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Abstract

Screening certain environmental chemicals for their ability to interact with endocrine targets, 

including the androgen receptor (AR), is an important global concern. We previously developed a 

model using a battery of eleven in vitro AR assays to predict in vivo AR activity. Here we describe 

a revised mathematical modeling approach that also incorporates data from newly available assays 

and demonstrate that subsets of assays can provide close to the same level of predictivity. These 

subset models are evaluated against the full model using 1820 chemicals, as well as in vitro and 

in vivo reference chemicals from the literature. Agonist batteries of as few as six assays and 

antagonist batteries of as few as five assays can yield balanced accuracies of 95% or better relative 

to the full model. Balanced accuracy for predicting reference chemicals is 100%. An approach 

is outlined for researchers to develop their own subset batteries to accurately detect AR activity 

using assays that map to the pathway of key molecular and cellular events involved in chemical

mediated AR activation and transcriptional activity. This work indicates in vitro bioactivity and in 
silico predictions that map to the AR pathway could be used in an integrated approach to testing 

and assessment for identifying chemicals that interact directly with the mammalian AR.
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1. Introduction

Screening for chemicals that may affect endocrine signaling is of global concern, though 

the regulatory data requirements for endocrine bioactivity of chemicals vary by agency, 

intended chemical usage, and region (U.S. EPA, 2011, Government of Canada, 2016; EFSA, 

2018). This task is complicated by the fact that there are too many chemicals requiring 

screening for potential endocrine activity (~10,000 in the US (U.S. EPA, 2012)) to evaluate 

using a combination of in vitro and in vivo assays. The US EPA’s Endocrine Disruptor 

Screening Program (EDSP) (U.S. EPA, 2007) has adopted high-throughput in vitro methods 

through the EDSP21 program (U.S. EPA, 2011) to help prioritize chemicals for additional 

testing in models of greater biological complexity. The most extensive progress has been 

evaluating chemicals’ interactions with the estrogen receptor (ER). A computational model 

was constructed using the output of screening 1811 chemicals in 18 distinct in vitro ER 

assays, which resulted in composite scores for agonist and antagonist activity (Browne et 

al., 2015; Judson et al., 2015; Judson et al., 2017; Watt and Judson, 2018). These 18 assays, 

and the corresponding cytotoxicity assay information, were obtained from the broader US 

EPA ToxCast and cross-agency Tox21 screening programs (Dix et al., 2007; Judson et al., 

2010; Thomas et al., 2018; Thomas et al., 2019). The ER pathway model was validated 

against an internationally-developed set of in vitro ER reference chemicals (NICEATM/

ICCVAM, 2011) and a corresponding set of in vivo reference chemicals identified using 

curated data from the in vivo rodent uterotrophic assay (Kleinstreuer et al., 2015). Based on 

the evaluation of this model against reference chemicals and recommendations of external 

Scientific Advisory Panels (SAPs) convened under the authority of the Federal Insecticide, 

Fungicide, and Rodenticide Act (FIFRA) (U.S. EPA, 2013; U.S. EPA, 2017), the US EPA is 

considering accepting the results of the ER pathway model (agonist mode) in lieu of three 

estrogen-related assays: the in vitro ER transactivation (OPPTS 890.1300, OECD TG455), 

in vitro ER binding (OPPTS 890.1250 OECD TG493), and in vivo uterotrophic EDSP Tier 

1 screening assays (OPPTS 890.1600/OECD TG440). A large-scale QSAR modeling effort 

was also undertaken using the in vitro data from these 1811 chemicals to train multiple 

models and generate consensus ER binding, agonist, and antagonist predictions for tens of 

thousands of chemicals, including those subject to the EDSP (Mansouri et al., 2016; U.S. 

EPA, 2019).

A similar effort is being performed for the androgen receptor (AR). A corresponding AR 

pathway model was developed, using 11 in vitro AR assays with publicly available data 

from the ToxCast and Tox21 programs (Kleinstreuer et al., 2017). Because there was 

no existing internationally agreed upon in vitro reference chemical set for AR, one was 

developed for this project via a workgroup of the Interagency Coordinating Committee 

on the Validation of Alternative Methods (ICCVAM). The results of the AR pathway 

model were also compared to the results of the Hershberger assay, a short term, in vivo 
screening assay measuring chemical effects on androgen-responsive accessory sex tissues 
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in the male rat reproductive tract (Browne et al., 2018; Kleinstreuer et al., 2018). Notably, 

in vitro AR pathway model activity and results from the Hershberger assay were not as 

concordant as between the ER pathway in vitro model (agonist mode) and uterotrophic 

activity. In part, the Hershberger assay is more complicated, being sensitive to mechanisms 

other than interference of ligands interacting directly with the AR (Freyberger and Schladt, 

2009; Browne et al., 2018). Further, for some chemicals, effects in the Hershberger were 

observed at doses where plasma concentrations would be expected to significantly exceeded 

corresponding media concentrations used for the in vitro tests (Browne et al., 2018; 

Kleinstreuer et al., 2018). The AR pathway model has been evaluated in an EDSP FIFRA 

SAP and its use in a regulatory context under the EDSP is under consideration (U.S. EPA, 

2013; U.S. EPA, 2017).

The full ER pathway model presented a practical problem in that it is both expensive and 

logistically difficult to test a chemical across all 16 in vitro assays included in the published 

agonist-mode model. We addressed this problem by demonstrating that it is possible to 

achieve almost equivalent predictivity of ER agonist activity using as few as four assays 

(Judson et al., 2017). We focused on ER agonist activity because the expectation is that 

most xenobiotic chemicals that interact with the ER will act as agonists. The basic approach 

was to construct a series of simple assay subset models with all combinations of one to 

16 agonist-mode assays and evaluate subset models against both the full model and the 

agonist in vitro and in vivo reference chemicals. The chemical-assay area under the curve 

(AUC) values for the assay subset models were estimated using simple linear combinations 

of individual assay AUC values. Panelists from the 2017 FIFRA SAP review of the AR 

pathway model suggested that a similar approach to reduce the number of assays required 

for the AR pathway model would be useful (U.S. EPA, 2017).

In this paper, we report the results of a similar procedure for the AR pathway model, using 

an updated, full AR model evaluated using AR in vitro and in vivo reference chemicals 

previously published (Kleinstreuer et al., 2017). Here, however, the full biologically based 

network structure is used for constructing the minimal assay models, rather than the linear 

data fitting strategy used with ER. The method used here is computationally intensive, 

and at the time the ER subset model was developed, the approach used here was not 

computationally tractable. Additionally, we developed both agonist and antagonist minimal 

assay models, the latter because AR antagonist activity is more prevalent among xenobiotic 

chemicals than is agonist activity, which has been previously observed for only a small set of 

steroid hormones and pharmaceutical chemicals.

