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ABSTRACT

Polycomb Response Elements (PREs) are cis-
regulatory DNA elements that maintain gene tran-
scription states through DNA replication and mito-
sis. PREs have little sequence similarity, but are
enriched in a number of sequence motifs. Previ-
ous methods for modelling Drosophila melanogaster
PRE sequences (PREdictor and EpiPredictor) have
used a set of 7 motifs and a training set of 12
PREs and 16-23 non-PREs. Advances in experimen-
tal methods for mapping chromatin binding factors
and modifications has led to the publication of sev-
eral genome-wide sets of Polycomb targets. In addi-
tion to the seven motifs previously used, PREs are
enriched in the GTGT motif, recently associated with
the sequence-specific DNA binding protein Com-
bgap. We investigated whether models trained on
genome-wide Polycomb sites generalize to indepen-
dent PREs when trained with control sequences gen-
erated by naive PRE models and including the GTGT
motif. We also developed a new PRE predictor: SVM-
MOCCA. Training PRE predictors with genome-wide
experimental data improves generalization to inde-
pendent data, and SVM-MOCCA predicts the majority
of PREs in three independent experimental sets. We
present 2908 candidate PREs enriched in sequence
and chromatin signatures. 2412 of these are also
enriched in H3K4me1, a mark of Trithorax activated
chromatin, suggesting that PREs/TREs have a com-
mon sequence code.

INTRODUCTION

The body plan of the fruit fly, Drosophila melanogaster, is
genetically determined by transcription factors whose ex-
pression patterns are carefully coordinated and localized
(1). Some transcription factors are produced early in devel-
opment, where they gather at initiation elements in DNA
that in turn establish the expression states of developmen-
tally important genes (1). Later in development, these initi-
ating factors deteriorate, and a memory of gene transcrip-
tion states must be maintained (2,3).

Polycomb Response Elements (PREs) are cellular mem-
ory elements in DNA that maintain a memory of tran-
scription states of their target genes over cell division (4,5).
To accomplish this, PREs recruit Polycomb group (PcG)
proteins, which maintain repression, and Trithorax group
(TrxG) proteins, which antagonize PcG repression (6,7) (see
Materials and Methods for a discussion of response ele-
ments nomenclature). PcG proteins were first identified as
Hox gene regulators in Drosophila melanogaster, where PcG
mutant flies exhibit ectopic Hox gene expression along the
anterior-posterior axis (3,8). It has since been discovered
that PcG proteins target a much wider range of genes (9–12)
and that PcG proteins have mammalian homologs, with im-
portant roles in development and with implications in can-
cer (13,14).

The Polycomb system is best characterized in Drosophila
melanogaster, where tens of PREs have been experimen-
tally verified (1,15–17) and tens of PcG/TrxG proteins have
been identified (13,14). Drosophila PREs are several hun-
dred base pairs long, with little sequence homology be-
tween them (1). Nonetheless, they are enriched in the bind-
ing motifs for several DNA binding factors. PcG proteins in
D. melanogaster include Pc (Polycomb), Psc (Posterior sex
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combs), Pho (Pleiohomeotic) and Sfmbt (Scm-related gene
containing four mbt domains) (13). Pho is the only PcG
protein known to bind DNA with sequence specificity (18).
PcG proteins form three major complexes on chromatin:
Polycomb Repressive Complex 1 (PRC1) (19), Polycomb
Repressive Complex 2 (PRC2) (20–23) and Pleiohomeotic
Repressive Complex (PhoRC) (24). Polycomb repressed
chromatin is marked by histone 3 lysine 27 trimethyla-
tion (H3K27me3) (20–23). Trithorax activated chromatin is
marked by histone 3 lysine 4 monomethylation (H3K4me1)
(25) or dimethylation (H3K4me2) (26).

Drosophila PREs were originally discovered by testing
segments of DNA for their ability to maintain previously
established transcription states when taken out of their en-
dogenous context (4,5). In 2003, Ringrose et al. published a
computational method to model PRE sequences, named the
PREdictor, which predicted 167 candidate PREs genome-
wide in D. melanogaster for one expected false-positive pre-
diction (9). The PREdictor scores sequence windows by a
linear combination of motif pair occurrence frequencies,
weighted by log-odds of occurrence frequencies in a training
set of PREs and non-PREs. Ringrose et al. trained the PRE-
dictor on a set of 12 PREs (11 PREs from D. melanogaster
and 1 from D. virilis) and 16 non-PREs (promoters that
are enriched in PRE sequence motifs but that do not re-
cruit Polycomb), together with a set of seven motifs. Six
of these motifs correspond to DNA binding factors (two
for GAGA binding factor, three for Pleiohomeotic, one for
Zeste), and one is a motif that was identified by conserva-
tion between D. melanogaster and D. virilis in the engrailed
PRE and whose deletion abrogates silencing function (EN1)
(27). The authors found that paired motif occurrence fre-
quencies can distinguish PREs from non-PREs, whereas
single motif occurrence frequencies cannot. This suggests
that the sequence criteria for recruiting Polycomb are of a
combinatorial nature and that DNA binding factors coop-
erate on PREs to recruit Polycomb regulatory complexes.
Furthermore, Ringrose et al. identified several new can-
didate PRE sequence motifs, including the GTGT motif.
Since then, the GTGT motif has been shown to be essen-
tial for silencing in the vg PRE (28), and it has been shown
to be bound by the sequence-specific DNA binding protein
Combgap, which is involved in PcG recruitment (29). The
GTGT motif has also been rediscovered as the CACA mo-
tif in a ChIP-on-chip study of genome-wide binding pro-
files of PcG and other proteins (30). The PREdictor (9)
method was later extended to the jPREdictor (31), a re-
implementation in Java, providing a graphical user interface
and offering the ability to flexibly define motifs and their
combinations.

In 2012, Zeng et al. published the EpiPredictor (32), a
PRE predictor that uses the machine learning method of
Support Vector Machines (SVMs). Support Vector Ma-
chines model feature space class boundaries by placing a
decision surface between the points of two classes such that
the margin to the closest points is maximized, with room
for treating data points as noise by use of a soft margin, and
with the possibility of non-linear modelling by use of ker-
nel functions (33). The EpiPredictor filters sequence win-
dows using the SVM and a GC-content filter and scores

them based on the total number of motif occurrences they
contain. The SVM feature space consists of single motif
occurrence frequencies. The EpiPredictor was trained on
the same set of PREs and with the same motifs as used by
Ringrose et al. (9). Zeng et al. (32) found that non-linear
kernels distinguish PREs from non-PREs better than lin-
ear kernels, adding further evidence of the importance of
motif occurrence combinatorics for PRE sequences.

Recent advances in experimental methods have led to
the publication of several sets of candidate PREs genome-
wide in Drosophila (10,11,30,34–38). These methods in-
clude chromatin immunoprecipitation (ChIP) combined
with microarray (ChIP-chip) (39), ChIP combined with
high-throughput sequencing (ChIP-seq) (40) and DNA
adenine methyltransferase identification (DamID) (37).

The published candidate PRE sets vary in the number
and identity of candidate PREs they contain (1,12). Several
factors may underlie these discrepancies, such as differences
in experimental methods (ChIP-chip versus ChIP-seq) or
differences in antibodies used. The results of experimen-
tal mapping methods also depend on the cells being stud-
ied and on their genetic states. Furthermore, PREs physi-
cally interact with other genomic loci, forming higher-order
structures (41). Experimental mapping methods do not dis-
criminate between recruiting and interacting sites and can
as a result capture regions that PREs interact with, in ad-
dition to the PREs themselves (1). In silico PRE prediction
methods have no such limitations and can help us to under-
stand the sequence criteria for what constitutes a PRE.

Sequences that recruit PcG proteins in other organisms
are also being studied, though few mammalian PREs have
so far been identified (15). PcG recruitment has been mod-
elled in human embryonic stem cells using Support Vector
Machines (42). In the frog Xenopus tropicalis, Support Vec-
tor Machines were able to identify a k-mer spectrum that
characterizes H3K27me3 nucleation sites that are not CpG
islands and that work as repressive elements when taken
out of their endogenous context (43). Du et al. (44) re-
ported three classes of response elements in human: Poly-
comb Response Elements (PREs), Trithorax Response Ele-
ments (TREs) and Polycomb/Trithorax Response Elements
(P/TREs).

