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Nicotinamide adenine dinucleotide (NAD+) is an important molecule that functions as a co-
enzyme in numerous metabolic processes. Generated both through de novo synthesis
and via salvage pathways, NAD+ is the substrate for a variety of NAD+-consuming
enzymes. Among them is CD38, a cell surface ecto-enzyme widely expressed on
different types of cells and endowed with the function of cADP-ribose synthases/NAD+

glycohydrolase. Surface CD38 expression is increased in different hematological and solid
tumors, where it cooperates with other ecto-enzymes to produce the immunosuppressive
molecule adenosine (ADO). Few studies have explored the correlation of NAD+ levels with
T-cell mediated anti-tumor response in preclinical models. We therefore discuss these
novel findings, examining the possible contribution of NAD+ depletion, along with ADO
production, in the immunosuppressive activities of CD38 in the context of human tumors.
Lastly, we discuss the use of pharmacological inhibitors of CD38 and supplementation of
different NAD+ precursors to increase NAD+ levels and to boost T cell responses. Such
molecules may be employed as adjuvant therapies, in combination with standard
treatments, for cancer patients.
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INTRODUCTION

Nicotinamide adenine dinucleotide (NAD+) and its reduced/phosphorylated forms (NADH,
NADP+ and NADPH) are key molecules in cellular metabolism and energy production, acting as
hybrid-accepting and hybrid-donating co-enzymes in different biological reactions. NAD+ and
NADH are then inter-converted by hybrid transfer and not consumed (1). NAD+ can be generated
de novo starting from tryptophan, which is converted to N-formylkynurenine by indoleamine
dioxygenase or tryptophan dioxygenase. Other enzymes are involved in converting N-
formylkynurenine to nicotinic acid mononucleotide (NaMN), which is adenylated by adenyl-
transferases to generate nicotinic acid adenine dinucleotide (NaAD), finally converted to NAD+ by
NAD+ synthetase (1). NAD+ can also be obtained through different salvage pathways, starting from
nicotinic acid (Na) which is converted to NaMN by Na phosphoribosyltransferase (Naprt) or
starting from nicotinamide (Nam) and nicotinamide riboside (NR). The latter are converted to
nicotinamide mononucleotide (NMN) by Nam phosphoribosyltransferase (Nampt or PBEF) and
nicotinamide riboside kinases (NamRK), respectively. NMN is finally converted to NAD+ by
adenyl-transferases (1). In contrast with metabolic reactions, NAD+ is consumed during its
org April 2021 | Volume 12 | Article 6582631
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conversion to Nam by different enzymes involved in process
related to gene expression, Ca2+ mobilization, cell death and
aging (1). These enzymes are defined as NAD+-dependent ADP-
ribosyl transferase, and include i) ADP-ribose transferases or
poly(ADP-ribose) polymerases, (ii) cADP-ribose synthases and
(iii) sirtuins (NAD+-dependent protein deacetylases) (1).
INHIBITION OF ANTI-TUMOR IMMUNITY

The Role of cADP-ribose Synthases/
NAD+glycohydrolase
CD38 and its homologue CD157 belong to the family of cADP-
ribose synthases/NAD+ glycohydrolases. CD38 is also part of an
alternative ecto-enzymatic pathway, which involves CD203a/
ENPP1 and CD73, to produce adenosine (ADO) and inosine
(INO) (2, 3). CD38 expression and its role in the inhibition of
anti-tumor immune response has been described in solid (4) and
hematological (5–8) tumors. CD38 expression is increased
during inflammation and tumor transformation, and is
paralleled by CD73 up-regulation (9, 10). In chronic
lymphocytic leukemia (CLL), increased CD38 expression is
associated with unfavorable prognosis (11), along with T cell
inhibition (12). Taken together, these observations suggest that
increased CD38 expression is directly related to anti-tumor
immune response suppression and/or inhibition of migration
(13). Indeed, CD38hi CLL cells have high NAD+ glycohydrolase
enzymatic activity that leads to ADO production (11) (through
the concerted activity of CD203a/ENPP1 and CD73) and, more
importantly, to extracellular NAD+ consumption.