2. Materials and methods

2.1. Reference chemicals

The in vitro reference chemicals were previously developed by an ICCVAM working group 

and reported by Kleinstreuer et al. (Kleinstreuer et al., 2017). To develop the list of in vitro 
reference chemicals, a targeted literature search was performed using chemical identifiers 

for 158 chemicals used in various validation efforts for AR assays (OECD, EPA, ECVAM, 

KoCVAM), and with activity in AR assays. Metadata included in this search included 

(among other fields) PubMed ID and year, hit response, potency metric and value (e.g. 
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AC50), assay type, receptor type, species, reference agonist and antagonist, cytotoxicity 

information. Data was filtered to only include data from studies of the full-length receptor 

(e.g. not just ligand binding domain), and to include studies that reported concurrent 

cytotoxicity measurements for cell-based assays. Potency data for all results were converted 

to μM units, and the mean, standard deviation and 95% confidence intervals were calculated. 

To be called a positive agonist reference chemical, a chemical needed ≥3 experiments 

with ≥70% positive responses, plus at least one positive binding result. The same criteria 

were applied to antagonists, with the addition that the positive results could not have been 

confounded by cytotoxicity. To be called a negative agonist reference chemical, there had to 

be ≥ 3 negative calls with no positives. The same criteria were used for antagonists, except 

that there had to be ≥ 2 negative calls.

The in vivo reference chemicals were curated by Browne et al. (Browne et al., 2018; 

Kleinstreuer et al., 2018). To develop the in vivo reference chemical list, a systematic 

literature survey was carried out starting with a collection of 3200 chemicals and looking for 

results in the Hershberger assay. These chemicals included those that were run in EPA AR 

assays, chemicals used to validate the Hershberger assay at EPA and OECD, chemicals run 

in EPA EDSP Tier 1 assays, and chemicals identified as in vitro AR reference chemicals. 

Metadata for each study was extracted, including but not limited to: chemical identifiers, 

purity and source, strain and age of rat, intact or castrated, post-surgical recovery duration, 

number of animals per treatment group, route of administration, dose levels, control 

chemicals, ASTs measured and any significant effects. A complex set of decision criteria 

was used to include studies in the final database, which required studies to follow guideline 

protocols or be very close (“guideline-like”). The criteria for defining reference chemicals 

were: (1) a positive reference chemical was one with ≥2 Hershberger positive calls and one 

other related study positive result, with more positive results than negative results; (2) a 

negative reference chemical was one with ≥2 Hershberger negative calls with no positives 

OR 1 negative Hershberger and 1 other negative study with no positives. The class of 

other studies considered were in vivo studies that could assess the response to androgens/

antiandrogens and that reported androgen-responsive endpoints, including: the male pubertal 

assay, 28 or 90 day repeated dose oral toxicity studies, and/or extended one generation 

studies in rats. All reference chemicals used in this work are listed in Supplemental Table 

S1. The in vitro reference chemicals are taken from Table 2 of (Kleinstreuer et al., 2017) and 

the in vivo reference chemicals are taken from Table 1 of (Kleinstreuer et al., 2018). A few 

of the reference chemicals from these sources were not used because data for all of the in 
vitro assays used here was not available.

2.2. Revised full model

The original AR pathway model is described in Kleinstreuer et al. (Kleinstreuer et al., 2017). 

For the full model described here, the original 11 assay AR pathway model was modified by 

including three additional assays. The first is an AR-dependent cell proliferation assay using 

a real-time cell impedance readout, run by ACEA Corporation (https://www.aceabio.com, 

San Diego CA). The other additions are nuclear translocation/coactivator interaction agonist 

and antagonist-mode assays developed by Johnston et al.(Hua et al., 2014; Fancher et al., 

2018; Hua et al., 2018). These AR-TIF2 PPI (protein-protein interaction) assays incorporate 

Judson et al. Page 4

Regul Toxicol Pharmacol. Author manuscript; available in PMC 2021 November 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

https://www.aceabio.com/


both nuclear translocation and TIF2/SRC2 co-activator interactions. AR ligands stimulate 

nuclear translocation of the AR, and interaction with the nuclear TIF2 biosensor stabilizes 

the receptor in the nucleolus allowing quantitation by automated fluorescence imaging. For 

the original model, one of the antagonist assays (the TOX21 MDA-Kb2 antagonist assay) 

was run twice; once using a low concentration (0.5 nM) of the reference agonist, R1881, 

to initially induce AR pathway activity and then with a higher concentration (10 nM). In 

the original publication, the low concentration agonist version of the assay was used in the 

pathway model, and the high concentration version was used in combination with the low 

concentration version to inform an antagonist confirmation flag used in confidence scores 

considered in parallel with the pathway model results. Similarly, both versions of this assay 

are used here to test for an appropriate shift in the activity concentration in antagonist mode, 

indicative of true receptor-mediated activity. A true competitive antagonist should appear to 

be less potent (shifting the curve “right” to a larger AC50 value) when the assay is run with 

a higher concentration of the reference agonist, R1881. As before, this potency shift test 

was performed outside of the main model construction. The full set of assays used in the 

pathway model are given in Table 1.

Chemical and assay-wise concentration-response modeling was carried out using the 

ToxCast Pipeline (tcpl v 2.0.2) (Filer et al., 2017) to generate the summary values from 

curve-fitting used as inputs to the AR pathway model. Curve fitting uses a Hill or a 

Gain-Loss model; the latter is a rising Hill curve followed by a decrease in activity at 

higher concentrations. The concentration-response series is also fit to a constant model 

(response = 0). The model with the lowest Akaike Information Criteria (AIC) value is 

selected. The output parameters used here are AC50, Top and Hitcall, where AC50 is 

the concentration at half-maximum response, Top is the parameter defining the top of the 

Hill curve, and Hitcall equals 1 if Top exceeds an assay-dependent statistical threshold or 

is 0 otherwise. These values were extracted from invitrodb v3.2 (https://doi.org/10.23645/

epacomptox.6062623.v4, available at ftp://newftp.epa.gov/Computational_Toxicology_Data/

High_Throughput_Screening_Data/InVitroDB_v3.2/MySQL_Data/) (US EPA, 2019). A 

complete data set on 14 assays was available for 1820 chemicals. Assay data along with 

output of the full model are given in Supplemental Table S2, and assay targets within the 

AR signaling pathway are indicated in Fig. 1. The full model determines whether the pattern 

of activity is most consistent with agonist activity, antagonist activity or activity in one of 

multiple assay interference modes. Assay interference is a general term for a variety of 

processes that can cause false positive or false negative results in an assay due to a chemical 

interfering with the assay system or technology (Thorne et al., 2010; Bruns and Watson, 

2012; Hsieh et al., 2015). For example, chemicals such as flavins are autofluorescent and 

therefore typically seen as “false positives” in assays that use fluorescence-based readouts. 