Previous publications on modelling Drosophila PREs
have used small sets of experimentally tested PREs for
training the models. The resulting genome-wide predic-
tions have limited overlaps with genome-wide experimen-
tally determined PcG-recruiting chromatin regions. Fur-
thermore, the GTGT motif has not previously been in-
cluded in Drosophila PRE sequence models. We here seek
to refine the state of the art in DNA sequence models of
Drosophila Polycomb Response Elements by investigating
whether the training of sequence models on genome-wide
experimentally determined PcG-recruiting DNA and in-
cluding the GTGT motif increases the agreement between in
silico PRE predictions and independent experimentally de-
termined genome-wide sets of PcG target regions. We fur-
ther address the question whether a more advanced mod-
elling approach can additionally improve model generaliza-
tion and present a new method for modelling cis-regulatory
elements, SVM-MOCCA.
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MATERIALS AND METHODS

Nomenclature of response elements

The nomenclature of response elements is evolving.
Chang et al. (45) identified a 440-bp fragment in the
postbithorax/bithoraxoid region of Ultrabithorax that con-
tains both a PRE (Polycomb Response Element) and a TRE
(Trithorax Response Element). Tillib et al. (46) distinguish
TREs and PREs as discrete sequences in a TRE-PRE mod-
ule. The closeness of PREs and TREs is described by (47) as
an ‘intermingling of elements’, and the authors propose that
PREs/TREs acquire the new name ‘maintenance elements’,
to reflect their dual function. Bloyer et al. (48) conclude that
(then) recent data strongly suggests that ‘each PRE/TRE
is composed of multiple different cis-DNA modules, which
can be bound by different subsets of PC-G and TRX-G
at defined spatial and temporal positions in the embryo’.
While some authors consistently use the term PRE/TRE
(1), emphasizing the dual nature of these maintenance el-
ements, others primarily use the term PRE and conclude
from experimental data that ‘PREs are also TREs’ (34). En-
derle et al. (35) present a set of ‘PcG binding sites’ that is not
only defined on the basis of proteins from the Polycomb
group, but also on TRX-C, and also use the term PRE.
Kahn et al. (36) also use the term PRE for regions defined
from overlapping peaks of E(Z), TRX and PC and coin-
ciding with H3K27me3 domains. It thus appears that more
recently, the term PRE is universally used for PcG target
sites that can also be TrxG target sites and have potential to
be both Polycomb and Trithorax Response Elements (with
the caveat that the response function of these sites has not
been tested). In accordance with this, we primarily use the
term PRE (Polycomb Response Element), but mean it to
encompass such elements’ potential function as TREs.

Genome assembly

We used the D. melanogaster genome assembly release 6
(2014) (49,50). All published genomic coordinates that we
considered that were for a previous genome assembly were
converted to release 6 using the FlyBase (51) coordinate
converter.

DNA sequence motifs

We used motifs defined in IUPAC notation (52), as used or
reported in Ringrose et al. (9): EN 1: GSNMACGCCCC (one
mismatch allowed), G10: GAGAGAGAGA (one mismatch al-
lowed), GAF: GAGAG, PF: GCCATHWY, PM: CNGCCATNDN
ND, PS: GCCAT, Z: YGAGYG, GTGT: GTGT. Throughout the
manuscript, when comparing classifiers with and without
the GTGT motif, those with have been marked ‘w. GTGT’.
SVM-MOCCA always makes use of this motif and has not
been marked explicitly.

For comparison experiments, we also used the follow-
ing motifs, reported in (53): one additional motif for Zeste:
BGAGTGV, one for Sp1/KLF: RRGGYG, one for Dsp1:
GAAAA, two for Grainyhead: TGTTTTTT and WCHGGTT,
and one for ‘site A’: GAACNG.

To investigate how the addition of GTGT to a PRE
model compares to adding a random 4-mer, we randomly

generated 19 unique 4-mers (unique also when considering
reverse complements).

Sequence-generating nth-order Markov chains

For every n-mer s (a DNA sequence of length n), we ob-
tained the probability of observing each nucleotide q ∈
{A, T, G, C} next as the fraction of times we observe q after
s versus the total number of observations of s. To account
for double-strandedness, we also obtained n-mer frequen-
cies on the reverse complement of each sequence. We added
a pseudocount of 1 for each nucleotide for each n-mer to en-
sure none had zero observations. To generate a sequence, we
randomly picked an n-mer with the probability of observing
this n-mer, and generated each subsequent nucleotide based
on the nucleotide probability distribution for the last gener-
ated n-mer.

Training and validation sequences

We acquired the training set used by Ringrose et al. (9), con-
sisting of 12 PREs and 16 non-PREs, henceforth referred to
as the T2003 training set.

Additionally, we acquired genome-wide candidate PcG
target sites determined by Schwartz et al. (34), Enderle et al.
(35) and Kahn et al. (36). We considered including data
from Schuettengruber et al. (30), but as they did not pub-
lish candidate PRE coordinates and we already consider
three more recently published PRE sets, we opted not to
include their data in our analysis. For the Schwartz et al.
(34) set, computationally defined PREs were downloaded
from the article’s Supplementary Table S6, and coordinates
were converted from D. melanogaster genome assembly 4
to assembly 6. PcG target regions from the Enderle et al.
(35) set were acquired from the article’s Supplementary Ta-
ble 3 and converted from D. melanogaster genome assembly
5 to assembly 6. The Kahn et al. (36) set of computationally
defined PREs was extracted from the article’s Supplemen-
tary Table S1 and converted from genome assembly 5 to as-
sembly 6. All coordinate conversions between genome as-
semblies were performed using the FlyBase (51) coordinate
converter. Only regions localized on chromosomes 2L, 2R,
3L, 3R, 4 and X were considered. Heterochromatic regions
(‘Het’ chromosomes in the FlyBase annotation) were dis-
carded. After coordinate conversions, in order to account
for any distancing between recruited factors and recruiting
sequences, all regions were resized to a length of 3 kb each
(1.5 kb bidirectionally from each region center), and cor-
responding sequences were extracted from the assembly 6
genome.

We generated three sets of negative control sequences for
training and testing: (a) For each PcG target region set, we
generated a set of one hundred times as many 3 kb-long ran-
dom sequences, using a fourth-order Markov chain trained
on the respective set, henceforth referred to as dummy
PREs. (b) A fourth-order Markov chain was trained on
the D. melanogaster genome and used to generate a set of
a hundred times as many 3 kb-long random sequences as
in the largest Polycomb target set (20 100 sequences in to-
tal), henceforth referred to as dummy genomic sequences.
Dummy sequences mirror average 5-mer distributions of
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their set of origin, but are unlikely to retain any higher-
order structure such as motif pairing or clustering. (c) Fi-
nally, we acquired coding sequences from the FlyBase (51)
r6.04 annotation. In order to get a set of uniformly sized
coding sequences for training and testing, we concatenated
the coding sequences and split the resulting sequence into
non-overlapping 3 kb-long fragments, henceforth referred
to as coding sequences. Additionally, in order to have a cod-
ing sequence region set to check for genomic overlaps with
predictions, unlikely to contain gene-proximal PREs, we de-
fined core coding sequences as annotated coding sequences
shrunk bi-directionally by 250 bp, with regions too small to
shrink omitted.

We refer to training sets consisting of PREs from a
genome-wide experimental set and corresponding dummy
PREs by the name T2017. For the main figures, T2017 refers
to the Schwartz et al. (34) set of PREs and of corresponding
dummy PREs as controls. For supplementary figures where
we train models on the Enderle et al. (35) and Kahn et al.
(36) sets, the meaning of T2017 is modified to refer to the
specified PRE set and corresponding dummy PREs.

Cross-validation

To account for random variation in generalization perfor-
mance, we cross-validated with 50 repetitions, resulting in
50 sets of independent training and test sequences. Over
cross-validation, each sequence set was randomly shuffled,
and the first 110 sequences were reserved for training. Of the
remainder, the first 50 PRE sequences and 5000 non-PRE
sequences of each set were used for testing. This 100:1 ra-
tio of controls to PREs reflects the expected genome-wide
context, based on the assumption that the 140 Mb-long D.
melanogaster genome contains 1400 1 kb-long PREs. Note
that the precise number is neither known nor necessary to
be known for this analysis, since any number between a
few hundred and a few thousand PREs in the Drosophila
genome will be reflected accurately enough in the perfor-
mance evaluations.

Classifier performance evaluation

When testing model generalization, we applied our mod-
els using a sliding window across all test sequences, where
the maximum window score was taken as the final test se-
quence score. When visualizing model generalization, we fo-
cused on Precision/Recall curves (PRCs), which plot Preci-
sion = TP/(TP + FP) in the Y-axis and Recall = TP/(TP
+ FN) in the X-axis. TP denotes the number of true pos-
itives, FP the number of false positives and FN the num-
ber of false negatives. PRCs, unlike ROC (Receiver Operat-
ing Characteristics) curves, are informative of generaliza-
tion performance on highly imbalanced datasets, such as
genome-wide predictions, where the number of positives
is small compared to the number of negatives (54). The
area under the Precision/Recall curve (PRC AUC) gives a
threshold-independent measure of expected classifier gen-
eralization. Note that, as a consequence, PRC AUC does
not refer to any particular number of predictions nor to
any particular number of true and false positives. Rather,
such numbers correspond to a point on the Precision/Recall

curve. Depending on requirements, e.g. with respect to an
expected precision, a score cutoff can be chosen which will
then determine specific numbers such as the number of pre-
dictions and true and false positives. We use the mean PRC
AUC over cross-validation, with 95% confidence intervals
calculated based on normally distributed means.

