]. As demonstrated in
Fig. 5C and Supplementary Table S7, the molecular functions
(MF) terms were enriched using DEGs. Such as, the Alu element
in the RNA binding motif protein (RBMX2) was found to be linked
to BP [58]. As demonstrated in Fig. 5D and Supplementary Table S8,
a lot of key cell components (CC) terms were enriched using the
DEGs in this study. And a growing body of evidence connected a
dysfunctional microtubule cytoskeleton with neuropsychiatric ill-



Fig. 3. (A) The PPI network was constructed using DEGs (differentially expressed genes) among schizophrenia, bipolar disorder, major depressive disorder, and healthy
controls. (B) The top 13 hub nodes with the highest MCC (score � 10) in the network were marked with red and yellow colors using the MCC algorithm on CytoHubba. (C) The
scores for the top 13 hub nodes were ranked by the MCC. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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nesses [59]. Using the literature review, the GO terms and KEGG
pathways enriched were validated that they played an important
role in the development of psychiatric disorders.

3.4. Constructing the classification model for multiple psychiatric
disorders

As one of the supervised machine learning algorithms, SVM can
be used to construct a classification model. The classification of
SVM can be applied for two or more classes using the e1071 pack-
age. A single SVM does binary classification and can classify sam-
ples between two classes. SVM can be applied for classifying
multiple groups using the One-to-Rest approach. To classify multi-
ple classes, each binary classifier is set to per each class. In this
approach, the classifier can usem SVMmodels and each model will
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predict membership in one of the m classes. In this study, the SVM
method was used to construct a model for classifying multiple
groups (SCZ, BP, MDD, and healthy controls). The classification
model was constructed for classifying samples of SCZ, BP, MDD,
and healthy groups based on the DEGs identified by the PLS-DA
method using the comprehensive dataset (Table 1). Because it
was hard to obtain good performance when using all genes due
to the interference of the irrelevant genes, these DEGs differential
among four groups were applied for constructing well-performed
classification model. In the multi-class classification models, there
were four SVM models for SCZ, BP, MDD, and healthy groups. And
the total model was obtained using the micro value of all SVM
models. For the combined dataset (Table 1), the performance of
the classification model was assessed by 5-fold cross-validation.
The AUC value and ROC curve were used to assess the classification



Fig. 4. The boxplots of the 9 hub genes of the PPI network using the intersection between the genes with the highest degree (score � 10) of the PPI network and the top 13
hub nodes ranked by the MCC (score � 10) in the network using the MCC algorithm on CytoHubba software. The blue, red, green, and purple indicated the SCZ
(schizophrenia), BP (bipolar disorder), MDD (major depressive disorder), and CTRL (healthy controls), respectively. Statistically significant differences in cortical thickness:
*p < 0.05, **p < 0.001, ***p < 0.0001. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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performance. Based on the comprehensive dataset, the AUC values
and ROC curves are interpreted for SCZ groups (Fig. 6A), BP groups
(Fig. 6B), MDD groups (Fig. 6C), healthy groups (Fig. 6D), and
(Fig. 6E) total micro value for all groups using the 5-fold cross-
validation. Overall, the AUC value of 5-fold cross-validation for four
groups was 0.94 in the SVM model using the comprehensive
dataset.

In this study, the independent dataset was applied to generalize
the constructed SVM model. The combined dataset (Table 1) was
regarded as the training set, and the independent set by combining
5060
GSE127711 and GSE38484 was regarded as the test set. In this clas-
sification, the micro value was calculated for four groups of psychi-
atric disorders (SCZ, BP, MDD, and healthy controls). The AUC value
of the independent set was 0.71 in the classification model. As
shown in Fig. 6F, the AUC value and ROC curve were used to assess
the performance of model using the independent set (Table 1).
From the results, the classification performance is only good
(AUC > 0.7) for classifying four groups simultaneously. The genes
of the training set were detected in the prefrontal cortex, and the
genes of the independent set were detected in the blood samples.



Fig. 5. The enrichment analysis was performed using differentially expressed genes. The top 20 terms of (A) biological processes, (B) molecular functions, and (C) cell
components of GO (gene ontology) enrichment. (D) The top 20 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways were enriched in this study.
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Because of the differences in the data type between the training set
and test set, it is very difficult to obtain superior performance for
the classification capacity by the independent test. In the future,
5061
the classification model with superior performance can be devel-
oped using other machine learning methods, which will be helpful
for the diagnoses of psychiatric disorders.



Fig. 6. The classification model was constructed for psychiatric disorders including schizophrenia, bipolar disorder, major depressive disorder, and healthy controls using
machine learning. Based on the combined dataset, the ROC curves and AUC values for (A) SCZ groups, (B) BP groups, (C) MDD groups, (D) healthy groups, and (E) total micro
value for all groups was obtained using the fivefold cross-validation. (F) the ROC curve and AUC value for the independent set for the classification model.
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4. Conclusions

In this work, a combined dataset comprising 67 SCZ patients, 40
BP patients, 57 MDD patients, and 104 healthy controls was col-
lected. First, 269 probes of DEGs were discovered based on the
PLS-DA method to classify the samples into four groups. Second,
these DEGs were validated by the literature review including dis-
ease relevance with the psychiatric disorders of these DEGs, the
hub genes of the PPI network, and enriched GO terms and KEGG
pathways. Third, a classification model was constructed by
machine learning method using the DEGs identified in four groups.
By ROC curve and AUC value, a strong capacity to classify samples
5062
among multiple groups was demonstrated. Moreover, the con-
structed SVM model was generalized using the independent set.
In sum, the classification model constructed might provide clues
for the diagnoses of these psychiatric disorders.
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