The chemical is assigned a mode (agonist, antagonist, other) based on which mode has 

the largest AUC value, where “other” corresponds to interference via a specific assay 

or a node in the pathway (Fig. 1). Two key results used from the full model are the 

AUC(agonist) and the AUC(antagonist). These pathway-level AUC values range from 0 to 

~1 and monotonically increase with the log of the potency. Supplemental Fig. S1 shows the 

calibration curve between idealized AC50 values across all assays and the AUC values (see 

Kleinstreuer et al., 2017 for details). The AUC range is scaled so that a potent reference 
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antagonist (Mifepristone) has an AUC (antagonist) score of 1.0. Note that in the original 

model, Hydroxyflutamide was the reference antagonist that was used to scale the model, but 

data for this chemical were not available for all of the new assays. Mifepristone was selected 

because it was the most potent AR antagonist in the new set of 14 assays tested. Chemicals 

more potent than Mifepristone can have AUC values greater than 1.

The original antagonist mode model used an “antagonist confidence score” (CS) in 

addition to the AUC value (see Kleinstreuer et al., (2017) for details (Kleinstreuer et 

al., 2017). The CS accounted for factors beyond what is provided by the AUC value 

itself, including cytotoxicity, which can confound loss-of-signal antagonist assays, and 

the expected antagonist potency shift, described above. Here, we have slightly modified 

the calculation of the CS to add additional penalties for activity at concentrations well 

above where cytotoxicity is observed; to penalize chemicals for which one of the non

antagonist mode AUC values is greater than the antagonist mode AUC; and, to penalize 

chemicals that are active in multiple cell-based assays but in none of the cell-free assays 

(A1-A3). Here, cytotoxicity is measured using a large collection of assays from a variety 

of technologies, and not just from concurrent cytotoxicity assays corresponding to the 

current AR transactivation assays (Judson et al., 2016). Using invitrodb version 3.2, there 

were 86 possible cytotoxicity assays used in this calculation, and a minimum of 5 positive 

hitcalls were required to calculate a lower bound on a cytotoxicity concentration level. 

If the number of assays screened as positive was less than 5, a default value of 1000 

μM was assigned due to lack of evidence to support a cytotoxic concentration. This 

last behavior is indicative of generalized cell stress-related assay interference. Cytotoxicity

based interference is characterized by a Z-score which measures where specific activity 

occurs relative to cytotoxic concentrations. A large Z-score (>3) indicates that specific 

activity occurs well below the cytotoxic level (Judson et al., 2016). The revised schema for 

the CS is given in Table 2. These weightings were somewhat arbitrary but were meant to 

emphasize what the authors felt were the most important factors for distinguishing true from 

false positive antagonist signals. The overall CS is the sum of the individual contributions, 

and the higher the score, the more confident one can be that the observed activity is due to 

antagonist activity rather than assay interference. Values can range from +7 to −4.

2.3. Subset models

The subset models are calculated using exactly the same method and software as the full 

model but using only a subset of the assays. We scanned through all combinations of 2–

14 assays (a total of 214−15 = 16369 combinations) and calculated pathway AUC values 

for agonist, antagonist and other modes for all chemicals. As an example, when running 

the model with assays A1, A2, A4, A13 and A14 (refer to Fig. 1), only interference 

processes associated with N1, N7 and the individual assays will be included. For more 

details, refer to the original methodology of Kleinstreuer et al. (Kleinstreuer et al., 2017). 

This is significantly different than what was done for the ER minimal assay model, where 

we simply fit a linear model to the full assay AUC (agonist) values. The approach used here 

has the advantage that the subset models explicitly account for assay interference processes, 

just like with the full model, at the expense of increased computing time (~7 days on a 

40-core Linux machine).
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Subset models are named with the binary string corresponding to the assays used, prefixed 

with the letter A. For example, the model using the first two assays in Table 1 is 

named A11000000000000. We assume that the full 14-assay model provides the best 

estimate of the true AR activity of a chemical, but is still an estimate, and in particular 

still has uncertainties in determining weak antagonist effects (both false positives and 

false negatives). Several metrics were calculated comparing the AUC (agonist) and AUC 

(antagonist) values between each subset model and the full model, including the R2 (Pearson 

correlation coefficient) and root mean square error (RMSE) between the AUC(subset) and 

AUC (full). We also dichotomized the subset and full AUC values as follows to obtain a 

binary active/inactive call. All AUC values less than a cutoff of 0.1 are set to zero, and 

those at or above 0.1 are set to one. This cutoff corresponds to a potency of ~200 μM, 

which is the upper limit of testing in any of the in vitro assays (see Supplemental Fig. 1). 

(In the original full model, an intermediate group of chemicals with AUC in the range from 

0.001 to 0.1 were classified as inconclusive, but that rule is not used in this calculation as 

it would artificially inflate the accuracy of this calculation.) It is possible for chemicals to 

be classified as active in both agonist and antagonist, and these could be selective androgen 

receptor modulators (SARMs). However, it is not possible to make a definitive call that a 

chemical is or is not a SARM based on the current data. Based on the dichotomized data, we 

calculate sensitivity, specificity, balanced accuracy and PPV and NPV (positive and negative 

predictive values) between the subset and full model, and between the subset model and the 

in vitro and in vivo reference chemical calls from the literature. Balanced accuracy (BA) is 

the average of sensitivity and specificity.

Uncertainty: To understand the effect of assay uncertainty on the predictions, all chemical 

assay combinations were processed through the ToxBoot process (Watt and Judson, 2018) 

which produces 95% confidence intervals (CI) for the potency (AC50), and yields a 

probability from 0 to 1 that the chemical is active in the assay. The underlying algorithm 

uses a smooth nonparametric bootstrap method, selecting subsets of the concentration

response data and refitting the data 1000 times. Summary values from the 1000 fits of the 

bootstrap resampled data are available publicly in the ToxCast database, invitrodb (version 

3.2), as level 7 data, including the width of the CI for the AC50 and the percent of refitted 

curves that were positive (hit percent). The full 14-assay AR model was run independently 

100 times, where in each run, the assay-wise AC50 values were drawn from a normal 

distribution centered on the nominal value and having a standard deviation derived from the 

Toxboot AC50 distribution. The distribution of performance statistics for these models were 

used to judge the relative performance of the subset models.

2.4. Model application

Beyond the 1820 chemicals originally used to develop the full and subset models, we 

have data for up to 1000 additional chemicals in selected assays (A1, A2, A3, A7, A9, 

A10, A13 and A14; see Fig. 1). Using these additional data and the corresponding best 

available subset models, we can make forward predictions of AR agonist and antagonist 

activity. We combined the AUC values from the models with QSAR predictions from the 

Collaborative Modeling Project for Androgen Receptor Activity (CoMPARA) project, which 

developed 91 AR QSAR models in binding, agonist and antagonist modes that were then 
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combined into consensus predictions (Mansouri, 2019; Mansouri et al., 2020). Of the 55,450 

structures in the CoMPARA prediction set, the consensus models predicted that 19% would 

be active in binding mode, 3.9% would be active in agonist mode, and 21.9% would be 

active in antagonist mode. Subsequently, consensus predictions for ~750,000 chemicals have 

been calculated and are available from the EPA CompTox Chemicals Dashboard (https://

comptox.epa.gov/dashboard).