CPREdictor

We have reimplemented the PREdictor (9) algorithm in
C++, following the formulation given in (9) and in the
jPREdictor (31) source code. We henceforth refer to our
implementation as the CPREdictor. The CPREdictor has
been tested for functional equivalence with PREdictor and
jPREdictor, in order to ensure comparability.

SVM-MOCCA

The Support Vector Machine Motif Occurrence Combina-
torics Classification Algorithm (SVM-MOCCA) constructs
one Support Vector Machine (SVM) per motif in order
to model local sequence composition around motif occur-
rences in a target class versus one or more negative classes.
Given a DNA sequence, a feature vector is constructed for
each occurrence of each motif, consisting of occurrence fre-
quencies of motifs and dinucleotides within 250 bp of the
occurrence, giving a feature space in |M| + 42 dimensions
for a set of |M| motifs. For a given set of training sequences,
each motif SVM is trained on all occurrences of its respec-
tive motif in the training sequences, with the view of pre-
dicting the sequence class (positive or negative) of a motif
occurrence.

Once each SVM has been trained, occurrences of all mo-
tifs in the training set are classified by the corresponding
SVMs. Let M denote a set of motifs, P and N sets of posi-
tive and negative training sequences, respectively, and f(m,
s) the frequency of positively classified occurrences of motif
m in sequence s. For each motif m ∈ M, a weight is calcu-
lated as

wm = log

∑
p∈P f (m, p)/|P|

∑
n∈N f (m, n)/|N| .

Given a sequence to classify, feature vectors are con-
structed for all motif occurrences in the sequence, which are
in turn classified by their corresponding SVM. Frequencies
of positively classified motif occurrences, f(m) for a motif m,
are weighted and summed, giving a score for the sequence:

S =
∑

m

wm f (m).

We used LibSVM (55) for the Support Vector Machine
implementation. SVMs were trained with linear kernels and
also with polynomial kernels with degrees 2 and 3 (hence-
forth referred to as quadratic and cubic kernels, respec-
tively). As SVMs support the use of more than two classes,
we used PREs together with all three control classes for
training (dummy PREs, dummy genomic sequences and
coding sequences).

When more than two classes are used, each SVM mod-
els all class boundaries using binary SVM classifiers, and
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the class of each motif occurrence is predicted by majority
vote, as implemented in LibSVM (55). One of the classes is
designated as positive and the remaining classes as negative,
giving a binary classification.

Prediction threshold calibration

We considered the model trained for cross-validation fold
1. The test set PREs were taken as positives. For the cali-
bration negatives, we trained a fourth-order Markov chain
on the D. melanogaster genome, and we generated 44 626 se-
quences, each 3 kb long, adding up to approximately the size
of the D. melanogaster genome, at a total of 133.9 Mb. We
searched the precision/recall space for the threshold with
highest recall for the desired precision, with linear interpola-
tion if necessary. For reasons of stability, we took the mean
threshold over 10 repetitions of random-genome construc-
tion.

Genome-wide prediction

We applied each classifier across chromosomes 2L, 2R, 3L,
3R, 4 and X using a sliding window, with a step size of 10 bp,
and a window size determined by the classifier. Windows
with a score above the classifier threshold were noted as
predictions, and overlapping predictions were merged into
non-overlapping predicted candidate PREs.

Chromatin accessibility

We acquired DNaseI-seq data from the Berkeley
Drosophila Transcription Network Project (BDTNP)
(http://bdtnp.lbl.gov:8080/Fly-Net/access.jsp) for five dif-
ferent developmental stages (embryonic stages 5, 9, 10, 11
and 14). For a given set of regions, we defined accessible
regions of the set as the subset of regions that overlap with
regions in at least one of the five DNaseI-seq sets.

Genomic region overlaps

To measure genomic region overlaps between two sets A
and B, we took the subset of regions in A that overlap with
at least one region in B by at least one base pair. When com-
paring predictions to published genome-wide data sets, in
order to account for potential distancing of recruited fac-
tors from recruitment sites, we extended regions in the pub-
lished sets bi-directionally by 1 kb before checking overlaps
(with the exception of modENCODE histone marks).

ModENCODE data sets

We acquired GFF/GFF3 genomic coordinate files from
modENCODE (56) for D. melanogaster: H3K27me3 (13
sets); H3K4me1 (10 sets); H3K4me3 (14 sets); Pc (Poly-
comb) (6 sets); Psc (Posterior sex combs) (3 sets); dSFMBT
(2 sets). The full paths from the modENCODE FTP archive
are given in Supplementary Table S1. The datasets were
downloaded in April 2016, and later datasets were not
considered. The sets include data from animals (Adult-
Female, Adult-Male, Embryos-0-12-hr, Embryos-0-4-hr,

Embryos-12-16-hr, Embryos-14-16-hr-OR, Embryos-16-
20-hr, Embryos-2-4-hr-OR, Embryos-20-24-hr, Embryos-4-
8-hr, Embryos-8-12-hr, Larvae-3rd-instar, Larvae-L1-stage,
Larvae-L2-stage, Larvae-L3-stage, Late-Embryonic-stage),
as well as cell-lines (ML-DmBG3-c2, S2-DRSC).

Extraction of PRE predictions with biologically relevant sig-
nals

For each set of predictions by CPREdictor T2017 w. GTGT
and SVM-MOCCA (Supplementary Files 1 and 3), we ex-
tracted the subsets of predictions that overlapped both with
at least one H3K27me3 peak and with at least one peak of
Pc, Psc or Sfmbt. For the H3K27me3, Pc, Psc and Sfmbt
signals, we used merged sets of peaks from modENCODE
as noted above. The resulting sets of candidate PREs are
henceforth referred to as CPREdictor T2017 w. GTGT HC
(1036 candidate PREs; Supplementary File 2) and SVM-
MOCCA HC (2908 candidate PREs; Supplementary File
4), respectively, with ‘HC’ standing for ‘high-confidence’. In
addition, we extracted predictions enriched in H3K4me1 as
candidate TREs (Supplementary Files 10 and 11).

Core sequence fragment prediction

From the 3 kb-long (or longer when merged) SVM-
MOCCA predictions, we identified the most predictive sub-
regions, henceforth referred to as SVM-MOCCA HC Core
(Supplementary File 5). We applied SVM-MOCCA to its
genome-wide predictions, with an iteratively larger window
size from the following sequence of sizes: 500 bp, 600 bp,
750 bp, 1 kb, 1.5 kb, 2 kb, 2.5 kb, 3 kb, and with a step size
of 50 bp. The highest-scoring window for each window size
was collected, and the overall maximally scoring window
(with the score normalized by window length), was defined
as the core sequence.

Target gene prediction

We acquired the FlyBase genome annotation release R6.04.
For a given region, any gene overlapping with a region was
defined as a candidate target gene. For each region that did
not overlap with any gene, the gene closest to the region (as
determined by the closest region and gene endpoints) was
defined as a candidate target gene.

Candidate PcG target genes were predicted for the com-
plete PRE prediction sets from CPREdictor T2003, CPRE-
dictor T2017, CPREdictor T2017 w. GTGT (Supplemen-
tary File 6) and SVM-MOCCA (Supplementary File 7).

Target genes from other publications

We downloaded published sets of predicted PcG target
genes for PREdictor (9) and EpiPredictor (32), and from
Schwartz et al. (34) and Enderle et al. (35).

The Schwartz et al. (34) PcG target genes were extracted
from Supplementary Tables S2 and S4 from their article
(class I and class II high-confidence PcG target genes, re-
spectively), and these two sets were merged. For the Enderle
et al. (35) set, target genes were extracted from the article’s
Supplementary Table 4 (first column). Genes that could not

http://bdtnp.lbl.gov:8080/Fly-Net/access.jsp
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be found in the FlyBase (51) r6.04 annotation were omitted.
No further validation was performed on sets, except for the
predictions from (9), which we validated using FlyBase, giv-
ing higher numbers of genes recognized in the annotation
we used. Since no target genes were published in (36), we
predicted target genes for that study by proximity, follow-
ing the same procedure as for our own PRE predictions.

Gene ontology analysis

A list of all gene names was extracted from the FlyBase
(51) r6.04 annotation. For each set of candidate PcG target
genes, gene ontology analysis was performed using GOrilla
(57) with two unranked lists of genes, where the first was
the list of candidate PcG target genes and the second was
the list of all annotated genes.