The role of CD38 in tumor-mediated inhibition of T cell
functions has been extensively studied in the multiple myeloma
(MM) model, where malignant plasma cells (PC) grow in a
hypoxic bone marrow (BM) niche (6, 14). The niche contains a
purinome, represented by different molecules interacting with
extracellular nucleotides, including channels, transporters,
catabolizing enzymes, intermediate products and receptors. As
a result of the activity of this complex network, ADO is produced
by canonical and alternative enzymatic pathways, starting from
ATP or NAD+, respectively (3, 14). In the canonical pathway,
CD39 converts extracellular ATP to AMP, whereas in the
alternative pathway CD38 converts b-NAD+ to ADPR and
Nam and CD203a/ENPP1 converts ADPR to AMP. Finally,
both pathways converge to CD73, which de-phosphorylates
AMP to ADO (2). The expression of ectoenzymes belonging to
alternative pathway is discontinuous in the MM niche, since PC
express CD38, whereas CD203a and CD73 are detectable at very
low expression (15). However, the latter molecules are highly
expressed by osteoblasts, osteoclasts and BM stromal cells, thus
confirming the existence of the complete pathway within BM
niche (6, 14). ADO exerts immunosuppressive functions, by
i) inhibiting tumor cell lysis by T and NK cells, ii) inducing
M2 macrophages and tolerogenic dendritic cells (DC) and
iii) inducing Treg expansion (6). In this context, NAD+

consumption in the BM niche may account for additional
immunosuppressive feature of CD38, since the alternative
Frontiers in Immunology | www.frontiersin.org 2
pathway is more active than the canonical counterpart in
hypoxic conditions and at a low pH (14). Accordingly,
therapeutic anti-CD38 mAbs Daratumumab and Isatuximab
are able to modulate the NAD+ glycohydrolase enzymatic
activity of CD38, likely affecting ADO production on the one
hand, and NAD+consumption on the other (6, 16). The degree of
modulation is significantly different, Isatuximab scoring the
highest level (15, 17).

We elsewhere described the expression and function of ADO
generation pathways in primary melanoma cells (18). In these
tumor cells, CD38 and CD73 expression was constantly detected,
whereas CD39 and CD203a were highly expressed in some
primary melanoma cells, and low to absent in the others.
Accordingly, ADO production was different, depending on the
expression of each ectoenzyme (18). Melanoma cells inhibited T
cell proliferation, and such inhibition was only partially reverted
using inhibitors of ADO receptors: this suggests that other
mechanisms may be involved. In this regard, T cell
proliferation was restored by using kuromanin, a specific CD38
inhibitor, providing indirect evidence for the central role played
by CD38 in melanoma-mediated immunosuppression (18). We
hypothesize that NAD+ consumption may represent an
additional immunosuppressive mechanism in in vitro
experiments and may also represent a strategy enacted by
melanoma cells in vivo in the tumor microenvironment to
inhibit anti-tumor immune response. In this context,
inoculation of Nam in a mouse model of melanoma
significantly increased anti-tumor immune response through
the induction of IFN-g secretion (19). In addition, in
preclinical models of melanoma, mice receiving Nam displayed
a higher T cell infiltration within the tumor than those receiving
placebo (20). Taken together, these studies support the role of
NAD+ as an essential cofactor for anti-tumor T cell response
in melanoma.

Recent studies showed that some purinergic ectoenzymes
metabolize cyclic dinucleotides, such as 2’,3’cyclic GMP-AMP
(cGAMP) (21). CD203a/ENPP1 metabolizes cGAMP generating
AMP and GMP (22). cGAMP is an activator of the stimulator of
interferon genes (STING), which stimulate innate immunity. In
brief, cyclic GMP-AMP synthase (cGAS) senses DNA released
from tumors and catalyzes the conversion of GTP and ATP to
cGAMP, which subsequently activates STING to activate the
transcription of type 1 IFN and other cytokines, and by activating
DC (21). Links between the cGAS-STING pathway with
CD203a/ENPP1 and NAD+ have recently emerged whereby
the hydrolysis of cGAMP by CD203a/ENPP1 attenuates cGAS-
STING signaling and NAD+ cleavage (23, 24). Indeed, bacterial
STING, containing a NADase-TIR domain, recognizes cyclic
dinucleotides in a conformation similar to cGAMP in complex
with human STING, allowing for b-NAD+ hydrolysis (22).
NAD+ cleavage activity of bacterial TIR domains is conserved
in the mammalian SARM1 (sterile alpha and TIR motif
containing 1) NAD+-glycohydrolase (23, 25). In mice, high
cGAMP correlated with high anti-tumor activity, by a direct
triggering of the STING-dependent pathway. Consequently,
inhibitors of CD203a/ENPP1 (26) could have anti-tumor
April 2021 | Volume 12 | Article 658263
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activity by inhibiting the conversion of extracellular b-NAD+ to
ADO and by inhibiting cGAMP degradation and, therefore, the
secretion of SASP (senescent-associated secretory phenotype)
factors which were found to increase CD38 expression (27, 28).
All these findings are schematized in Figure 1.