2.5. Toxicokinetics

To facilitate model comparisons with the in vivo reference chemicals, lowest observed effect 

levels (LOELs) from the animal studies curated in Browne et al. (Browne et al., 2018; 

Kleinstreuer et al., 2018) were converted to internal concentrations using a standard in 
vitro toxicokinetics method (Rotroff et al., 2010; Wetmore et al., 2012; Wetmore et al., 

2014; Wambaugh et al., 2015), implemented in the httk R package version 2.0.1 (Pearce 

et al., 2017) using the steady-state assumption. Briefly, fraction of chemical unbound to 

plasma protein (Fup) and intrinsic hepatic clearance (Clint) parameters are used to calculate 

the plasma concentrations relevant to specific dosing assumptions. Details are given below 

in the results section. To convert in vitro concentrations to in vivo doses, it is necessary 

to convert AUC values to concentrations, which is performed using the calibration curve 

of Supplemental File S1. Finasteride toxicokinetic parameters (Fup and Clint) were not 

available from the httk package so were taken from Zager and Barton, (2012). For all other 

chemicals described below, experimental toxicokinetic parameters Fup and Clint were used, 

i.e. no in silico predictions of these parameters were employed.

2.6. Software

All software used to run the calculations is written in R, version 3.5.2 (Ihaka and Gentleman, 

1996) and is available from the author’s FTP site [ftp://newftp.epa.gov/COMPTOX/STAFF/

rjudson/publications/Judson%20AR%202019/ (to be updated on final publication)]. This 

includes an R package vignette describing how to run all calculations used in this 

manuscript.

3. Results

There are 1239 of the 1820 chemicals that are active in at least one of the 14 assays. A 

heatmap of the AC50 values for the active chemicals and assays are shown in Supplemental 

Fig. S2. The variety of patterns of activity highlight the need for a model that accounts 

for both true activity and assay interference. All results for the new model are provided 

in Supplemental Table S2. The AUC values for active chemicals in the new model are 

slightly lower on average than in the original model because new model values were 

normalized using the reference antagonist, Mifepristone, which is more potent than the 

previous normalization reference chemical (Hydroxyflutamide), which was not tested in all 

of the new assays. In the new full model, the antagonist confidence score (CS) threshold 

of 2 was selected for comparing with the subset models (CS ≥ 2 high confidence, CS 

< 2 low confidence) because all but two of the in vitro reference chemical CS values 

were 2 or greater (Seven had a CS = 7, two had CS = 5, four had CS = 4, three 

had CS = 3, and one each had CS of 2, 1 and 0). The three lowest CS-value positive 
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antagonist reference chemicals also had the lowest values of AUC (antagonist): o,p’-DDT 

(AUC = 0.15, CS = 1), Methoxychlor (AUC = 0.075, CS = 0), and Fenarimol (AUC 

= 0.065, CS = 2). The corresponding values for these chemicals in the original model 

were o,p’-DDT (AUC = 0.15, CS = 4), Methoxychlor (AUC = 0.04, CS = 2), and 

Fenarimol (AUC = 0.04, CS = 4). For these chemicals, the confidence scores have decreased 

because of the added penalties for cytotoxicity and other factors summarized in Table 

2. The reference chemical activity from the original and new full models are shown in 

Supplemental Fig. S3. The main difference is that the positive antagonist reference chemical 

Zearalenone was inactive in the original full model but is now active (AUC (antagonist) 

= 0.125, CS = 3), due to strong activity in the UPitt nuclear translocation assays (A6 

and A12), which reinforces the weak antagonist evidence seen without these assays. For 

reference, we list the most potent agonists and antagonists in the full model. The values 

in parentheses are the AUC values in the current full model vs. those in the original AR 

model of Kleinstreuer et al. The most potent agonists are 17beta-Trenbolone (1.29/1.59), 

17-Methyltestosterone (1.29/1.55), 5alpha-Dihydrotestosterone (1.28/1.57), Testosterone 

propionate (1.23/1.53) and Norethindrone (1.26/1.52). The most potent antagonists in 

the full model are Mifepristone (1.0/1.21), Triphenyltin hydroxide (0.82/0.79), Tributyltin 

methacrylate (0.72/0.61), Nilutamide (0.71/0.85) and Dibutyltin dichloride (0.70/0.55). The 

cutoff of 0.1 for AUC (agonist) and AUC (antagonist) and an antagonist CS cutoff of 2 are 

used for calculating useful statistical correlations between the full and subset models. The 

quantitative AUC values for the original (11 assays) and new (14 assays) full models are 

highly correlated with R2 = 0.96 and RMSE = 0.022 for AUC (agonist) and 0.87 and 0.04 

for AUC (antagonist). Plots showing the correlations are shown in Supplemental Fig. S4.

Subset models were evaluated against the revised full model using continuous statistics of 

R2 and RMSE for AUC(agonist) and AUC (antagonist), and discrete statistics of sensitivity, 

specificity and balanced accuracy after dichotomizing the chemicals with AUC≥0.1 set to 

positive (1) and those with AUC<0.1 set to negative (0). In reality, there is not a sharp 

distinction between chemicals active or inactive against AR based on the 0.1 AUC threshold. 

Instead, the larger the AUC values and the confidence score, the greater is the likelihood that 

there is true chemical-AR interaction. To judge the significance of the statistical differences 

between subset models and the full model by establishing a confidence interval for the 

full model, the full model was run 100 times adding the known experimental variability 

in chemical-assay potency. For each of these runs, the winning model (Hill, Gain-Loss or 

constant) was determined, along with its corresponding potency and efficacy parameters 

(AC50 and Top). The 95% CI for BA in agonist mode is [0.93,1.0] and for antagonist mode 

is [0.97,0.99].

The results of building subset models using increasing numbers of assays are summarized 

in Fig. 2. This shows the performance of the best-performing subset model as a function of 

the number of assays, as compared to the full model. First, performance based on reference 

chemicals was evaluated; except for the best 2-assay antagonist model and the best 4 assay 

agonist model, all of the highest performing subset models have 100% sensitivity, specificity 

and BA for the in vitro reference chemicals (red diamonds in Fig. 2). BA was also assessed 

for the larger chemical set. Beyond two assays, statistical agreement using all measures with 

the full model increases with the number of assays in each subset model. There are agonist 
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subset models with as few as 6 assays and there are antagonist subset models with as few as 

5 assays that have BA>0.95. Variability around the agonist full model is greater than around 

the antagonist model so that the best 5 assay agonist models are not statistically different 

from the full model once its variability is accounted for. In antagonist mode, only subset 

models with 6 assays have BA within the CI for the full model. Continuous measures of 

subset model performance as compared to the full model were also considered. For agonist 

mode (Fig. 2A), the R2 demonstrated improvement with addition of more assay data with the 

exception of a dip going from 2 to 3 assays. The best subset model with 6 assays had an R2 

of 0.85. Adding more assays provided marginal improvement, with R2 approaching 1 at 10 

or more assays. The antagonist mode models reach a plateau of an R2 between 0.85 and 0.9 

using 4 assays and show little improvement until 10 or more assays are included.