Software and packages

All figures except for Figure 2D were generated using R
(58). The Precrec (59) library was used for generating aver-
age Precision/Recall curves and corresponding confidence
intervals (Figure 1A and C). The Plotrix (60) library was
used when generating the pie charts in Figure 2C. For gener-
ating the Venn diagrams in Figures 3D and Supplementary
Figure S11, the VennDiagram (61) library was used. Tom-
tom (62) was used to search for factors that bind a k-mer.
Gene ontology analysis was performed using GOrilla (57).
The vestigial, invected and engrailed loci in Figure 2D were
visualized using the Integrated Genome Browser (63).

RESULTS

Training sequence models on genome-wide PcG target sites
improves PRE sequence model generalization

We wanted to see how models trained on genome-wide
experimentally determined PcG-enriched regions compare
to models trained on the Ringrose et al. (9) set of PREs,
in terms of their ability to distinguish independent exper-
imentally determined PcG-enriched regions from different
classes of background sequences. To this end, we extracted
genomic sequences for PcG-enriched regions from three
publications (34–36), as described in Materials and Meth-
ods. We focus on the (34) set for training. Our models are
discriminative, necessitating a set of non-PREs for train-
ing. We used three classes of non-PRE sequences for train-
ing and testing: (a) dummy PREs, (b) dummy genomic se-
quences and (c) coding sequences, as described in Materials
and Methods. Dummy PREs, due to their motif composi-
tion being similar to that of PREs, form the strictest of our
control sets, but are also unlikely to retain the characteristic
motif occurrence clustering that has been found to be pre-
dictive of PREs (9). We thus assume that dummy PREs are
unlikely to model functional PREs, and we include this set
in the training of all of our models. Core coding sequences
have zero or close to zero overlaps with experimentally de-
termined PRE sets when promoter-overlapping PREs are
omitted (data not shown). We speculate that any overlaps of
PREs with coding sequences are due to promoter-promixal

PREs, lack of positional precision for ChIP data, and fac-
tor mobility, rather than that PREs occur in coding se-
quences. With this assumption, coding sequences constitute
a set of real genomic sequences that are unlikely to con-
tain PREs. Both dummy genomic sequences and coding se-
quences share only minimal resemblence with PREs, mak-
ing them more null than dummy PREs. We thus focused
most of our attention on training with dummy PREs, but
we include dummy genomic and coding sequences in our
model evaluation and when training multi-class models, as
independent control sets. This enabled us to investigate any
over-fitting to dummy PREs that may occur and to train
multi-class models.

In order to test model generalization, we split the PRE
and control sets into independent training and test sets, with
50-fold cross-validation to account for random variation,
and a 1:100 ratio of PREs to non-PREs to reflect the ex-
pected genome-wide context, as described in Materials and
Methods.

When training the CPREdictor algorithm on the T2017
set, using the same motifs as Ringrose et al. (9), and evalu-
ating the trained classifiers on independent cross-validation
PREs versus dummy genomic sequence controls, we ob-
served a 2.9-fold increase in the mean Area Under the Pre-
cision Recall Curve (PRC AUC) compared to training with
the training set used by Ringrose et al. (9) (T2003) (Fig-
ure 1A). This increase in PRC AUC is robust over cross-
validation (Figure 1A and B), with non-overlapping 95%
confidence intervals of the mean PRC AUCs (Figure 1A).
We also observed increased PRC AUC for T2017 when eval-
uating with dummy PRE controls (Figure 1C and D) and
coding sequence controls (Supplementary Figure S1).

These results demonstrate that training models on
genome-wide experimentally determined PcG target sites,
and with controls generated by a fourth-order Markov
chain trained on those sites, results in models that better
distinguish independent PcG target sites (from the same
set) from genomic background and PRE-like non-PRE
sequences than models trained on the set compiled by
Ringrose et al. (9). Training and evaluating PRE sequence
models using other published sets of PcG-recruiting re-
gions shows the same trend, where models trained on PcG-
recruiting regions generalize better to independent PcG tar-
get regions than models trained on the T2003 set (Supple-
mentary Figure S2).

The improvement in model generalization is independent of
training set size

To determine the influence of training set size on generaliza-
tion performance, we additionally trained the CPREdictor
using sets of 12 and sets of 50 PRE and control sequences
each. We observed only negligible differences in generaliza-
tion performance across the sets of 12, 50 and 110 training
sequences (mean PRC AUCs, with 95% confidence inter-
vals, were 34.62 ± 1.84%, 34.79 ± 1.82% and 34.91 ± 1.85%,
respectively; all values from an evaluation against dummy
PREs; compare Figure 1C), demonstrating that training set
size does not play a role in generalization performance and
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Figure 1. Classifier generalization when trained on genome-wide experimental data for PRE prediction. (A) Average Precision/Recall plot for classifiers
applied to PREs determined by Schwartz et al. (34) (independent from training set PREs) versus 100 times as many control sequences generated by a
fourth-order Markov Chain trained genome-wide, as according to the plot legend. Average curves over all 50 folds are shown, together with 95% confidence
intervals for the mean precision. AUC values are percentages rounded to two digits. (B) PRC AUC box plot for multiple classifiers over all 50 folds. (C)
Average Precision/Recall plot for PREs determined by Schwartz et al. (34) (independent from training set PREs) versus 100 times as many sequences
generated randomly using a fourth-order Markov Chain trained on PREs, constituting a naive PRE model (dummy PREs). Average curves over all 50
folds are shown, together with 95% confidence intervals for the mean precision. (D) PRC AUC box plot for multiple classifiers over all 50 folds.
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Figure 2. Results of genome-wide candidate PRE/TRE prediction for an expected precision of 80%. (A) Numbers of experimentally determined and
computationally predicted candidate PREs. Accessible portions in Polycomb repressed domains (H3K27me3) have been marked, as well as the portions of
those regions that are enriched in Polycomb. Chromatin accessibility was derived from DNaseI-seq data; see Materials and Methods, also for H3K27me3
and Polycomb datasets. (B) Overlap sensitivity of each classifier’s predictions to two genome-wide, experimentally determined candidate PRE sets (35,36)
and a set of functionally validated PREs (69) (see Materials and Methods for the definition of these three sets). Overlap sensitivity is defined as the fraction
of regions in an experimental set that are overlapped by at least one prediction. (C) Proportions of the sets of predictions that overlap with different
genomic loci. Only predictions in accessible chromatin are considered. The merged set of experimentally determined PREs by Kahn et al. (36), Enderle
et al. (35) and Schwartz et al. (34) are considered first, and from the leftover, H3K4me1, then promoters, then core CDS; the final leftover set of predictions
is marked as non-coding. See Materials and Methods for H3K27me3 datasets. Promoters are predicted as 3 kb upstream to 0.5 kb downstream from
annotated gene transcription start sites. Core CDS is annotated coding sequence (CDS) shrunk bi-directionally by 250 bp (see Materials and Methods).
(D) invected/engrailed and vestigial loci, visualized with the Integrated Genome Browser (63).
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Figure 3. PcG/TrxG target gene prediction results. (A) Numbers of target genes predicted by each algorithm, as well as in each experimentally published
set. (B) Fractions of predicted target genes that have predicted PREs in either promoter regions (TSS −3 kb/+0.5 kb), in non-coding regions (not on
promoters or core coding regions) or both. (C) Sensitivity of each classifier target gene prediction set to experimentally determined sets. Sensitivity is
defined as the fraction of experimentally determined genes that are also predicted. * Kahn et al. (36) did not publish a set of genes, so we predicted target
genes by proximity. ** Genes that were not found in the current annotation were omitted. (D) Venn diagrams of gene set overlaps for validation gene sets
and target gene predictions.

suggesting that the T2017 training set is qualitatively differ-
ent from the T2003 training set.

The choice of negative training sequences is instrumental in
PRE prediction performance

It is interesting to ask how models trained with the train-
ing set used by Ringrose et al. (9) fare compared with mod-
els trained using their set of PREs and randomly generated

non-PRE sequences (dummy PREs). To test this, we trained
a fourth-order Markov chain on the Ringrose et al. (9) train-
ing set PREs, and we randomly generated 12 dummy PREs,
each with length equal to the mean PRE length (2914 bp).
After training CPREdictor on this training set, we observed
increased generalization to the Schwartz et al. (34) set versus
dummy PREs compared to when using the negative train-
ing set from Ringrose et al., with PRC AUCs close to those
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obtained when training with ChIP-based data (Supplemen-
tary Figure S3). In summary, combining the 2003 positive
training sequences with dummy PREs derived from these
as negatives generalizes better to independent PcG targets
than models trained with the original 2003 positive and neg-
ative training sets, demonstrating that the choice of negative
training sequences is instrumental in PRE prediction per-
formance.