The Direct Role of NAD+

Recently, several reports investigated whether NAD+ might play
a direct role in modulating anti-tumor immune response. In
particular, extracellular levels of NAD+ are relevant for T cell
functions. A study compared the metabolic activity of a hybrid T
cell population with characteristics of both Th1 and Th17 cells,
referred to as Th1/17 cells, to Th1 and Th17 cells (29). Indeed,
Th1/17 cells display a unique metabolic phenotype, with high
glutaminolysis and medium levels of glycolysis. The study
showed that Th1/17 cells expressed 34 times more intracellular
NAD+ levels than Th17 cells, due to glutaminolysis. In addition,
NAD+ depletion, obtained through pharmacological inhibition
Frontiers in Immunology | www.frontiersin.org 3
of Nampt using FK866, downregulated IFN-g/IL-17+ cells in
Th1/17 cells. More importantly such cells, adoptively transferred
to tumor-bearing mice, failed to control tumor growth unlike
untreated cells, thus demonstrating that NAD+ is essential for
anti-tumor activity of Th1/17 cells (29). Sirt1, a NAD+-
dependent protein deacetylase, is a key factor, being higher in
Th1/17 cells than in other subsets. Moreover, cells treated with
Sirt1 inhibitors and Sirt-1-KO T cells displayed fewer IL-17+

cells. Accordingly, tyrosinase-reactive hybrid Th1/17 cells
differentiated ex vivo in the presence of Ex527 (Sirt1 inhibitor)
displayed a lower anti-tumor activity than untreated cells in a
murine melanoma model. Similar results were obtained using
Sirtfl/flCD4Cre mouse splenic T cells retrovirally transduced with
TRP-1 TCR and programmed to the hybrid Th1/17 phenotype.
These findings confirmed that Sirt1 deacetylase activity is
required for Th1/17 cells anti-tumor functions (29). While
investigating the target of Sirt1 activity, the researchers found a
reduced acetylation status in Th1/17 cells, which is partially
FIGURE 1 | The role of cADP ribose synthase and cGAS/STING pathway in the inhibition of anti-tumor immune response. This cartoon describes the mechanism(s)
underlying the inhibition of the immune response against tumor cells by CD38. On one hand, CD38 co-operates with other ectoenzymes (CD203a/ENPP1, CD73,
CD39) in the production of the immunosuppressive molecule ADO. On the other hand, CD38 depletes NAD+ from the extracellular environment, especially in
conditions with low pH and hypoxia, thus inhibiting tumor cell lysis. cGAS (on the left) metabolizes 2’,3’cyclic GMP-AMP (cGAMP) dinucleotide also acting as
modulator of the immune system. Hydrolysis of cGAMP by CD203a/ENPP1 attenuates cGAS-STING signaling and the cleavage of NAD+.
April 2021 | Volume 12 | Article 658263
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reverted when NAD+ levels are decreased using pharmacological
inhibitors. In particular, they analyzed Foxo1, a transcription
factor involved in the responses of memory T cells, which is
regulated by phosphorylation and acetylation. Foxo1
phosphorylation, which correlated with its internalization and
degradation, was found to be the highest in Th17 cells, and at
medium levels in Th1/Th17 cells. In contrast, Foxo1 acetylation,
which attenuates its function, is reduced in both Th1 and Th1/17
cells. Thus, the transcriptional activity of Foxo1 is the highest in
Th1/17 cells due to phosphorylation/acetylation balance, which
leads to higher levels of the Foxo1 target genes Klf2 and Ccr7 in
Th1/17 cells than in Th17 and Th1 cells. This implies an
increased Th1/17 cells homing to the lung, liver, spleen, and
lymph nodes after adoptive transfer. Lastly, pharmacological
inhibition of NAD+ and Sirt1 leads to direct inhibition of Klf2
and Ccr7, thus confirming that the NAD+-Sirt1 axis regulates
differentiation, migration, effector functions and the anti-tumor
response of Th1/17 cells (29).

