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Abstract. The purpose of the present study was to investigate 
the underlying molecular mechanism of hepatocellular carci-
noma (HCC) using bioinformatics approaches. The microarray 
dataset GSE64041 was downloaded from the Gene Expression 
Omnibus database, which included 60 tumor liver samples and 
60 matched control samples. Differentially expressed genes 
(DEGs) between HCC and control groups were identified. 
Then functional enrichment analyses, protein-protein interac-
tion (PPI) network, sub-network and integrated transcription 
factor (TF)-microRNA (miRNA)-target network analyses 
were performed for these DEGs. A total of 378 DEGs were 
obtained, including 101 upregulated and 277 downregulated 
DEGs. In addition, functional enrichment analysis for DEGs 
in the sub-network revealed ‘cell division’ and ‘cell cycle’ as 
key Gene Ontology (GO) terms and pathways. Topoisomerase 
(DNA) IIα (TOP2A) and integrin subunit α2 (ITGA2) were 
hub nodes in the PPI network. TOP2A, cyclin dependent 
kinase 1 (CDK1) and polo like kinase 1 (PLK1) were revealed 
to be hub nodes in the sub-network. Finally, 4 TFs including 
forkhead box M1 (FOXM1), E2F transcription factor 4 (E2F4), 
SIN3 transcription regulator family member A (SIN3A) and 
transcription factor 7 like 1 (TCF7L1) were obtained through 
integrated network analysis. TOP2A, ITGA2, PLK1 and CDK1 
may be key genes involved in HCC development. ‘Cell divi-
sion’ and ‘cell cycle’ were indicated to act as key GO terms 
and Kyoto Encyclopedia of Genes and Genomes pathways in 

HCC. In addition, FOXM1, TCF7L1, E2F4 and SIN3A were 
revealed to be key TFs associated with HCC.

Introduction

Hepatocellular carcinoma (HCC) is one of the most prevalent 
cancers worldwide, causing the third most death of cancers (1). 
Patients with HCC have a high risk in liver cirrhosis and other 
symptoms such as pain, fatigue, weight loss, and obstructive 
syndromes including ascites and jaundice (2). As not all of 
HCC patients qualifying surgical treatments including tumor 
resection and liver transplantation, the prognosis of these 
patients is poor (3). Although great improvements in HCC 
treatments have been achieved, further investigation of safe 
and accurate diagnosis methods and effective therapies for 
HCC should be taken into consideration.

In the past decades, efforts on molecular mechanism 
researches of HCC have thrown light on molecular diagnosis 
and molecular targeted therapies of the disease. Numerous 
genes and transcription factors (TFs) associated with HCC 
development have been revealed. Like all the other cancers, 
cells of HCC lost control of cell cycle (4). Genes such as 
cyclin-dependent kinases and TFs such as E2F transcription 
factors (E2Fs) are involved in cell cycle (5,6). Another 
hallmark of cancer cells is metastasis. Genes like matrix 
metalloproteinase (MMP)2 and MMP9, and TFs like hypoxia 
inducible TFs are found to play important role in the invasion 
and metastasis of HCC cells (7-9). What's more, signaling 
pathways such as retinoblastoma pathways, Ras/MAPK 
pathway and Wnt/β-catenin pathway are altered in HCC 
cells (4). Based on achieved improvements in the molecular 
mechanism underlying HCC, many efforts have been made to 
investigate promising biomarkers and therapeutic targets for 
the diagnosis and treatment of HCC. Quantitative detection of 
methylated GSH-sulphur-transferase P1 in serum can be used 
for the early diagnosis of HCC (10). Besides, methylation status 
of plasma P16 gene has been indicated to have the value for the 
detection of primary HCC (11). In addition, it is revealed that 
the expression level of glypican 3 (GPC-3) in liver tissues can 
be used as an indicator of HCC (12) and silencing of GPC-3 
can inhibit the proliferation of HCC cells (13). Furthermore, 
DNA methyltransferase 1 (DNMT1) knockdown can inhibit 
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HCC cell proliferation and increase apoptosis, suggesting 
that DNMT1 may serve as a targets for HCC therapy (14). 
Dysruption of pathways involved in HCC have been proven 
to be efficient for HCC treatment. The candidate pathways 
include pathways involved in signal transduction such as 
growth factor receptors, pathways involved in apoptosis 
such as intrinsic pathway and pathways participating in cell 
cycle (15). Despite these great advances, the key mechanism 
underlying HCC remains to be further elucidated to screen 
promising biomarkers and potential targets for the diagnosis 
and treatment of HCC.