Including the GTGT motif improves PRE sequence model
generalization

The accumulating evidence for the GTGT motif being a
component of Polycomb regulation (9,28–30) prompted us
to investigate whether the inclusion of the GTGT motif in
our PRE sequence models improves generalization to in-
dependent PREs. When we added the GTGT motif to our
CPREdictor T2017 model, we observed an additional 1.1-
fold increase in the mean PRC AUC on independent PREs
and dummy genomic sequences in comparison to the T2017
model without the GTGT motif (Figure 1A). This increase
is robust over cross-validation, different PRE sets and dif-
ferent control classes (Figure 1A–D, and Supplementary
Figures S1 and S2). In summary, the inclusion of the GTGT
motif in PRE models improves generalization across differ-
ent training and test sets, providing additional evidence that
this motif plays an important role in Polycomb regulation.

The improvement in model generalization cannot be at-
tributed to increased model complexity, and GTGT performs
better than other reported motifs

To assess the degree to which the improvement in general-
ization performance upon adding the GTGT motif might
be explained by the increased model complexity (owing to
the inclusion of a motif and the associated parameters), we
added random 4-mers to our CPREdictor T2017 model.
The inclusion of GTGT resulted in a 1.04-fold to 1.16-
fold increase in the mean PRC AUC over the inclusion of
18 out of 19 other unique, randomly generated 4-mers, for
Schwartz PREs versus dummy genomic controls (Supple-
mentary Figure S4), demonstrating that the GTGT motif
contributes to a performance improvement beyond that ex-
pected from increased model complexity. The only 4-mer
that gave higher PRC AUC was GGCG. Searching for D.
melanogaster factors that bind GGCG using Tomtom (62)
gave Brinker (Brk) as a match (P-value = 7.78e–04), a tran-
scriptional repressor of Dpp target genes (64–66). We also
tested six other published motifs that have been associated
with PcG recruitment: one additional motif for Zeste, one
for Sp1/KLF, one for Dsp1, two for Grainyhead and one
for ‘site A’ ((53) and references therein; see also Materials
and Methods). The GTGT motif gives the largest improve-
ment in model generalization (1.06-fold to 1.10-fold higher
PRC AUC compared with the inclusion of the other mo-
tifs, for Schwartz PREs versus dummy genomic sequences),
while the other motifs affect model generalization to only a
smaller extent and similarly to each other (PRC AUCs range
from 59.73% to 61.96% for Schwartz PREs versus dummy
genomic controls, and the majority of the confidence inter-
vals overlap with one another) (Supplementary Figure S5),

suggesting that the GTGT motif plays a more decisive role
in PcG recruitment.

Genome-wide PcG target sites and Ringrose et al. training
PREs have different sequence properties

Given that the models trained with the T2017 set and the
GTGT motif and those trained with the T2003 set showed
highly different generalization abilities to independent PcG
target sites, we were interested in how the models differ
and what might cause the difference in generalization abil-
ity. We thus investigated the weights of CPREdictor mod-
els trained with the T2003 set and T2017 set, and also with
PREs from the T2003 set and generated non-PREs (Sup-
plementary Figure S6).

We found a moderate negative correspondence between
motif pair weights assigned using T2003 versus T2017
(Pearson’s correlation coefficient < –0.5). Weight correla-
tion when using T2003 PREs and generated non-PREs ver-
sus when using the T2017 set is low (Pearson’s correla-
tion coefficient < 0.4). For T2003 versus when using T2003
PREs and generated non-PREs, correlation is similarly low
(Pearson’s correlation coefficient < 0.4). Whereas the T2003
model has three negatively weighted motif pairs (G10:G10,
G10:GAF and GAF:GAF), with all three weights be-
ing substantial, the T2017 model has two (PM:PM and
PS:GTGT), both with weights close to zero. In fact, the
most negatively predictive T2003 motif pair, G10:G10, is
the most highly weighted motif pair for the T2017 model.
The discrepancy might be due to clusters of GAF motifs in
the negative training set in (9) which includes promoters of
genes that are regulated by GAF and Z (9). The small size
of the T2003 set can result in one or a few more pair occcur-
rences in the negative training set compared to the positive
training set which would have a large influence on the fi-
nal model weights. The seven highest weighted motif pairs
in the T2003 model all include Pho binding site variants
(PF:PM, GAF:PF, PM:PS, G10:PM, G10:PF, PF:PF and
PM:Z). These weights have approximately been reduced by
half or more for the T2017 model, and the top four highest
weighted motif pairs for the T2017 model do not include
any Pho binding site variants and are instead enriched for
G10 (G10:G10, G10:GAF, G10:Z, G10:GTGT). The dom-
inance of G10 in the top T2017 motif pair weights may in
part be attributed to properties of control sequences gener-
ated by Markov chains of fixed order and the long length of
G10. Models trained using the T2003 versus T2017 sets are
thus dissimilar, meaning that motif composition is different
in the training sets.

Models trained with genome-wide PcG targets can distin-
guish Ringrose et al. training PREs from background

As the models trained on T2003 and T2017 are so differ-
ent, we wanted to see how our models score the training
set used by Ringrose et al. (9). The models that we trained
on ChIP data versus dummy PREs have lower PRC AUC
to the Ringrose et al. (9) training set than does CPREdic-
tor trained on this set, but PRC AUCs are still above ran-
dom (Supplementary Figure S7). The best generalization
to the Ringrose et al. (9) training set that we observe for
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models not trained on this set is for CPREdictor including
the GTGT motif, with a mean PRC AUC of 70.20 ± 0.99%.
The lowest is for SVM-MOCCA, with a mean PRC AUC of
61.75 ± 1.14%. We also investigated the degree to which our
models can distinguish the Ringrose et al. (9) PREs from
dummy PREs. For this case, CPREdictor with GTGT and
SVM-MOCCA obtain the highest PRC AUCs, at 81.23 ±
0.26% and 98.45 ± 0.32%, respectively. In conclusion, our
models are still able to distinguish the set of PREs and non-
PREs used by Ringrose et al. (9), though to a lower degree
than CPREdictor trained on this set, and our models are
better at distinguishing the Ringrose et al. (9) PREs from
randomly generated controls.

Uniformly weighted motif pair clustering distinguishes PREs
from background

Considering the large differences in model weights obtained
when using T2003, T2017 and a set consisting of PREs from
T2003 and generated non-PREs, we wanted to see how well
a uniformly weighted PREdictor model would distinguish
PREs from non-PREs. We thus constructed a PREdictor
model with all weights set equal to 1, henceforth referred
to as the Dummy PREdictor. We found that the Dummy
PREdictor generalizes comparably to CPREdictor trained
with T2017 when including the GTGT motif and testing
with Schwartz PREs as positives and dummy genomic se-
quences as negatives (Figure 1A). When we evaluate our
models using Schwartz PREs as positives and dummy PREs
as negatives, where the CPREdictor has been trained with
this set, the Dummy PREdictor outperforms the CPREdic-
tor (Figure 1C ). This was a surprise to us, as we expected a
trained model would have an advantage, with weights fitted
both to PREs and a randomly generated non-PRE distribu-
tion. The Dummy PREdictor corresponds to a uniformly
weighted motif pair clustering.

A more advanced PcG target site sequence model improves
generalization

We have developed SVM-MOCCA (see Materials and
Methods), a new method for modelling cis-regulatory ele-
ments, and we wanted to test how such a more advanced
modelling method would fare in modelling PcG target sites
in comparison to the CPREdictor.

We trained SVM-MOCCA using the T2017 set with all
three control classes and with the motifs used by Ringrose
et al. (9), with the addition of the GTGT motif. The train-
ing sequences are 3 kb long. Ringrose et al. (9) used a
500 bp window. We thus tested how CPREdictor and SVM-
MOCCA models generalize when using windows that are
500 bp or 3 kb long. We found that for SVM-MOCCA,
using a 3 kb sequence window gave similar generalization
performance to a 500 bp window, and we focus on a 3 kb
window due to it potentially capturing more diffuse PREs.
For the CPREdictor, a 500 bp sequence window gives the
best generalization, so we focus on using this window size
(Supplementary Figure S8).

The method of Support Vector Machines supports non-
linear classification, which prompted us to test SVM-
MOCCA with linear, quadratic and cubic kernels (see Ma-
terials and Methods). The best generalization performance

was achieved with the quadratic kernel (Supplementary
Figure S9). We thus focus on the quadratic kernel in subse-
quent analyses, referring to the corresponding run as SVM-
MOCCA.

When testing with Schwartz PREs versus dummy ge-
nomic sequences, we observed a 1.3-fold increase in PRC
AUC when using SVM-MOCCA (with a quadratic kernel,
trained with T2017 with three control classes, and includ-
ing the GTGT motif) compared to the best CPREdictor re-
sult (trained with T2017 and including GTGT) (Figure 1A).
This increase is robust over cross-validation, different PRE
sets and different control classes (Figure 1A–D, and Sup-
plementary Figures S1 and S2), and the 95% confidence in-
tervals of the mean PRC AUCs are non-overlapping (Fig-
ure 1A and C). SVM-MOCCA is particularly good at dis-
tinguishing PREs from dummy PREs, giving a 1.5-fold in-
crease in the mean PRC AUC over CPREdictor (Figure
1C). These results demonstrate that a more advanced mod-
elling approach can substantially contribute to an improved
generalization performance.