The role of NAD+ in the metabolic reprogramming of T cells
and in T-cell mediated anti-tumor immune response was further
demonstrated using CD38KO cells. Such cells lack CD38 NAD-
ase activity, and consequently have higher levels of NAD+ and
Sirt1 activity. Moreover, they display enhanced expression of the
glutaminolysis pathway and of the mitochondrial biogenesis
regulator PGC1a, thus confirming a metabolic phenotype
similar to that of Th1/17 cells. More importantly, they
controlled tumor growth in animal models more efficiently
than wild-type cells, with an increased cytokine production
within the tumor microenvironment. These observations
suggested that CD38 loss, and consequent extracellular NAD+

increase, is the key to implement anti-tumor activity of T cells
in vivo. This conclusion was reinforced by additional studies
were T cells were treated with TGF-b (which mimics tumor
immune suppression) and then with anti-CD38 antibody (29).
Such cells were lower in CD38 expression and higher in cytokine
production and Sirt1 activity than untreated cells. Accordingly,
tumor-bearing mice undergoing adoptive transfer of T cells after
anti-CD38 treatment had longer survival times and better
control of tumor growth than mice treated with anti-CD38 or
T cells alone (29).

The role of Sirt2 in the differentiation of effector memory
T cells (TEM) was analyzed in breast cancer patients (30).
Patients express lower levels of Sirt2 in T lymphocytes than the
controls, and patients with high levels of Sirt2 exhibited a
higher percentage of TEM than patients with low Sirt2
expression. The percentage of TEM was highest in patients
with the worst prognosis, since such cells differentiate from
naïve T cells and are mobilized to exert an anti-tumor response.
The role of Sirt2 was unambiguously demonstrated in Sirt2-/-

mice, where naïve T cells were more abundant than TEM. Sirt2
acted through the GSK-3b deacetylation (30). This study
confirmed that Sirt2, a NAD+ dependent deacetylase, is
pivotal in the differentiation of naïve T cells to TEM. Thus,
high levels of NAD+ in the tumor microenvironment are
required for Sirt2 activation and, in turn, for T cell
differentiation and for achieving powerful anti-tumor
Frontiers in Immunology | www.frontiersin.org 4
immune response. In contrast, NAD+ depletion, as observed
in different human tumors, may lead to immune suppression.

A novel study analyzed the role of NAD+ in the activation of
the anti-tumor T cell response (31). Genetic and metabolic
analysis of the Jurkat T-ALL cell line allowed the genes
involved in T cell activation to be identified. Nampt was
proved as a key factor for T cell activation in both analysis,
and three compounds known to target Nampt (FK866, STF-
118804, and GMX1178) as the most disruptive to T cell
activation (31). Accordingly, FK866 was able to inhibit T cell
activation, as witnessed by the downregulation of CD69, CD25
and ICOS activation markers, inhibition of calcium flux and
phosphorylation of signaling proteins. Interestingly, NAD+

intracellular levels were restored by adding NAD+ to the
culture medium, thus suggesting that T cells are able to uptake
NAD+ from the environment. This was able to restore T cell
activation, confirming that high NAD+ levels are essential for T
cell activation (31). Appealing results were obtained by
comparing the NAD+ levels of tumor infiltrating lymphocytes
(TIL) and peripheral blood lymphocytes (PBL), in samples from
ovarian cancer patients and from melanoma preclinical models.
NAD+ levels were significantly lower in TIL than in PBL, thus
suggesting that the tumor microenvironment induced NAD+