Bioinformatics approaches are effective for mechanism 
research. Makowska et al (16) developed the gene expres-
sion file GSE64041 using HCC samples and matched control 
samples to establish a molecular classification of human HCC. 
Based on differential gene expression analysis, subclass predic-
tion, and pathway analysis, they found that three subgroups 
of HCC patients were identified based on the gene expres-
sion data and different subgroups of patients with different 
prognosis (16). In comparison with this study, we downloaded 
this gene expression file (GSE64041) to further investigate 
the potential mechanism underlying HCC by a comprehen-
sive bioinformatics analysis. In addition to differential gene 
expression and pathway analyses, protein-protein interaction 
(PPI) network, sub-network and integrated TF-miRNA-target 
network were also constructed and analyzed to further eluci-
date the key genes, TFs and pathways associated with HCC. 
Our results may be helpful for better understanding of the 
molecular mechanisms underlying HCC and provide valuable 
information for the diagnosis and treatment of this disease.

Materials and methods

Microarray data. Gene expression profile data GSE64041 
which was deposited by Makowska et al (16), was 
downloaded from Gene Expression Omnibus (GEO, 
https://www.ncbi.nlm.nih.gov/geo/) database (17). The data-
sets were sequenced on the platform Affymetrix Human Gene 
1.0 ST Array (Affymetrix; Thermo Fisher Scientific, Inc., 
Waltham, MA, USA). A total of 60 biopsy pairs from patients 
with HCC were obtained, including 60 HCC samples and 
60 matched non-tumor liver samples.

Data preprocessing and differentially expressed genes 
(DEGs) analysis. The downloaded data were preprocessed 
using limma package (18) (version 3.30.11, http://www.
bioconductor.org/packages/release/bioc/html/limma.html) in 
R language. Expression calculation was performed after back-
ground correction and normalization. Then the probes were 
corresponded to gene symbols according to the downloaded 
NCBI gene data. If different probes were corresponding to the 
same symbol, the average expression values were taken. DEGs 
between HCC and non‑tumor control groups were identified 
using limma package (18). P-values were calculated using 
bayesian t-test method. The cut-off thresholds were P<0.05 
and fold-change ≥1.

Functional enrichment analysis. Gene Ontology (GO) (19) 
terms including molecular function (MF), cellular component 
(CC) and biological process (BP), and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) (20) pathways were enriched 
for the upregulated and downregulated DEGs using the data-
base for annotation, visualization and integrated discovery 
(DAVID) (version 6.8, https://david-d.ncifcrf.gov/), respec-
tively (21). P<0.05 was considered to indicate a statistically 
significant difference.

PPI network analysis. Search Tool for the Retrieval 
of Interacting Genes/Proteins (STRING, version 10.0; 
http://www.string-db.org/) (22) is an online database 
proving assessment and integration of PPIs. In this study, 
PPIs were identified based on the information of STRING, 
followed by PPI network construction using Cytoscape 
software (23) (version 3.4.0; http://www.cytoscape.org/). 
The topology analysis for the PPI network was performed 
using CytoNCA plugin (24) (version 2.1.6; http://apps.cyto-
scape.org/apps/cytonca). The parameter setting was network 
without weight. Results arranged in descending order 
included scores of degree centrality, betweenness centrality 
and closeness centrality. Nodes with top 10 highest centrali-
ties were regarded as hub genes. Besides, we performed a 
sub-network analysis to identify sub-networks with great 
importance from PPI network using MCODE plugin (25) 
(version 1.4.2; http://apps.cytoscape.org/apps/mcode) in cyto-
scape software. Additionally, functional enrichment analyses 
for genes in the screened sub-networks were carried out.

