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ABSTRACT

With the development of high-throughput experi-
mental techniques such as microarray, mass
spectrometry and large-scale mutagenesis, there
is an increasing need to automatically annotate
gene sets and identify the involved pathways.
Although many pathway analysis tools are
developed, new tools are still needed to meet the
requirements for flexible or advanced analysis
purpose. Here, we developed an R-based software
package (SubpathwayMiner) for flexible pathway
identification. SubpathwayMiner facilitates sub-
pathway identification of metabolic pathways by
using pathway structure information. Additionally,
SubpathwayMiner also provides more flexibility in
annotating gene sets and identifying the involved
pathways (entire pathways and sub-pathways):
(i) SubpathwayMiner is able to provide the most up-
to-date pathway analysis results for users;
(ii) SubpathwayMiner supports multiple species
(~100 eukaryotes, 714 bacteria and 52 Archaea) and
different gene identifiers (Entrez Gene IDs, NCBI-gi
IDs, UniProt IDs, PDB IDs, etc.) in the KEGG GENE
database; (iii) the system is quite efficient in
cooperating with other R-based tools in biology.
SubpathwayMiner is freely available at http://cran
.r-project.org/web/packages/SubpathwayMiner/.

INTRODUCTION

In recent years, high-throughput experimental techniques
such as microarray, mass spectrometry, and large-scale
mutagenesis identified hundreds of interesting genes and
gene products. For interpreting these high-throughput
experimental data, biologists often study the functional
relationships among these genes or gene products. One
commonly used approach is to annotate these genes to

biological pathways, such as Kyoto Encyclopedia of
Genes and Genomes (KEGG) (1), and identify the statis-
tically significantly enriched pathways. Many groups have
developed pathway analysis tools relative to annotation
and identification. These tools include PathwayExplorer
(2), KOBAS (3,4), PathExpress (5), WebGestalt (6),
KAAS (7), PathMAPA (8) and ArrayXPath II (9) and
have become the commonly used tools.
Biological pathways contain complex pathway struc-

ture information. For example, a metabolic pathway in
KEGG can be naturally modeled as a network or graph
with compounds (substrates and products) as nodes and
chemical reactions (enzymes) as edges. Studies showed
that pathway structure information can provide more
delicate biological insights and help us understand
higher-order functions of the biological system (10–12).
In this article, we developed a new pathway analysis tool
relative to pathway annotation and identification, which
applies pathway structure information to pathway identi-
fication. According to pathway structure information
provided by KEGG, our system can detect distance
similarity among enzymes in each pathway and mine
each sub-pathway in which distance among all enzymes
is no greater than the parameter k (a user-defined
distance). Gene sets can then be annotated to these sub-
pathways through assigning EC numbers for them and
matching them to these sub-pathways. Furthermore, the
significantly enriched sub-pathways can be identified using
statistical method such as hypergeometric test. With
different setting of the distance parameter k, the identifi-
cation of sub-pathways is able to become more flexible.
For evaluating our method, our system was applied
to differentially expressed gene sets of lung cancer.
We found that some pathways associated with lung
cancer but not significant in entire pathway identification
were highly significant in our sub-pathway identification.
The results indicate that there is a positive effect on the
flexible identification of metabolic pathways in our
system.
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As a new pathway analysis tool, SubpathwayMiner
overcomes some limitations of the existing tools through
some effective ways. First, the system applies pathway
simplification technique and sub-pathway mining
method to metabolic pathways, and then facilitates sub-
pathway identification of metabolic pathways. Second,
storage and update of data relative to pathway analysis
can easily be operated by users themselves. Consequently,
users will always receive the most up-to-date pathway
analysis results. Third, the system can support multiple
species (about 100 eukaryotes, 714 bacteria and 52
archaea) and different gene identifiers (Entrez Gene IDs,
NCBI-gi IDs, UniProt IDs, PDB IDs, etc.) in the KEGG
GENE database through an effective way to automatically
store and update data. Fourth, it is quite efficient in
cooperating with other R-based tools in computational
biology and bioinformatics because the system is an
R-based system (13).