As an example, we show the results for the best performing 5-assay antagonist subset model 

(A01010000000111) in Fig. 3. This model uses assays A2, A4, A12, A13, and A14 from 

Table 1 and Fig. 1. These include one of the cell-free binding assays, one of the cofactor 

recruitment assays and all three antagonist assays. Note that these are all agonist/antagonist 

or antagonist-specific assays – no agonist-specific assays are included. The RMSE between 

the full and subset model AUC (antagonist) values is 0.038 and R2 is 0.87. As described in 

Methods, the continuous AUC values were dichotomized with values ≥ 0.1 set to active and 

those <0.1 set to inactive. This antagonist subset model has sensitivity of 0.97, specificity 

of 0.96 and BA of 0.96 for all chemicals with respect to the full model. For the in vitro 
reference chemicals, the classification statistics all equal 1. The all-chemical agonist mode 

statistics for this model are well below that for models optimized for agonist activity, which 

illustrates an important factor concerning these subset models with few assays, namely 

that they may perform well for one mode (agonist or antagonist) but not for both. The 

quantitative output for all subset models in agonist and antagonist modes are given in 

Supplemental Tables S3 and S4.

In antagonist mode, there are 30 subset models with 5 or 6 assays with BA for all chemicals 

of 0.95 or better and with BA = 1 for the in vitro reference chemicals. However, the 

performance of these subset models is generally not concordant with the in vivo antagonist 

reference chemical activity and is qualitatively the same as was seen in the original full 

model discussed previously (Kleinstreuer et al., 2018), and will be discussed in more detail 

below. Of the antagonist subset models with high performance against the in vitro reference 

chemicals, all 30 use the cell-based antagonist assays A12 (nuclear translocation) and 

A14 (reporter gene); 29 use the cell-based reporter gene assay A13; 21 use the cofactor 

recruitment assay A5; and all use one or two of the three receptor binding assays (A1

A3). The most commonly used cell-free binding assay is the chimpanzee version, used 

in 20 models. The complete scoring matrix for the antagonist subset models is given in 

Supplemental Table S4.

In agonist mode, there are 26 subset models with 6 or 7 assays that have BA for all 

chemicals ≥0.95 and BA = 1 for the in vitro and in vivo agonist reference chemicals. Of 

these agonist subset models, all 26 use assays A9 and A11, 23 use assay A7, 19 use A8 and 

all use at least one of the cell-free binding assays (18 rat, 10 chimpanzee, 5 human). Three 

of the models use the antagonist assay A14, which is likely just a result of noise in the data. 
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The best 5-assay agonist subset model has BA = 0.94 for all chemicals, and the best 4-assay 

agonist subset model has BA = 0.91. These smaller models have high specificity but lower 

sensitivity (0.82–0.89). The complete scoring matrix for the agonist subset models is given 

in Supplemental Table S3.

We next demonstrate a direct use of the current assays and the subset models built from 

them. Beyond the 1820 chemicals originally used to develop the full and subset models, 

we have data for up to 1000 additional chemicals in selected assays. Therefore, for subset 

models using only these additional data, we can make forward predictions of AR agonist 

and antagonist activity. To illustrate this capability, we selected the best available agonist 

and antagonist subset models that only used assays with data for additional chemicals and 

applied them to the “forward testing” chemical set. To illustrate how one could build a 

weight-of-evidence approach to prioritizing chemicals for further testing, we combined the 

AUC values from the models with the consensus QSAR predictions from the Collaborative 

Modeling Project for Androgen Receptor Activity (CoMPARA) project, described in the 

Methods section (Mansouri, 2019; Mansouri et al., 2020).

The agonist subset model selected to illustrate this approach is A11000010100000, using 

the assays A1, A2, A7 and A9 (two binding assay and two agonist transactivation assay). 

This is not a particularly well-performing subset model because it contains neither the 

cell proliferation nor the nuclear translocation assays, both of which significantly increase 

agonist assay performance. These assays were excluded because no additional chemicals 

beyond the 1820 were tested in these assays. The performance of this model for all 

chemicals is sensitivity = 0.82 and specificity = 0.99. Because of the high specificity, 

positive results of this model should be accurate. However, with relatively low sensitivity, 

some true positive chemicals will be missed. There were a total of 884 chemicals with 

forward testing data for all of these assays (A1, A2, A7, A9), and 10 have AUC(agonist) 

> 0.1 (1.3%), listed in Table 3. The full data set for this model is given in Supplemental 

Table S5. Of these, 7 have steroid backbones and these are predicted to be 7 of the 8 

most potent of the actives. The CoMPARA QSAR predictions indicate that all but two of 

these chemicals will be active against AR in one or both of agonist or antagonist mode 

(7-Diethylamino-4-methylcoumarin and Tripropylene glycol diacrylate are the exceptions). 

There is one chemical where the QSAR results predict it to be an antagonist rather than an 

agonist (Tetradonium bromide), but the antagonist AUC is much smaller than the agonist 

AUC (AUC (agonist) = 0.14, AUC (antagonist) = 0.01).

The antagonist subset model selected is A01010000000111 (see Fig. 3), using assays A2, 

A4 and A12-A14 (one binding assay, one cofactor recruitment assay, the antagonist nuclear 

translocation assay and two antagonist transactivation assays). This is the best 5-assay subset 

model with all chemical BA = 0.96 and BA = 1 for the in vitro reference chemicals. A total 

of only 31 new chemicals had data for all five of these assays for use in forward prediction. 

Six had AUC (antagonist) > 0 and are listed in Table 4. All data for this set of 31 chemicals 

is given in Supplemental Table S6. Oryzalin was active in the original full AR model 

with AUC(antagonist) = 0.15. This chemical is not structurally similar to any other AR 

antagonists and the CoMPARA QSAR project predicts that it is inactive in both agonist and 

antagonist mode. 3,3′-Dimethoxybenzidine was borderline negative (AUC (antagonist) = 
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0.07) in the original full model, Triphenyl phosphate was inactive in the original full model 

with AUC(antagonist) = 0.04 and PharmaGSID_47315 (a failed pharmaceutical compound) 

was active in the original model with AUC (antagonist) = 0.22.