TF‑miRNA‑target regulatory network analysis. HCC 
relating miRNAs and experimentally validated target 
genes were extracted from Mirwalk2 database (26) (http:// 
zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/). HCC 
relating miRNA-target pairs were identified through 
comparing the DEGs with the downloaded miRNA-target 
pairs. Then the miRNA-target regulatory network 
was constructed using Cytoscape software. Besides, 
TF-target pairs in the miRNA-target network were 
predicted using iRegulon plugin (27) (version 1.3; http:// 
apps.cytoscape.org/apps/iregulon) in Cytoscape with 
normalized enrichment score (NES) >5 as threshold. Finally, 
TF-miRNA-target regulatory network construction was 
performed using Cytoscape software.

Results

Analysis of DEGs. A total of 32,321 probes and 18,710 genes 
were obtained after data preprocessing. Among these obtained 
genes, a total of 378 genes were differentially expressed 
in HCC group compared with control group, including 
101 upregulated and 277 downregulated DEGs. The heatmap 
of DEGs was shown in Fig. 1.

Functional enrichment analysis. The KEGG pathways of 
the upregulated and downregulated DEGs were obtained. 
The upregulated DEGs were enriched in nine KEGG path-
ways such as cell cycle, pathways in cancer and PI3K-Akt 
signaling pathway; the downregulated DEGs were enriched 
in ten KEGG pathways such as metabolic pathways, biosyn-
thesis of antibiotics and chemical carcinogenesis. In addition, 
significant GO terms enriched by DEGs were obtained. The 
upregulated DEGs were enriched in GO terms such as cell 
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cycle, microtubule cytoskeleton and enzyme binding (Fig. 2A); 
and the downregulated DEGs were enriched in GO terms such 
as extracellular region, organic acid metabolic process and 
cofactor binding (Fig. 2B).

PPI network analysis. PPI network analysis for the DEGs was 
performed, containing 211 nodes and 618 PPI pairs (Fig. 3). 
Nodes with top ten highest score in three algorithms were listed 
in Table I, such as topoisomerase (DNA) IIα (TOP2A), cyclin 
dependent kinase 1 (CDK1) and integrin subunit α2 (ITGA2) 
(degree centrality); estrogen receptor 1 (ESR1), TOP2A and 
ITGA2 (betweenness centrality); and ESR1, TOP2A and ITGA2 
(closeness centrality). In addition, a sub-network including 
the most genes was identified via sub-network analysis, 
including 18 nodes and 123 PPI pairs (Fig. 4). In the identi-
fied sub‑network, TOP2A (degree=35), CDK1 (degree=31) and 
polo like kinase 1 (PLK1) (degree=27) were the nodes with 
most PPI pairs. Functional enrichment analysis for the genes in 
this sub‑network revealed that these genes were significantly 
enriched in one GO term (cell division) and three KEGG 
pathways including cell cycle, progesterone-mediated oocyte 
maturation and oocyte meiosis (Table II). Additionally, CDK1, 
PLK1 and mitotic checkpoint serine/threonine kinase (BUB1) 
were the common genes in the GO term and KEGG pathways 
mentioned above (Table II).

TF‑miRNA‑target regulatory network analysis. The 
miRNA-target network was constructed, including 
107 miRNAs and 40 target genes. TF prediction for the DEGs 
in the miRNA-target network revealed 4 TFs including fork-
head box M1 (FOXM1), E2F4, SIN3 transcription regulator 
family member A (SIN3A) and transcription factor 7 like 1 
(TCF7L1). As shown in the integrated TF-miRNA-target 
network (Fig. 5), FOXM1 (NES=8.642) targeted 32 genes, 
followed by TCF7L1 (NES=5.449) targeting 17 genes, E2F4 
(NES=5.398) targeting 12 genes and SIN3A (NES=5.095) 
targeting nine genes.