MATERIALS AND METHODS

SubpathwayMiner is implemented in R, an open source
programming environment (13), and adopts a module
design to provide more flexibility. Figure 1 depicts the
schematic overview of the system. The system is
composed of four modules: storage and update of data,
sub-pathway mining, annotation and identification of
pathways, visualization of results. Storage and update
module can get and update data relative to analysis
of pathways from the KEGG GENE database. Sub-
pathway mining module is used to mine sub-pathways
for flexible identification of metabolic pathways.
Annotation and identification module helps users to
annotate and identify pathways or sub-pathways.
Visualization module provides three methods for
displaying analysis results.

Storage and update of data

A new method (the function updateOrgAndIdType in R)
is presented here, which enables users to store and update
data automatically for pathway analysis. These data can
be automatically downloaded from KEGG, converted,
and stored directly in the SubpathwayMiner environ-
ment variable as a database rather than in an external
DBMS (database management system). These data can
be updated automatically on request by the user. By this
method, the system can synchronize data with the KEGG
GENE database and can support most organisms and
cross-reference identifiers in the KEGG GENE database.
We have also considered that this method may be time
consuming for several organisms in which many genes
may be in common (e.g. Homo sapiens and Mus
musculus). We thus present two methods to solve the
problem and to provide more flexibility. On the one
hand, SubpathwayMiner uses two functions (loadKE2G
and saveKE2G) to save and load the SubpathwayMiner
environment variable easily. Through the functions users
can update data relative to a certain organism one time
only and use repeatedly them in the future. On the
other hand, the environment variables of organisms with

well-annotated genomes have been provided in the
SubpathwayMiner package.

Sub-pathway mining

Sub-pathway mining module is used to mine sub-
pathways for flexible identification of metabolic
pathways. However, sub-pathway mining has become a
general problem in view of the complex structures of
metabolic pathways. Fortunately, whether or not a gene
can be annotated to a pathway is completely dependent on
enzymes rather than compounds in the pathway. We thus
convert each metabolic pathway to an undirected graph
with enzymes as nodes. Two nodes in an undirected
graph are connected by an edge if there is a common
compound in the enzymes corresponding reactions. As
a result, the metabolic pathway is simplified when
chemical compounds are omitted from the graph.
According to this pathway simplification method, the
sub-pathway mining problem can be considered as a
sub-graph mining problem. Many sub-graph mining
methods are theoretically available. In the current
system, we mine sub-pathways based on distance
similarity among enzymes. Some studies suggest that the
functional similarity between two enzymes increases as
their distance in pathways decreases (12,14). Our sub-
pathway mining strategy thus tends to find the sub-
pathways in which all enzymes have highly similar
functions. To do it, we adopt the k-clique concept in
social network analysis (15) to define sub-pathways
based on distance similarity among enzymes. In social
network analysis, a k-clique in a graph is considered as
a sub-graph where the distance between any two nodes is

Figure 1. Schematic overview of SubpathwayMiner.
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no greater than k. When we consider each k-clique as a
sub-pathway of metabolic pathways, sub-pathways can be
mined by using the special k-clique algorithm provided
by RGBL package (16). SubpathwayMiner provides
users with the default value of parameter k (k=4).
Users can also choose the parameter according to their
needs. The distance among all enzymes in mined sub-
pathways decreases as the value of the parameter k
reduces. If we set a smaller value of parameter k, more
compact sub-pathways based on distance will be produced.
For example, if we set k=3, the distance between all
enzymes in the mined sub-pathway from citrate cycle
pathway is no >3 (Figure 2c).

The following describes the step-by-step method for
mining sub-pathways:

(i) Downloading automatically the corresponding
XML file of metabolic pathways from the KEGG
KGML (The current version is at ftp://ftp.genome
.jp/pub/kegg/xml/map/).

(ii) Taking out the relationship of enzymes from each
XML file. Two enzymes are connected by an edge if
their corresponding reactions have a common
compound.

(iii) Simplifying metabolic pathways. Each metabolic
pathway is converted to an undirected graph with
enzymes as nodes (Figure 2b). Two are connected
by an edge if there is a common compound in the
enzymes corresponding reactions.

(iv) Saving the simplification version of each metabolic
pathway to the environment variable KE2G that is
used as the core database of SubpathwayMiner.

(v) Setting up the distance parameter k (k=1, 2, 3, . . . ,
n). The setting of parameter k is flexible. Users can
choose an appropriate parameter according to their
needs. The distance among all enzymes in sub-
pathways decreases as the value of parameter k
reduces, which will product more delicate identifica-
tion of pathways.