The in vivo reference chemical set was identified from literature reviews and had 

reproducible in vivo activity in multiple Hershberger assays or one Hershberger assay and 

another in vivo assay with androgen responsive endpoints (Browne et al., 2018; Kleinstreuer 

et al., 2018). In vivo reference chemicals included 39 chemicals (3 active in the agonist 

mode, 20 active in the anti-androgenic mode and 16 negative). For the agonist mode 

in vivo reference chemicals, 99.5% of subset models with 5 or more assays had a BA 

of 1.0, meaning all in vivo reference chemicals were predicted correctly. However, there 

are only three in vivo reference agonists and all are highly potent pharmaceuticals (17beta

Trenbolone, 17-Methyltestosterone, Testosterone propionate).

For the antagonist in vivo reference chemicals (based on results of the Hershberger assay), 

neither the full model nor the subset models show good predictions. With the best subset 

model (A01010000000111), the comparison is shown in Table 5, there are 7 true positives, 

13 false negatives (in vivo active, in vitro inactive), 5 false positives (in vivo inactive, in vitro 
active) and 10 true negatives. The performance for the full model was the same. For a safety 

screening method such as this, false negatives are of special concern. However, the analysis 

of the original full model relative to these antagonist Hershberger active chemicals found 

that most of the Hershberger positive, AR model negative, chemicals only showed activity 

at concentrations above the upper limit of testing in the in vitro assays (Browne et al., 2018; 

Kleinstreuer et al., 2018). We re-examined this issue with the current data set. LOEL values 

(in units of mg/kg/day) were taken from Table 1 of Kleinstreuer et al. (2018) (Kleinstreuer 

et al., 2018). These values were converted to internal concentrations using a standard in vitro 
toxicokinetics method (Rotroff et al., 2010; Wetmore et al., 2012; Wetmore et al., 2014; 

Wambaugh et al., 2015), implemented in the httk R package (v 2.0.1) (Pearce et al., 2017) 

using a time-dependent PBPK model using the option to model rat physiology. This model 

used the dosing schedule relevant to the Hershberger assay (one dose per day, for 10 days 

total). This model assumes 100% bioavailability. The result used was the average plasma 

concentration (Cavg). For some chemicals the PBPK model failed because the relevant 

experimental parameters were not available, so the analytical concentration at steady state 

(Css) was substituted. Hershberger LOEL values were converted to plasma concentrations by 

multiplying by Cavg. Cavg and Css are highly correlated with Cavg being larger on average by 

a factor of 1.4.

Of the 13 false negatives, 8 had predicted internal concentrations extrapolated from the 

in vivo LOEL range that were above the upper limit of in vitro testing. The remaining 

5 of the 13 false negatives are as follows. Two chemicals have potentially ambiguous in 
vivo results with 2 positive studies and one negative apiece (Permethrin and Cyfluthrin). 

Another two have a single Hershberger study that was positive and were called positive 

due to a positive result in a related study type (Propargite and Ethoprop). Ethoprop’s 

single positive Hershberger assay had a LOEL of 16 mg/kg/day, equivalent to a predicted 

internal concentration of 13.3 μM. Ethoprop was inactive in all in vitro assays. Note that 

the Hershberger LOEL was 16 mg/kg/day, while the LD50 for Ethoprop is close to this, 
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in the range of 26–34 mg/kg suggesting possible confounding general toxicity effects 

(see CompTox Chemicals Dashboard https://comptox.epa.gov/dashboard/dsstoxdb/results?

search=DTXSID4032611#toxicity-values). The final false negative is Di (2-ethylhexyl) 

phthalate (DEHP). There is evidence that DEHP itself is not antiandrogenic but that its 

activity in the Hershberger assay is due to one or more metabolites and these may not be 

formed in vitro (Stroheker et al., 2005). Indeed, an alternative explanation for any of the 

false negatives is the lack of appropriate metabolic activation systems in the in vitro systems 

we have used.

Of the 5 false positive results (in vitro positive, in vivo negative), 3 have activity 

only near the top of the tested range (Folpet, Octylbicycloheptenedicarboximide and Z

Tetrachlorvinphos). It is always difficult to distinguish false from true in vitro activity in 

these cases, as activity can be confounded with cytotoxicity, and because there is usually 

only a single concentration with activity above the noise threshold, and this could just be 

an experimental artifact. The final 2 are Abamectin (single negative Hershberger study, only 

tested to 5 mg/kg/day) and Chlorothalonil (single negative study tested to 1000 mg/kg/day). 

These chemicals were classified as in vivo negative based on a combination of a single 

Hershberger result and a negative result in at least one other related in vivo assay. Both 

of these chemicals did not exhibit a statistically significant potency shift in the antagonist 

reporter gene confirmation assays. Further, all the false positive chemicals had relatively low 

overall confidence scores when evaluated in the full model (ranging from 0 to 2, with the 

exception of Chlorothalonil which had a score of 3). Another chemical of note based on 

mode of action is Finasteride, a 5α-reductase inhibitor. In this subset model, it is classified 

as an AR antagonist, with an AUC (antagonist) value of 0.18. In the full model, the AUC 

value is 0.09. It was weakly active (i.e., AC50 values > 10 μM) in 5 in vitro assays (A4, 

A5, A12, A13 and A14). While the pharmaceutical mode of action is through blocking 

formation of dihydrotestosterone from testosterone through 5α-reductase inhibition, the 

similarity of the finasteride steroid backbone to dihydrotestosterone may allow direct AR 

activity at higher concentrations. In summary, the majority of disagreements between the 

in vitro model and the in vivo antagonist reference chemicals may be due to the high doses/

concentrations where activity was seen in vivo or confounding loss-of-signal effects due to 

generalized cell stress that precedes cytotoxicity. More detailed results for the full model are 

given in Supplemental Table S7.

It is important to note potential limitations of the toxicokinetic approach we have used. 

The underlying PBPK model is relatively simple (3 compartment) and generic. It assumes 

100% oral bioavailability and only renal clearance. The accuracy can be limited in the cases 

of chemicals with low fraction unbound to plasma protein as the analytical method can 

be close to or below the level of detection. The model also assumes that the only route 

of metabolism is via liver. Comparisons with more detailed PBPK models and direct PK 

experiments show that in about 65% of chemicals, the value of Css is within a factor of 3.2 

of the value obtained experimentally, an additional 28% were off by as much as 6-fold, and 

8% of chemicals could be off by 2 orders of magnitude (Wambaugh et al., 2015).

A final issue to consider is the quantitative errors of prediction of Hershberger LOEL values 

using the IVIVE approach. There are 7 chemicals (the true positives) in the Hershberger 
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reference set with Hershberger LOEL values (taken as the lowest of the LOELs across all 

studies for a given chemical). The root mean square error (RMSE) between the Hershberger 

LOEL and the IVIVE LOEL is 0.85 log (mg/kg/day). To calculate the IVIVE LOEL, we 

converted the antagonist AUC to a concentration using the calibration curve (Supplemental 

Fig. S1) and then divided by Cavg or Css. Values are given in Supplemental Table S7, 

column R. We compared this with the variation among Hershberger studies in the database 

of Browne et al.(Browne et al., 2018) The corresponding RMSE comparing one Hershberger 

LOEL to another for chemicals with replicate studies is 0.75 log (mg/kg/day), close to the 

value for Hershberger-to-IVIVE RMSE. A recent study [Pham et al. submitted] examining 

variability in vivo LOEL values across multiple study types reported RMSE values in the 

range of 0.47–0.63 log (mg/kg/day), which indicates that the Hershberger variability is at the 

high end of this spectrum.