Discussion

HCC is among the most deadliest cancers worldwide. 
Identification of promising biomarker or targets for the 
diagnosis and treatment of HCC is needed. In our study, a 
comprehensive microarray analysis of liver tumor and normal 
samples from patients with HCC was performed. The results 
of our analyses revealed that key upregulated DEGs such as 
TOP2A, ITGA2, PLK1 and CDK1 were associated with HCC. 
Besides, cell division and cell cycle might play key roles in 
the development of HCC. Furthermore, crucial TFs including 
FOXM1, TCF7L1, E2F4 and SIN3A were revealed to be key 
TFs related to HCC.

Figure 1. Heat map of DEGs. GSM2052460, GSM2052462 and GSM2052578 are control samples; GSM2052461, GSM2052463 and GSM205579 are disease 
samples. The bottom axis represents the samples, the top axis represents sample clustering, the right-hand axis represents DEGs and the left-hand axis repre-
sents the clustering of DEGs. Red indicates upregulated genes and green indicates downregulated genes. DEG, differentially expressed gene. 
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Figure 3. Protein-protein interaction network of DEGs. Red circles represent upregulated DEGs and green circles represent downregulated DEGs. DEG, 
differentially expressed gene.

Figure 2. GO terms of DEGs. (A) GO terms of upregulated DEGs, and (B) GO terms of downregulated DEGs. GO, Gene Ontology; MF, molecular function; 
CC, cellular component; BP, biological process; DEG, differentially expressed gene.
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TOP2A and ITGA2 were identified as the key nodes in the 
PPI network. Moreover, TOP2A, PLK1 and CDK1 were the 
genes with the highest degrees in the sub-network. It is reported 
that TOP2A is overexpressed in HCC tissues (28), which is in 
accordance to our results. Furthermore, it is revealed that the 
expression of TOP2A is related to the onset of malignancy and 
chemoresistance, shortening the survival time of patients (29). 
Silencing of ITGA2 can promote the migration of breast cancer 
cells (30). What's more, inhibition of ITGA2 by miR-128 can 
significantly decrease the metastasis of HCC cells (31). It is 
indicated that the positive expression rate of PLK1 in HCC 
is higher than that in healthy controls (32). Additionally, it 
is reported that knockdown of PLK1 in HCC tumor-derived 
endothelial cells can inhibit the migration of these cells (33). 
CDK1 is reported to have the capacity of apoptosis modula-
tion in HCC by co-acting with apoptin (34). Moreover, it is 
demonstrated that miR-582-5p can inhibit the proliferation of 

HCC cells through targeting CDK1 and another gene AKT 
serine/threonine kinase 3 directly (35). Based on our results, 
we speculate that TOP2A, ITGA2, PLK1 and CDK1 may be 
the key genes involved in HCC.

Functional enrichment analysis for genes in the 
sub-network revealed that PLK1 and CDK1 were the common 
genes involved in both cell division and cell cycle. HCC cells 
lost control of the cell cycle, which is a common feature 
occurring in all tumorigenic cells (4). Inhibition of PLK1 
activity can decrease the polyploid cell population during cell 
division (36). Moreover, it is revealed that the downregula-
tion of PLK1 results in the promotion of cell cycle arrest and 
apoptosis (37). It is confirmed that CDK1 is essential for cell 
division through knockdown of CDK1 in mice (38). Besides, 
CDK1 has been considered to be the only essential cell cycle 
CDK (39). Thus, we suspect that PLK1 and CDK1 may play 
roles in HCC by participating in cell cycle and cell division.

The result of TF-miRNA-target network analysis showed 
that FOXM1, TCF7L1, E2F4 and SIN3A were TFs regulating 
the most DEGs. It is reported that FOXM1 overexpression can 
promote the metastasis of HCC (40). Meanwhile, inhibition 
of FOXM1 is shown to have the capacity of promoting the 
senescence of HCC cells (41). TCF7L1, a member of the T cell 
factor/lymphoid enhancer factor family, is reported to modulate 
colorectal cancer growth via inhibiting the tumor suppressor 
EPH Receptor B3 (42). As another member of the family, 
TCF7L2 is revealed to be associated with the susceptibility 
of HCC in patients with liver cirrhosis (43). As a member of 
the E2F family, E2F4 acts as an anti-proliferative TF, playing 
crucial role in cell cycle (44). Besides, comparing with the 
wild-type E2F4, E2F4 mutants can increase the growth of 
colorectal cancer cells (45). It is reported that the upregulation of 
miR-210 can inhibit proliferation of HCC cells (46). In addition, 
miR-210 upregulation is revealed to inhibit proliferation and 
induce apoptosis in glioma cells via targeting SIN3A, a member 
of the SIN3 transcription regulator family (47). Based on these 
data, we speculate that FOXM1, TCF7L1, E2F4 and SIN3A may 
be key TFs participating in the development of HCC.