(vi) For the simplification version of each metabolic
pathway, mine k-cliques of this pathway
according to distance parameter k. Each k-clique
is treated as a sub-pathway (Figure 2c).

(vii) Collecting all sub-pathways (k-cliques) in metabolic
pathways. The identifier of each sub-pathway is
given with its pathway identifier plus a sub-
pathway number (e.g. ‘path: 00010_1’).

Annotation and identification of pathways

Annotation and identification module can provide
annotation and identification of sub-pathways or entire
pathways. When users select annotation of entire
pathways, the function getAnn will assign pathway
numbers for a set of genes submitted by users according
to gene-pathway relationship saved in the environment
variable. When users select sub-pathway annotation of
metabolic pathways, the function will assign genes to EC
numbers and match them to sub-pathways. To identify
the statistically significantly enriched pathways, p-values
are calculated using the hypergeometric distribution.

The default background distribution is considered to be
the whole genome (the system also permits users to choose
their own background distribution). For each pathway
(an entire pathway or a sub-pathway) that occurs in the
set of genes submitted for analysis, the system counts the
total number of genes in the set that are involved in the
pathway. If the whole genome has a total of m genes, of
which t are involved in the pathway under investigation,
and the set of genes submitted for analysis has a total of
n genes, of which r are involved in the same pathway, then
the p-value can be calculated to evaluate enrichment sig-
nificance for that pathway as follows:

p ¼ 1�
Xr�1
x¼0

t
x

� �
m� t
n� x

� �

m
n

� � :

When many correlated pathways (entire pathways or sub-
pathways) are considered, a high false positive discovery
rate is likely to result. For this reason, the system also
provides the FDR-corrected q-values (if applicable) for
reducing the false positive discovery rate (17,18).
Annotation and identification module provides the

function cutoffAnn for identifying the statistically
significantly enriched pathways or sub-pathways. As
our system adopts a module design where annotation
and identification module is relatively independent,
the module can be used to annotate and identify
user-defined sub-pathways. Users can also annotate and
identify their own sub-pathways through mining sub-
pathways based on the simplification version of
metabolic pathways.

Visualization of results

Visualization module provides three methods for
displaying results. As illustrated in Figure 3a, the first
method (the function printAnn) converts a list of results
to a data frame in R that can be easily saved as a tab-
delimited text file by using the function write in R. The
second method (the function gotoKEGG) visualizes
pathways through linking to the KEGG website
(Figure 3c). On the pathway map, enzymes are colored
red if the according enzyme is identified in the submitted
set of genes. If users choose sub-pathways annotation of
metabolic pathways, the third method (the function
plotAnn) is available. It visualizes sub-pathways as an
undirected graph (Figure 3b). Enzymes are colored red
if the according enzyme is identified in the submitted
gene sets.

RESULTS

SubpathwayMiner is available for pathway annotation
and identification of any interesting gene/protein sets
with identifiers supported by the system (Entrez Gene
IDs, NCBI-gi IDs, UniProt IDs, PDB IDs, etc.). For
example, the system is not limited to pathway analysis
of gene expression data. It can also receive interesting
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gene sets from certain other approaches, such as the
ensemble decision approach by the authors (19).
A key function of SubpathwayMiner is sub-pathway

identification of metabolic pathways. For comparison of

entire pathway and sub-pathway identification, we showed
an example application of SubpathwayMiner to a gene
expression data, analyzed initially by Landi et al. (20).
The data was publicly available at the GEO database

Figure 2. A visualized example of sub-pathway mining. (a) A metabolic pathway in KEGG, citrate cycle (TCA cycle). (b) The metabolic pathway is
converted to the undirected graph using our pathway simplification programming (the function updateGraphs in SubpathwayMiner). (c) A 3-clique
sub-pathway in which distance between any two enzymes is no >3. It is mined from the undirected graph that the pathway corresponds to
(surrounded by a black line in Figure 2a and b).

e131 Nucleic Acids Research, 2009, Vol. 37, No. 19 PAGE 4 OF 9



(accession number GSE10072). The pathway data
got from KGML_v0.6.1 (ftp://ftp.genome.jp/pub/kegg/
release/archive/kgml/KGML_v0.6.1/map).