depletion in infiltrating lymphocytes. Accordingly, the authors
observed an increased nicotinate and nicotinamide metabolism
KEGG pathway in TIL as compared to PBL (31). The salvage
NAD+ synthesis pathway represents the principal source of
NAD+ in T cells, since Nampt knockdown induced a decrease
of about 50% of intracellular NAD+ levels (31). Pathways
regulated by NAD+ in T cells were also analyzed, revealing that
inhibition of NAD+ synthesis by FK866 altered the levels of
metabolites belonging to the glutaminolysis, glycolysis and citric
acid cycle pathways, thus affecting mitochondrial oxidative
phosphorylation, both in Jurkat cells and in PBL. Also here it
was confirmed significant decreases in lactate, citric acid,
succinic acid and oxoglutaric acid, along with an increase in
glucose and glutamine. As a final result, NAD+ deprivation
reduced the number of mitochondria and their respiratory
capacity, leading to lower ATP levels in T cells (31). Notably,
this study analyzed the role of NAD+ in CAR-T cell functions
against solid tumors. It was confirmed that NAD+ depletion by
FK866 decreased ex vivo cytotoxic potential of CD19-41BB CAR
T cells, through the downregulation of Granzyme B, IL-2 and
IFN-g secretion. In contrast, increased NAD+ intracellular levels
(achieved by Nampt overexpression) enhanced tumor cell killing
by CAR T cells (31). In line are the results obtained in vivo using
mice subcutaneously inoculated with K562-CD19 tumor cells
and then treated with CD19-41BB CAR T cells. A cohort of mice
underwent intraperitoneal injection of Nam, which increased
NAD+ intracellular levels in CAR T cells, about as much as
NAD+ itself. This cohort showed an increased number of tumor-
free mice, prolonged survival rates and a higher percentage of
lymphocytes infiltrating the tumor, as compared to mice treated
with CAR T cells alone. A reasonable conclusion is that
supplementation with NAD+ precursors may increase tumor
killing and CAR T cell therapeutic functions (31). Furthermore,
April 2021 | Volume 12 | Article 658263
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Nam supplementation may increase the success of therapeutic
strategies based on the blockade of immune checkpoints (ICB).
Mice inoculated with B16F10 and MC38 tumor cell lines were
then treated with anti-PD1 and anti-CTLA4, respectively, in the
presence (or absence) of Nam supplementation. In both cases,
the therapeutic effect of ICB was increased in mice inoculated
with Nam, showing limited tumor growth and longer survival.
Infiltration of T lymphocytes in the tumor was also increased,
thus indicating that Nam was able to activate the anti-tumor
T cell response (31). Similar results have been obtained in a
mouse model of melanoma (19), where Nam administered alone
as a therapeutic agent reduced tumor growth and prolonged the
survival of mice. Higher levels of IFN-g-producing cells were
found in the peripheral blood of mice treated with Nam than in
untreated mice. In addition, different cytokines/chemokines were
modulated in Nam-treated mice (but not in untreated mice),
including an increase of IL-5 and Eotaxin and a decrease of IL-
10, IL-12, IL-3 and RANTES. Thus, Nam treatment is able to
Frontiers in Immunology | www.frontiersin.org 5
increase IFN-g secretion, which is pivotal for the anti-tumor
immune response, and to modulate the balance of cytokine/
chemokine in the periphery (19). These studies confirmed the
role of NAD+ in the activation of anti-tumor T cell response and
clarified one of the mechanisms underlying T cell inactivation
after NAD+ depletion, centered on metabolic reprogramming.
More importantly, NAD+ and its precursors have been proposed
as an adjuvant therapeutic strategy to improve the clinical
outcome of adoptive T cell therapy in patients with solid tumors.