Notably, Maswska et al (16) reported that three subgroups 
of HCC patients were identified based on the gene expression 
data of GSE64041 and the subgroups of patients have different 
prognosis, suggesting that the different expression pattern of 

Table I. List of top 10 highest scoring nodes in the protein-protein interaction network.

Rank Top 10 genes Degree Top 10 genes Betweenness Top 10 genes Closeness

  1 TOP2A 35 ESR1 9275.706 ESR1 0.05781939
  2 CDK1 31 ITGA2 7831.359 ITGA2 0.05731441
  3 ITGA2 29 TOP2A 6589.938 TOP2A 0.05729877
  4 PLK1 27 APOA1 4281.257 CDK1 0.05675676
  5 ESR1 26 DCN 4087.898 IGF1 0.05663430
  6 CCNB2 26 CDK1 3732.873 TXNRD1 0.05658852
  7 AURKA 25 TXNRD1 3077.681 CFTR 0.05657328
  8 BUB1 25 CXCL12 2707.838 DCN 0.05652759
  9 CCNA2 24 IGF1 2424.979 FOXM1 0.05651238
10 BUB1B 20 TAT 2213.226 CYP2B6 0.05648198

Figure 4. Sub-network with the greatest number of DEGs. Red circles repre-
sent upregulated DEGs. DEG, differentially expressed gene.
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genes in different subgroups may be an important factor to 
influence HCC progression and patients' prognosis. However, 
we did not analyze the possible mechanism underlying HCC 

in the different subgroups due to lack of the related expression 
data of different subgroups, let alone the gene expression and 
the patients' prognosis. Further analyses should be performed 

Figure 5. TF-miRNA-target network of DEGs. Purple circles represent DEGs, white triangles represent miRNAs and green octagons represent TFs. TF, 
transcription factor; miRNA, microRNA; DEG, differentially expressed gene.

Table II. Functional enrichment analysis of differentially expressed genes in the module.

Category Term Count P-value Genes

GOTERM_BP_FAT GO:0051301~‘cell division’ 3 1.26x10-20 CDC6, CDK1, PRC1, NUF2, NUSAP1,
    CENPF, AURKA, ANLN, ECT2, CCNB2,
    NCAPG, PLK1, BUB1, BUB1B, TOP2A, 
    KIF20A
KEGG_PATHWAY hsa04110~‘Cell cycle’ 5 1.02x10-8 CDK1, CDC6, CCNB2, PLK1, BUB1, 
    BUB1B
 hsa04914~‘Progesterone-mediated 11 3.75x10-5 CDK1, CCNB2, PLK1, BUB1
 oocyte maturation’   
 hsa04114~‘Oocyte meiosis’ 3 7.38x10-5 CDK1, PLK1, BUB1, AURKA

GO, Gene Ontology; BP, biological process; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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to further elucidate the key mechanism associated with the 
patients' prognosis in different subgroups. Moreover, some 
experiments, such as expression validation or knockdown 
assays, were not performed to determine the role of these key 
genes and TFs in HCC development. Taken together, further 
investigations remain to be done to confirm the results.

In conclusion, the results of the present study reveal that 
TOP2A, ITGA2, PLK1 and CDK1 may act as key genes asso-
ciated with HCC. Moreover, cell cycle and cell division may 
function as key pathways in HCC through the regulation of key 
genes PLK1 and CDK1. Additionally, FOXM1, TCF7L1, E2F4 
and SIN3A are revealed to be key TFs involved in HCC. Our 
results might provide valuable data for selection of biomarker 
and therapeutic targets of the disease.
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