4. Discussion

We have described the construction of models of AR agonist and antagonist activity that 

use subsets of assays taken from a modified version of the full AR pathway model of 

Kleinstreuer et al. (2017). There is one agonist subset model with optimal performance 

with only 6 assays, but to achieve optimal performance for the antagonist mode, models 

can be built with as few as 5 assays. Optimal models for agonism are non-optimal for 

antagonism and vice versa (see Fig. 3). In both cases, the best subset of assays used multiple 

technologies and cell types, at different nodes in the AR signaling pathway. The best agonist 

subset models primarily used assays from the agonist nodes in Fig. 1 (N1–N5), while the 

best antagonist models used assays from the antagonist nodes (N1, N2, N6 and N7). This 

is all consistent with the results of the corresponding ER agonist subset modeling approach. 

As observed here, the sensitivity of a single assay for AR pathway activity (in agonist 

or antagonist mode) cannot achieve the same BA and sensitivity of a multi-assay model, 

emphasizing the need for an integrated approach to testing and assessment (IATA (OECD, 

2019)) that employ multiple assays with different sources of potential interference, domains 

of applicability, and coverage of key biological events. We note here that the approach taken 

in this work is intended to provide flexibility in precisely which assays (potentially including 

in silico models) one would need to run to determine AR activity.

Not all of the AR assays are currently available through the original sources, so in order 

to implement subset models, one may need to find existing or develop new assays that 

have similar behavior to the ones selected for the optimal subsets. In general, the high

performing agonist models use a cell-free receptor binding assay, a cofactor recruitment 

assay, a transactivation assay, and a cell proliferation assay. These probe the main points 

of the pathway (binding, cofactor-recruitment, transcript/translation and proliferation) and 

use different and complementary readout technologies. In general, the high performing 

antagonist subset models use a binding assay, a cofactor recruitment assay and two or 

three complementary antagonist-mode transactivation assays. As with the agonist mode, the 

assays probe the main nodes in the antagonist pathway (binding, coregulator interaction, 

and inhibition of transactivation). The main difference is that multiple assays per node are 

needed, likely because of factors mentioned above: most antagonists have weak potency 

resulting in lower signal-to-noise ratios in the assays, which make it more difficult to 
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distinguish true positives from noisy false positives. Additionally, antagonist assays are often 

confounded with cytotoxicity.

Given these points, we can make general recommendations for implementing new versions 

of these subset models. First, the currently used assays are either available commercially, or 

could be implemented using published protocols. With new assays, it would be necessary to 

calibrate the model performance against a set of reference chemicals. These might extend 

beyond the set used here. Fig. 2 shows that assay subset models with only one or two 

assays can have 100% predictivity of the in vitro reference chemicals but will not perform 

as well with a larger set of chemicals. Although the full model on the full set of chemicals 

is not necessarily the “truth”, it does provide a comprehensive benchmark against a large 

set of chemicals using a biologically based model of AR activity. One approach would 

be to supplement the initial reference chemicals with a set of borderline chemicals with 

which to characterize the performance of the new subset model against the full model. Here 

“borderline” means chemicals that are known to be active against AR but at concentrations 

near or above the typical in vitro testing range of ~100 μM. Given variable sensitivity of 

in vitro assays, some assays will detect these chemicals as active and some will not. For 

example, one could select a set of chemicals with AUC values (agonist or antagonist as 

required) in the range of 0.001–0.2 from Supplemental File S2. In agonist mode, there are 

218 chemicals in this range, and in antagonist mode, there are 89 chemicals in this range 

with antagonist confidence score ≥2. Given a set of assay data (AC50, Top, Hitcall), our 

software could be used to calculate AUC(agonist) and AUC(antagonist). One feature of 

the full model that cannot in general be calculated for the subset models is the antagonist 

confidence score (CS). As shown in Table 2 and the accompanying description, this includes 

weights related to the AUC value, the presence of cytotoxicity in the same concentration 

range as apparent antagonist activity, the use of a confirmatory antagonist assay with 

a different concentration of the reference agonist, the comparison of AUC(antagonist) 

with assay interference AUC values and a confirmation that both cell free and cell-based 

assays show activity. Therefore, a further recommendation would be to include cytotoxicity 

assays and a confirmatory antagonist assay, at least for chemicals with an initial indication 

of antagonist activity. Note that the CS is mainly used to confirm true positives, and 

to exclude false positives, but not to protect against false negatives. Supplemental Fig. 

S5 show the relationship between the CS and AUC(Antagonist) showing that there is a 

strong relationship between these two values, but that there are cases where CS < 2 what 

AUC(Antagonist) well above 0.1.

To compare model predictions with in vivo effects, it is desirable to have a reliable set of in 
vivo reference chemicals. In this case, we compared subset models to reference chemicals 

identified in a literature review of Hershberger and other in vivo assays measuring androgen

responsive endpoints, systematically identified for this purpose. It should be noted that the 

aim of comparing the AR subset model with the in vivo reference chemicals identified from 

a review of Hershberger studies was not to predict the Hershberger response, but rather to 

predict chemicals that may interact with the AR in vivo. The Hershberger assay has been 

used historically to evaluate chemicals for their (anti) androgenic effects, but the assay has 

inherent variability and there are a variety of factors that may confound results (see Browne 

et al., 2018; Kleinstreuer et al., 2018 for more detailed discussion). Though the Hershberger 
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assay and other in vivo tests that measure effects of test chemical on androgen responsive 

endpoints account for a more complete set of responses occurring in situ (e.g. effects 

of hepatic metabolism on parent chemical activity), results may be difficult to interpret 

due to the interaction of other targets and organ systems and a variety of compensatory 

mechanisms. Hence, results of the subset of multiple in vitro assays may better predict the 

effects of chemicals specifically on the AR pathway, and may provide high confidence in 

both the “true” positives acting through the steroid receptor and the “true” negatives due to 

the integration of multiple in vitro assays that account for different points in the signaling 

pathway using variable technologies.

Consideration should be given to the in vivo LOEL values of the reference chemicals as 

well. Using an in vitro to in vivo extrapolation approach could allow for adjustment of in 
vitro screening concentrations for more equitable comparison of results. Alternatively, one 

could use in vitro toxicokinetic calculations to aid in selecting the reference set of chemicals 

most appropriate for the in vitro testing data with respect to upper testing concentrations. 