The effects of NAD+ deprivation was analyzed on different T
cell subsets and on different types of T cell response (32). Nampt
serum levels were higher in transplanted patients with acute
severe GvHD than in those with no signs of GvHD. Furthermore,
Nampt was predominantly expressed by T lymphocytes in
colonic sections of patients, and the same results were
observed in mice receiving allogenic BM transplantation.
Furthermore, mice receiving allogeneic BMT and treated with
FK866 were clinically protected against GvHD, as witnessed by a
FIGURE 2 | The direct role of NAD+ in T cell function. In T cells NAD+ intracellular levels are increased by NAMPT (nicotinamide phosphoribosyltransferase) which
converts NAM to NAD+. High intracellular levels of NAD+ correlated with high activity of Sirt1 deacetyase activity, which in turn activate Foxo1and increase the
expression of downstream genes Klf2 and Ccr7. These effects correlated to the increase of T cell functions, including tumor cell lysis. NAD+ can be uptake from
extracellular space, where it may be depleted by CD38 enzymatic activity. Thus, mAbs targeting CD38 may block NAD+depletion and increase T cell functions.
Supplementation of NAM may also augment NAD+ levels, thus increasing tumor cell lysis. On the other hand, NAMPT inhibitors block the conversion of NAM to
NAD+, thus inhibiting T cell functions.
April 2021 | Volume 12 | Article 658263
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decreased weight loss, reduced clinical GvHD scores, normal
colon length and reduced histological severity scores in colon
and liver (32). Accordingly, mice treated with FK866 showed
fewer donor T cells and more Tregs in spleen and liver than
untreated mice. Worth noting, memory T cells and other
immune cell populations, including monocytes, macrophages,
DC and NK cells, were not affected by FK866 treatment. Such
treatment induced apoptosis in donor-derived T cells in spleen
and liver. In addition, no effects were observed in mice receiving
syngenic BMT, thus suggesting that inhibition of Nampt only
affects alloreactive T cells (32). Upon TCR stimulation, Nampt
mRNA was upregulated in effector cells but not in Tregs: these
effects were paralleled by increased intracellular NAD+ levels. In
line with this observation, FK866 treatment reduced viability and
downregulated IFN-g and TNF-a production only in effector T
cells, mediated by NAD+ depletion. In contrast, FK866
significantly up-regulated FoxP3 expression in Tregs, through
the inhibition of Sirt1-mediated acetylation, thus increasing their
regulatory functions (32). Lastly, the authors setup a graft-
versus-leukemia (GvL) experimental model, where mice
underwent syngenic or allogenic BMT and then inoculated
with leukemia or lymphoma cell lines. Mice receiving syngenic
BMT rapidly developed metastatic tumors, and tumor spread
was abrogated with FK866 treatment, thus suggesting a direct
anti-tumor effect of this molecule. In contrast, mice receiving
allogeneic BMT display a limited tumor burden (due to GvL) and
a severe GvHD. In these mice, FK866 treatment reduced GvHD
and suppressed tumor growth. The study demonstrated that
FK866 abrogated tumor cell proliferation by depleting
intracellular NAD+ (32). Thus, NAD+ is necessary for T cell
proliferation and T cell responses. Targeting NAD+ salvage
pathway may be useful for the treatment of GvHD in
transplanted patients, since Nampt activity and NAD+ levels
are the highest in allogeneic T cells, without affecting GvL and
anti-tumor activity. Figure 2 describes the role of NAD+ in anti-
tumor T cell responses.
DISCUSSION

This mini review reports on recent evidence highlighting the role
of NAD+ as a key factor in the anti-tumor T cell response. To
date, a handful of studies indicate that NAD+ administration
may boost the anti-tumor activity of canonical and engineered
T cells in preclinical models of human tumors. NAD+ depletion
brought about by immunosuppressive mechanisms, which
involve NAD+-consuming enzymes, may dampen T cell
Frontiers in Immunology | www.frontiersin.org 6
functions. Based on these findings, it appears that CD38
immunosuppressive activity in human solid and hematological
tumors, which hinges upon the production of the inhibitory
molecule ADO, might exploit NAD+ consumption as well. This
feature is more relevant in the specific microenvironment of the
BM niche in MM, which is characterized by hypoxia and low pH,
thus rendering the alternative pathway (which consumes NAD+)
more effective than the canonical one. In conclusion, NAD+

balance must be taken into account in the treatment of cancer
patients, and enzymes involved in NAD+ synthesis and
catabolism may represent novel targets for adjuvant therapies,
contributing to the success of adoptive T cell therapies. Indeed,
recent studies have addressed the efficacy of CD38 inhibitors (i.e.
kuromanin) in preclinical models of CLL (33, 34) in combination
with standard therapies. In addition, Nam has been administered
in combination with radiotherapy or chemotherapy to patients
with different solid tumors, obtaining promising effects (35).
Thus, pharmacological interventions aimed at restoring NAD+

levels may increase the efficacy of standard therapies for patients
with solid and hematological tumors. In this line, other NAD+

precursors, such as NR and NMN, have been recently proposed
to revert NAD+ depletion in multiple organ fibrosis (36) and
aging (37), respectively. Finally, five clinical studies using Nam as
adjuvant therapy are currently ongoing for cancer patients
(www.clinicaltrials.gov).
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