Models trained on genome-wide PcG target sites predict more
candidate PREs for the same expected precision

Having trained our models, we can predict candidate PREs
genome-wide. Previous efforts of modelling PREs (9) have
yielded candidate PRE predictions of high reliability, but
with only moderate overlap with sets of genome-wide PcG
target sites (67). We wanted to see whether training models
on genome-wide PcG target sites would result in predictions
with higher agreement with independent genome-wide PcG
target sites.

We set a score threshold for each model for an expected
precision of 80% genome-wide. Having trained CPREdic-
tor with the T2017 set, we predicted over 37 times more
candidate PREs genome-wide compared to having trained
CPREdictor with the T2003 set (Figure 2A). Including the
GTGT motif led to another 1.6-fold increase in predictions
(Supplementary File 1). Using SVM-MOCCA gave a fur-
ther 2-fold increase in predictions over CPREdictor (Sup-
plementary File 3).

CPREdictor trained with T2003 predicts less than half as
many PREs as the PREdictor predicted genome-wide (9).
This can be explained by differences in the threshold cali-
bration procedure. Ringrose et al. (9) calibrated the PRE-
dictor threshold for one expected false positive prediction
genome-wide, based on 100 genome-size sequences gener-
ated by an i.i.d. genome model. Our method differs in that
we find a threshold for which we obtain a desired precision
for a set of independent PREs and controls generated by
a fourth-order Markov chain trained genome-wide, where
the total control sequence length adds up to the size of
the genome. Sequences generated by a fourth-order Markov
chain are more difficult for our models to distinguish from
PREs than are sequences generated by an i.i.d. model (data
not shown). As a result, we can expect a reduction in num-
bers of predictions made using our control sequences for
calibration. Also, the ability of a model to positively classify
PREs is taken into account by our method, which can affect
the numbers of predictions made if precision is only high
for low recall, which is the case for CPREdictor trained on
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T2003. We can expect some further difference in numbers of
predictions for these calibration methods on the basis that
Ringrose et al. (9) use genome-length random sequences,
whereas we use sets of PRE-length sequences with total set
length equal to that of the genome. The calibration methods
are thus not comparable. However, we use our method for
calibrating all the classifiers that we consider, where possi-
ble.

SVM-MOCCA motif model weights are heterogeneous and
enriched for interacting dinucleotide patterns

Given the improved generalization of SVM-MOCCA with
a quadratic kernel, we were interested in what the sequence
criteria encoded in the model are. In order to investigate
this, we transformed the SVM quadratic kernel into a sum
of weighted feature pairs (Supplementary Text 1). Our
SVM-MOCCA models are multi-class, giving a large num-
ber of weights. We wanted to condense the weights involved
in distinguishing PREs from non-PREs into one weight per
feature pair. We thus summed up all feature pair weights
across all PRE versus non-PRE class boundaries. Duplicate
features, due to reverse complements and reversed pairing
order were added together, giving a set of 171 unique feature
pair weights.

Strikingly, each SVM has different motif pair weighting,
even though all of the SVMs have been trained on the same
sets of PREs and non-PREs. The only difference lies in the
motifs for which each SVM is trained to classify its local se-
quence landscape. This suggests that PRE sequence criteria
may vary per motif, with different local sequence landscapes
for different PRE motifs.

For all motifs except the En motif, all weights involving
motif pairs are negatively weighted, and positively weighted
feature pairs are with dinucleotide pairs. Positively weighted
dinucleotides generally include ‘GA’/‘AG’, which likely cor-
respond with GAGA site enrichment, as well as ‘AC’/‘CA’,
which may correspond with GTGT sites. ‘AA’ self-pairing
is generally positively weighted, as is ‘CC’ self-pairing, but
interestingly, ‘AA’ paired with ‘CC’ is negatively weighted.

In conclusion, SVM-MOCCA classifier weights are en-
riched for patterns in agreement with previous work, such as
GAGA, GTGT and poly-A, but also in ‘CC’-dinucleotide
self-pairing, and there are weight interactions for the ‘AA’
and ‘CC’ dinucleotides.

A quarter to half of genome-wide PRE predictions are in
chromatin that is inaccessible early in development

ChIP-chip and ChIP-seq can only detect the PcG target re-
gions that are accessible for binding in the cells that are be-
ing studied. We were thus interested in how many of our
predictions fall in chromatin that is accessible over devel-
opment. We acquired DNaseI-seq peaks for cells in five dif-
ferent embryonic stages (Materials and Methods). We re-
fer to regions that overlap with peaks in at least one of the
DNaseI-seq sets as being in accessible chromatin. The ex-
perimentally determined PcG target sets that we consider
(34–36) were determined by ChIP-chip and ChIP-seq on
ML-DmBG3-c2, ML-DmD23-c4, S2 and Sg4 cell lines, de-
rived from embryonic cells and the developing nervous sys-

tem. As expected, all regions in these sets overlap with ac-
cessible chromatin. One half to three quarters of predictions
made by our methods are in accessible chromatin (Figure
2A). Therefore, a quarter to half of our predictions are in-
accessible in the five developmental stages we consider, and
even if they are bona fide PREs, they would likely go unde-
tected in the experiments that determined the PcG targets
that we consider. When comparing in silico PRE predictions
to experimentally determined PcG targets, we thus focus on
PREs in accessible chromatin.

We predict a set of 2908 candidate PREs enriched in biolog-
ically relevant signals

To assess the degree to which our predictions recruit PcG
proteins and repress or activate chromatin, we acquired
genome-wide experimentally determined enrichment sig-
nals for three PcG proteins (Pc, Psc and Sfmbt) (13), hi-
stone 3 lysine 27 trimethylation (H3K27me3; a mark of
Polycomb repressed chromatin) (68), and histone 3 lysine
4 monomethylation (H3K4me1; a mark of Trithorax acti-
vated chromatin) (25), from modENCODE (56) (see Mate-
rials and Methods).

Of accessible predictions, over half are enriched in
H3K27me3 at some point during development, and the ma-
jority of these regions are also enriched in at least one PcG
protein (Pc, Psc or Sfmbt) (Figure 2A). We extracted the
latter subsets for CPREdictor T2017 w. GTGT and SVM-
MOCCA (see Materials and Methods), henceforth CPRE
dictor T2017 w. GTGT HC (1036 high-confidence can-
didate PREs; Supplementary File 2) and SVM-MOCCA
HC (2908 high-confidence candidate PREs; Supplementary
Files 4 and 5) respectively. In addition, we extracted pre-
dictions enriched in H3K4me1 (1723 candidate TREs for
CPREdictor T2017 w. GTGT, 3616 candidate TREs for
SVM-MOCCA; Supplementary Files 10 and 11, respec-
tively). The SVM-MOCCA PRE and TRE sets have 2412
candidates in common, supporting the notion of a dual
function of PREs as TREs. The four sets constitute collec-
tions of candidate PRE/TREs with experimental support
in the form of enrichment in biologically relevant signals.

Models of genome-wide PcG target sites increase the agree-
ment between PRE prediction and genome-wide experiments

For independent evaluation of our predictions, we consid-
ered two independent published sets of PcG target regions:
one determined using ChIP-chip (36) and one using ChIP-
seq (35). The Schwartz et al. (34) and Kahn et al. (36) sets
are both based on Sg4 cells and have related sources in terms
of authors and institutions. However, whereas the Schwartz
et al. (34) set is based on peaks of E(z), Psc and Pc, the
Kahn et al. (36) set is based on peaks of E(z), Trx, Pc and
H3K27me3. The Kahn et al. (36) set is also larger than the
Schwartz et al. (34) set (201 versus 170 candidate PREs, re-
spectively, in Drosophila genome assembly R6; 165 in the
Schwartz et al. set when excluding known PREs around the
invected/engrailed and vestigial loci). As a result of their re-
latedness, the Kahn et al. (36) and Schwartz et al. (34) sets
have a high number of overlaps (70.65−83.53% when con-
sidering the full sets).
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The Enderle et al. (35) set is unrelated to the Kahn et al.
(36) and Schwartz et al. (34) sets, determined using a differ-
ent experimental method (ChIP-seq), cell culture (S2 cells)
and factors (Pc, Ph, Psc and Trx-C). The Enderle et al. (35)
set is an order of magnitude larger than the other sets, at
2274 regions (2265 euchromatic regions). As a result, the
Enderle et al. (35) set covers most of the Schwartz et al. (34)
and Kahn et al. (36) sets (91.18% and 89.55% of regions, re-
spectively, when considering the full sets). Additionally, we
used a set of functionally tested PREs compiled from the
literature (69).