Note that there may be some tradeoff in testing at higher concentrations in the form of 

a higher rate of assay artifacts generated. As demonstrated here, and discussed in more 

detail in (Kleinstreuer et al., 2018), much of the discordance between the in vitro model 

predictions and the in vivo results was likely due to relatively high-dose effects in the animal 

studies resulting in internal concentrations above the maximum tested concentrations in 
vitro.

A number of limitations of the AR pathway model are not addressed here. These limitations 

include thematic issues in high-throughput screening for bioactivity. First, the assays used 

in the current AR pathway model lack substantial xenobiotic metabolism and would require 

retrofitting with technology to confer this critical physiological capability (DeGroot et al., 

2018). This would require additional screening, which would likely be resource-intensive. 

Further, there may be thousands of substances under the regulatory purview of multiple 

agencies internationally which require some level of information regarding AR pathway 

activity. This high number of substances may make in vitro screening, even in 5–6 assays, 

relatively impractical. Thus, use of quantitative structure activity response (QSAR) models 

may inform which substances should be prioritized for experimentally evaluating for AR 

pathway activity. Global crowdsourcing approaches have been leveraged in the CoMPARA 

work to build such QSAR models and screen the EDSP universe of chemicals (Mansouri, 

2019). This set of QSAR models, and the overall CoMPARA consensus, were built using the 

complete data set we started with here. However, in forward validation of the CoMPARA 

models against an external test set from the literature, BA values were in the range of 

0.70–0.75, which is significantly lower than what is seen with the in vitro subset models. 

Regardless, chemicals with evidence of AR activity from both the subset in vitro models and 

the QSAR models could be candidates for follow-up investigation. It is important to note 

that for AR antagonist activity in particular, the confidence scores and the AUC values must 

be considered in parallel.

The ER version of this approach was recently published by OECD as an IATA (OECD, 

2019; U.S. EPA, 2019). We anticipate following a similar approach with the AR model 

and the minimal assay subsets. An IATA may be developed that includes other in silico/in 
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vitro data and improves predictive performance and reduces limitation of the current model. 

An expected outcome of that process will be further definition of the requirements for 

validating specific implementations of the subset models, in particular the selection of 

evaluation chemicals and performance characteristics. The end result of this process will 

be internationally acceptable approaches to efficiently evaluate chemicals, with the current 

caveat of lacking metabolic activation, for their ability to interact with the ER and AR 

pathways.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Diagram indicating the nodes in the AR signaling pathway associated with the assays. White 

stars indicate assays and correspond to the rows of Table 1. N1–N7 nodes correspond to 

processes in the underlying biological pathway, where blue is agonism, red is antagonism, 

and grey is common to both agonism and antagonism. Two representative assay interference 

processes are indicated, one affecting a single assay (A7) and another affecting a pair 

of related assays (A13 and A14). All single assays and groups of assays have their 

corresponding assay interference processes represented in the underlying mathematical 

model. See Kleinstreuer et al., 2017 for further details (Kleinstreuer et al., 2017). The 

strengths of these interference processes are indicated by the corresponding AUC values in 

Supplemental File S2.
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Fig. 2. 
Summary of the best performing subset models for each number of assays. The model BA 

values are shown in red circles for all chemicals, and in red diamonds for the in vitro 
reference chemicals. The values of R2 (all chemicals) are shown in blue circles and for 

RMSE (all chemicals) in cyan circles. The y-scale for BA and R2 is on the left, and for 

RMSE is on the right. Panel A shows data for agonist mode and panel B shows data for 

antagonist mode. The grey bands show the 95% CI for the full model BA based on assay 

potency variability.
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Fig. 3. 
Results of the full model versus the subset model A01010000000111 across the 1820 

chemicals. The x-axis is the subset model AUC and the y-axis is the full model AUC. 

Each point represents a chemical. Colored points are in vitro reference chemicals for the 

respective modes, where green are positive reference chemicals and red are negative. Panel 

A shows results for the agonist mode, and panel B shows results for the antagonist mode. 

In each mode, the legend provides the number of assays, the values of RMSE and R2, and 

in brackets the sensitivity, specificity and BA for all chemicals and the in vitro reference 

chemicals. There are horizonal and vertical lines at AUC = 0.1.
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Table 2

Schema for antagonist activity confidence scoring.

Source Criteria Confidence Score Contribution

AR pathway model AUC (Antagonist) ≥ 0.1 2

0.1 > AUC (Antagonist) ≥ 0.001 1

Cell stress/cytotoxicity flag average Z-score > 3 2

average Z-score < 1 −1

Confirmation assay data
a true antagonist shift (hit/hit) 3

true antagonist shift (no hit/hit) 2

FLAG: true antagonist shift but CI overlap 1

FLAG: wrong direction shift (hit/hit) −1

FLAG: wrong direction (hit/no hit) −1

Maximum receptor value AUC (antagonist) < AUC (any other) −1

Cell-free assay activity (A1-A3) A1-A3 are all inactive −1

a
See the original AR model paper for more details (Kleinstreuer et al., 2017).
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Table 3

New chemicals predicted to have AR agonist activity using the agonist subset model A11000010100000.

CASRN Name AUC (Agonist) Steroid CoMPARA
a

71–58–9 Medroxyprogesterone acetate 1.28 Y 111

17230–88–5 Danazol 1.02 Y 111

566–48–3 4-Hydroxyandrostenedione 0.54 Y 110

434–03–7 Ethisterone 0.41 Y 110

6533–00–2 dl-Norgestrel 0.32 Y 110

52–76–6 Lynestrenol 0.31 Y 111

91–44–1 7-Diethylamino-4-methylcoumarin 0.26 N 000

313–06–4 Estradiol cypionate 0.23 Y 111

42978–66–5 Tripropylene glycol diacrylate 0.16 N 000

1119–97–7 Tetradonium bromide 0.14 N 101

a
These binary values indicate activity in binding, agonist, antagonist modes. For example, 101 indicates an active prediction for antagonist and 

binding modes and inactive prediction for agonist mode.
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Table 4

New chemicals predicted to have AR antagonist activity using the subset model A01010000000111.

CASRN Name AUC (antagonist)
a

CoMPARA
b

19044–88–3 Oryzalin 0.27 [0.15] 000

119–90–4 3,3′-Dimethoxybenzidine 0.24 [0.07] 101

115–86–6 Triphenyl phosphate 0.09 [0.04] 000

444610–91–7 PharmaGSID_47315 0.08 [0.22] 101

120–11–6 1-Benzyloxy-2-methoxy-4-(1-propenyl)benzene 0.08 000

754–91–6 Perfluorooctanesulfonamide 0.05 000

a
Numbers are AUC (antagonist) values from the new subset model. Numbers in brackets are the corresponding values from the original full model 

of Kleinstreuer et al. Note that only a subset of the chemicals in the table were evaluated in that model.

b
The coding in this column indicates CoMPARA predicted activity in binding, agonist and antagonist modes.
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