Sequence models trained on genome-wide experimentally
determined PcG target sites predict a larger fraction of
each of the independent experimental sets, compared to the
CPREdictor trained with the T2003 set (Figure 2B). SVM-
MOCCA predicts the majority of each of these sets (Figure
2B). Out of our predictions in accessible chromatin, over
a quarter overlap with regions from the Schwartz, Enderle
and Kahn sets (Figure 2C). Of the remainder, the majority
are enriched with histone 3 lysine 4 monomethylation, po-
tentially indicative of TREs/PREs in active states (25).

During training, we left out five PREs from the well-
studied vestigial (vg) (28), invected (inv) (70) and engrailed
(en) (71,72) loci. Of these PREs, CPREdictor trained
with the T2003 set predicts only one, whereas CPREdic-
tor trained with the T2017 set predicts three out of five,
and SVM-MOCCA predicts all five (Figure 2D). SVM-
MOCCA also predicts several other peaks, with no experi-
mental evidence.

We were interested in the degree to which our final predic-
tions conform to the PREs and non-PREs used for training
by Ringrose et al. (9). We thus acquired genomic coordi-
nates for the T2003 set by BLAST search, and compared
overlaps. CPREdictor T2017 w. GTGT and SVM-MOCCA
predict 45.45% and 90.91% of the T2003 PREs, respectively,
which is a 1.7–3.3-fold increase over CPREdictor T2003,
for which this set was used for training. Whereas CPREdic-
tor T2003 predicts none of the T2003 non-PREs, CPRE-
dictor T2017 w. GTGT and SVM-MOCCA predict 18.75%
and 56.25%, respectively. Though SVM-MOCCA predicts
many of the T2003 non-PREs, SVM-MOCCA HC Core
predicts as many T2003 PREs as SVM-MOCCA, but only
18.75% of T2003 non-PREs, the same number as CPREdic-
tor T2017. See Supplementary Figure S10 for an extended
evaluation.

Taken together, these results demonstrate that models of
genome-wide PcG target sites have larger agreement with
independent genome-wide experimental data and function-
ally verified PREs than models based on the Ringrose et al.
(9) training set.

We predict a large new set of candidate PcG regulated genes,
enriched in transcription factor and signalling functions

Given our much larger set of candidate PRE predictions,
it is interesting to identify candidate target genes and their
functions and to compare them with previously published
sets. Target genes for our predictions were assigned as de-
scribed in Materials and Methods. Target genes for other
publications were extracted or defined also as described in
Materials and Methods.

Similar to the prediction of PREs, our methods predict
many more target genes than previously published methods
(Figure 3A). The majority of predicted PcG target genes
has associated PRE predictions either at the promoter or
in non-coding sequence, but not both (Figure 3B). Our tar-
get gene predictions have higher numbers of overlaps with
target genes from genome-wide PcG profiling studies than
previously published in silico methods (Figure 3C). The sen-
sitivities of our predictions to the Schwartz et al. (34) and
Enderle et al. (35) sets are lower when based on genes (Fig-
ure 3C), in comparison to when based on PREs (Figure 2B).

We summarized gene set overlaps with Venn diagrams
(Figure 3D). For the Schwartz et al. (34), Enderle et al.
(35) and Kahn et al. (36) sets, respectively, 21.82%, 74.63%
and 18.18% of each is unique. The majority of the Kahn
et al. (36) set is in consensus with the other sets, whereas
the majority of the Schwartz et al. (34) set is in agreement
with the Enderle et al. (35) set but not the Kahn et al. (36)
set. The largest target gene agreement is observed between
the Enderle et al. (35) and Schwartz et al. (34) sets, at 319
genes, corresponding to 24.82% of the Enderle et al. (35)
set and 76.50% of the Schwartz et al. (34) set. Accordingly,
the sets of experimentally determined PcG target genes that
we consider have different sizes and incomplete overlaps.
Of published PREdictor gene predictions (9), 43.06% cor-
respond to genes in at least one of the experimentally de-
termined sets. The ratio of SVM-MOCCA predictions that
correspond to experimentally determined PcG target genes
is smaller, at 17.20%. There are only 12 validated genes that
only the PREdictor predicts and SVM-MOCCA does not,
and SVM-MOCCA predicts an additional 657 validated
PcG target genes that the PREdictor does not. As such,
SVM-MOCCA predicts many PcG target genes with exper-
imental support, as well as a large new set of candidate PcG
target genes that await experimental verification.

We analyzed PcG target gene predictions for enriched
gene ontologies using GOrilla (57). Target genes predicted
by SVM-MOCCA are highly enriched in transcription fac-
tor functions (Supplementary Figure S11). We compared
gene ontology terms enriched in predictions made by SVM-
MOCCA with terms enriched in the PREdictor, EpiPredic-
tor (basic) and EpiPredictor (CG) predictions, the Schwartz
et al. (34) HC Class I and II sets, and the Enderle et al.
(35) set. The top three terms are enriched in all sets consid-
ered and are all related to transcription factor activities. The
fourth term, ‘Protein binding’, is enriched for one of the ex-
perimental sets. Six terms are enriched in zero or one other
set and comprise functions unrelated to transcription factor
activities: ‘Calcium ion binding’, ‘Potassium ion transmem-
brane transporter activity’, ‘Cytoskeletal protein binding’,
‘Actin binding’, ‘Cell adhesion molecule binding’ and ‘Pro-
tein kinase activity’. The remaining enriched terms corre-
spond to transcription factor and signalling activities (see
Supplementary File 9 for complete lists of enriched terms
in all sets).

DISCUSSION

Previous approaches to modelling Drosophila PREs have
used comparatively small sets of functionally character-
ized PREs and non-PREs for training binary classifiers
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(9,31,32). Here, we trained models on published genome-
wide sets of PcG-recruiting chromatin regions. Negatives
were generated by fourth-order Markov chains trained ei-
ther on the same set of PcG-recruiting sequences or the en-
tire genome and also taken from coding sequence.

Genome-wide sets of experimentally determined PcG-
recruiting regions can be expected to contain false posi-
tives, due both to physical chromatin interactions and to
experimental conditions. PREs have been observed to make
long-range chromatin contacts with promoters, with ChIP
signals at both contact points, where then one signal may
be only a shadow of the interaction (1,73). A recent Hi-C
study by Eagen et al. (74) found PRC1 enriched at 26% of
chromatin loop anchors, and for loops where not both an-
chors correspond to PREs, there could thus be additional
shadow signals. Furthermore, the majority of PRE ChIP
studies rely on cell cultures, and even if assuming optimal
experimental conditions and choice of antibodies, cultured
cells are not normal cells (75), and genome-wide epigenetic
states are likely to differ from those in vivo. Furthermore,
ChIP only captures protein binding at a certain time in a
certain population of cells, and results are thus unlikely to
reflect the epigenetic diversity in the entire animal. Addi-
tionally, the PcG-recruiting regions we consider are large
(3 kb after expansion to account for potential distancing be-
tween recruiting sequences and recruited factors). Nonethe-
less, models trained on PcG-recruiting regions and auto-
matically generated controls generalize well to independent
PcG-recruiting regions over cross-validation, with substan-
tially higher PRC AUC than the CPREdictor trained on the
set used by Ringrose et al. (9) (2.88-fold increase). Thus,
our modelling methods are robust against any non-PRE sig-
nals that the ChIP-data used for training may contain, and
they manage to pick out general features predictive of PcG-
recruiting sequences.

Identifying a large, definitive set of genomic non-PREs
that is sufficiently PRE-like to use for training sequence
models is challenging. We circumvented this problem by au-
tomatically generating non-PRE sequences by use of naive
PRE models (fourth-order Markov chains), making use
of the knowledge that motif pair occurrences are predic-
tive of PREs, while individual motif occurrences are only
marginally predictive (9). Thus, the probability of these
models generating bona fide PREs can be expected to be
low, but the sequences they generate have highly similar mo-
tif composition to that of PREs. Despite this similarity, our
models are able to distinguish them from published PcG tar-
get regions, showing that these genome-wide experimentally
determined regions are enriched in motif co-occurrence pat-
terns.

We developed a new method for modelling cis-regulatory
elements, called SVM-MOCCA. SVM-MOCCA distin-
guishes itself from other PRE-modelling methods by mod-
elling the local motif and dinucleotide occurrence land-
scape around motif occurrences. Across the board, SVM-
MOCCA gave the best generalization to independent PcG-
recruiting regions over cross-validation.

The models we trained on genome-wide experimental
data and randomly generated controls predict many more
PREs genome-wide than previous methods, for the same ex-
pected precision of 80%. This is accompanied by our meth-

ods predicting a much larger number of experimentally de-
termined PcG target regions than previous methods. We ex-
cluded five well-studied PREs at the vestigial, engrailed and
invected loci from our training data, both during model test-
ing and for genome-wide prediction, and we predict the ma-
jority of these PREs. Our computational approach allowed
us to study the importance of the GTGT motif and of other
motifs in a genome-wide manner. Adding the GTGT mo-
tif results both in increased model generalization and in a
higher number of predictions genome-wide, adding to the
growing body of evidence that this motif plays an impor-
tant role in Polycomb recruitment. The inclusion of other
published motifs had only little impact on model general-
ization.

Counterintuitively, models trained using our methods
predict more of the PREs used for training by Ringrose
et al. (9) than does the CPREdictor trained on that very
set, for an expected precision of 80% genome-wide (Sup-
plementary Figure S10). A possible explanation for this is
that our models have been trained on large sets of non-PRE
sequences, and that this makes the models better at distin-
guishing PcG target sites from genomic background. Mod-
els trained with the T2017 set also predict a minimal number
of sequences from the non-PRE set used by Ringrose et al.
(9). SVM-MOCCA predicts over half of the non-PREs used
by Ringrose et al. (9), but filtering by biological signals and
predicting the core predictive regions of the SVM-MOCCA
predictions lowers the number of non-PREs predicted to a
fifth.

Despite the much larger number of predictions that our
models make, and though we predict a large fraction of the
PREs in the experimental sets that we consider, none of our
sets of predictions completely cover any of the experimen-
tally determined PRE sets. There may be several reasons
for this. Our models may lack the sequence features needed
in order to accurately model the remaining PREs, such as
additional motifs, higher-order motif occurrence combina-
torics, strandedness and positioning, or taking local or dis-
tal sequence elements into consideration. The experimental
sets may also contain regions that are not in fact PREs, but
are instead marked by PcG proteins due to physical interac-
tions with PREs, or are enriched due to experimental noise.

As the SVM-MOCCA predictions are 3 kb long, we pre-
dicted core PRE fragments. It is interesting to note that
the core fragments have fewer overlaps with experimental
sets. This means that PcG-enriched regions are close by, and
it is possible that experimental signals in some cases have
been displaced due to factor mobility. Our observation is
also in agreement with the suggestion of Schuettengruber
et al. (30) that the genome uses ‘not only local sequence
(high-affinity transcription factor binding sites located at
the binding peaks) information to determine PREs, but also
integration of regional sequence information [...]’ and that
the use of such information to predict PREs ‘may break the
current specificity and sensitivity barriers.’ A corollary to
this latter notion is the possibility that previous evaluations
of PRE prediction have taken regional information (recruit-
ment versus enrichment) into account only insufficiently.

Multiple weaker PREs functioning together has been ob-
served for the engrailed gene locus (76). Our core PRE pre-
diction method only finds the sub-region with the strongest
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sequence signal enrichment. It may be that some SVM-
MOCCA predictions are enriched in multiple weak se-
quence signals that add up to a significant prediction. If so,
ChIP-signals that do not overlap with a predicted core may
instead coincide with a separate, weaker PRE sequence sig-
nal. It could also be that the position of the final ChIP-peak
depends on the structure of the complex of weak PREs and
PcG proteins.

We present two high-confidence sets of D. melanogaster
candidate PRE predictions, based on filtering predictions
for enrichment of histone 3 lysine 27 trimethylation and at
least one of three PcG proteins (Pc, Psc or Sfmbt). This
filtering procedure provides a form of experimental valida-
tion of predicted PRE candidates on the basis of previously
published ChIP enrichment datasets and is comparable to
experimental definitions of PREs from such datasets (34–
36). However, our procedure does not define PRE candi-
dates from ChIP enrichment datasets alone, but starts with
a set of candidates that were predicted by a well-designed
machine-learning model and that share sequence charac-
teristics that have been established to be relevant, both here
and in previous work (9,29,30). Furthermore, since with our
filtering procedure we treat any type of ChIP enrichment as
a necessary but not as a sufficient criterion for PRE-ness,
our high-confidence candidates are less prone to potential
looping, spreading and displacement artefacts. In fact, one
could argue that the presence of a PRE prediction in a re-
gion of ChIP enrichment gives credence to that enrichment
and indicates the initial Polycomb recruitment site. Even
though the high-confidence prediction sets are smaller than
the complete prediction sets (1036 versus 3521 predictions
for CPREdictor and 2908 versus 6911 for SVM-MOCCA),
they have almost as high numbers of overlaps with the ex-
perimental sets that we consider (Supplementary Figure
S10). As such, we increase precision to the experimentally
determined PcG target region sets with low loss of recall. It
is worth noting that we used merged ChIP peaks from mul-
tiple experiments per factor and that the factors we consid-
ered are not only enriched at PREs, making this a modest
filtering step. Both high-confidence PRE sets are larger than
the Schwartz et al. (34) set that the models were trained on,
despite the filtering for biologically relevant chromatin sig-
natures. These high-confidence candidate PREs remain to
be tested for whether they can maintain target gene tran-
scription states.

Additionally, we predict many PREs outside of the high-
confidence sets. A large number of candidate PREs do not
overlap with chromatin that is accessible in the developmen-
tal stages that we consider. Inaccessible PRE predictions
may be functional PREs that recruit PcG/TrxG when chro-
matin is made accessible. A large number of PRE predic-
tions that do not overlap with experimentally determined
PRE sets but are nonetheless in accessible chromatin are en-
riched for histone 3 lysine 4 monomethylation (H3K4me1).
It is possible that these predictions are PRE/TREs in an
activated state (25) and that they recruit Polycomb in other
contexts. A large proportion (over 82%) of high-confidence
PRE candidates are also enriched in H3K4me1, supporting
the notion of a dual function of PREs as TREs. Further-
more, the fact that all candidates were predicted by a single
machine learning model suggests that PREs and TREs have

a common sequence code. The remaining predictions may
be false positives, due both to a threshold calibration for an
expected precision of 80% (corresponding to an expected
20% of false positives among the positive predictions) and
to imperfections in our training sets and models.

An extended overlap analysis (Supplementary Table S2)
showed only small differences in high-confidence PRE can-
didate enrichment between H3K4me1 and H3K4me3, the
latter of which has previously been reported to be methy-
lated by TRX but was later shown to be mostly methylated
by SET1/COMPASS (reviewed in (77)).

In correspondence with our larger numbers of
D. melanogaster PRE predictions compared to previ-
ously published in silico methods, we predict a larger set
of candidate PcG/TrxG target genes, with higher numbers
of overlaps with published experimentally determined
PcG/TrxG target genes. We speculate that, like our pre-
dicted PREs themselves, predicted targets that have not
previously been identified on the basis of ChIP enrich-
ment, might recruit Polycomb or Trithorax group proteins
and associated histone modifications in cell types or in
conditions that so far have not been studied with respect
to their epigenetic regulatory landscape. Our target gene
predictions are highly enriched for transcription factor
functions and also for novel potential PcG target gene
functions. The sensitivities of predictions to experimentally
determined sets are lower when considering PcG target
genes than for candidate PREs. This can be attributed to
different methods being employed for predicting target
genes from regions, as well as different genome annotations
used while predicting target genes. Schwartz et al. (34) used
the Dm2 assembly and Enderle et al. (35) used Dm3. Both
Schwartz et al. (34) and Enderle et al. (35) determined
PcG target genes based on enrichment of PcG signals
proximal to the TSS, rather than based on gene proximity
to candidate PREs. Overall, our genome-wide PcG target
gene predictions are more sensitive to experimentally de-
termined PcG target genes than are published predictions
from previous in silico PcG target gene prediction methods.

Although we devoted most of our attention to training
with the Schwartz et al. (34) candidate PREs, we obtain sim-
ilar results when training with the Enderle et al. (35) and
Kahn et al. (36) sets (Supplementary File 8), demonstrating
that our results are general. Training SVM-MOCCA with
the Schwartz et al. (34) candidate PREs resulted in 6911 pre-
dictions genome-wide, training with the Enderle et al. (35)
set resulted in 5910 predictions genome-wide, and 5294 of
the Schwartz et al. (34)–based predictions overlap with En-
derle et al. (35)–based predictions (CPREdictor results are
similar, at lower total numbers of predictions, 3521, 2775
and 2768, respectively). This high overlap indicates the ro-
bustness of our approach and might also suggest a potential
saturation of PRE prediction.

There are multiple ways in which our work can be ex-
panded upon. The majority of the steps have been writ-
ten as a computational pipeline, aiding not only the repro-
ducibility of our results, but also the application to other
problems. Our methods can be adapted to the modelling of
other classes of regulatory sequences and for use in other
genomes, given appropriate sets of motifs and genome-wide
experimental data. Our high-confidence PRE predictions
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are a rich source of candidates for the further study of PRE
function, architecture and dynamic behaviour during devel-
opment.
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