We first identified a total of 1313 differentially expressed
genes using the significance analysis of microarray (SAM)
method (21) (FDR <0.01) and Fold-change (FD >1.5 or
<0.667). We then used SubpathwayMiner to annotate
these differentially expressed genes to entire pathways
and sub-pathways (k=4) of metabolic pathways. The
results showed that these genes were annotated to 87
entire pathways and 307 sub-pathways of metabolic
pathways. With the strict cutoff of p-values <0.01, our
system identified seven statistically significantly enriched
entire pathways of metabolic pathways and 36 enriched
sub-pathways corresponding to 10 entire pathways of
metabolic pathways. The average overlap between the
significant sub-pathways found within each single
pathway was also calculated according to the Sokal and
Sneath coefficient (22) (Table 1). We have found that
three entire pathways, which were included in 10 entire
pathways that 36 sub-pathways correspond to, were not
statistically significant (p> 0.01). They were respectively
path:00350 (tyrosine metabolism), path:00260 (glycine,
serine and threonine metabolism), and path:00564
(glycerophospholipid metabolism). When we only adopt
entire pathway identification method, these pathways may
be ignored because of their high p-values. However, some

sub-pathways of these pathways were statistically signifi-
cant in our system. The result indicates that these signif-
icant sub-pathways included in pathways of high p-values
may be associated with cancer initiation or progression.
For looking for knowledge support, we searched
PUBMED database. The results showed that gene
macrophage migration inhibitory factor (MIF), which
was differentially expressed and annotated in 5 sub-
pathways (path:00350_5, path:00350_6, path:00350_7,
path:00350_8 and path:00350_12) of the pathway
path:00350, was associated with risk of recurrernce after
resection of lung cancer (23). MIF was also associated
with beast cancer (24), colorectal cancer (25) and
prostate cancer (26), etc. Gene alcohol dehydrogenase
1B (ADH2), a differentially expressed gene annotated to
these sub-pathways, was reported to be associated with
esophageal cancer, aerodigestive cancer, breast cancer
and colorectal cancer (27–30). One differentially
expressed gene annotated in a sub-pathway
(path:00260_9) of the pathway path:00260, aldo-keto
reductase family 1, member B10 (AKR1B10), was found
to be useful as a new marker for identification of high lung
cancer risk patients in usual interstitial pneumonia (31).
Mashkova et al. showed that AKR1B10 was a potential
oncogene and elevated transcription level is important for
squamous cell lung cancer tumorogenesis (32). Genes
annotated in two sub-pathways (path:00564_1 and

Figure 3. Screenshots of visualization provided in SubpathwayMiner. (a) Display results using a data frame in R. Each row corresponds to infor-
mation of the pathway that genes are annotated to. The first column contains pathway identifiers. Relevant pathways are listed in ascending order of
p-values and multiple-comparison corrected q-values. (b) Visualize a sub-pathway as the undirected graph. Enzymes are colored red if the according
enzyme is identified in the submitted sets of genes. (c) Visualize a pathway through linking to the KEGG website. On the pathway map, enzymes are
colored red if the according enzyme is identified in the submitted set of genes.
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path:00564_2) of the pathway path:0000564 were found
not to be obviously associated with lung cancer.
However, two of them, Gene CHPT1 (choline phos-
photransferase 1) and PLA2G4A (phospholipase A2,
group IVA), were associated with breast cancer (33) and
colon cancer (34). Moreover, some evidences were
found in the literature for the biological significance of
the highly enriched sub-pathways. Studies showed that
some enzymes in sub-pathways of the ‘tyrosine
metabolism’ pathway, including monoamine oxidase
(MAO), aldehyde reductase (AR), catechol-Omethyl-
transferase (COMT), alcohol dehydrogenase (ADH) and
aldehyde dehydrogenase (AD), were found to be highly
associated with cancer (35–37). Moreover, norepinephrine
and its metabolism catalyzed by these enzymes were
also found to be associated with cancer initiation and
progression (37–41). In the process of norepinephrine
metabolism, norepinephrine is deaminated by MAO
to 3,4-dihydroxyphenylglycolaldehyde (DOPEGAL).
DOPEGAL is then converted by the sequential actions of
AR, COMT, ADH and AD to 3,4-dihydroxyphenylglycol
(DHPG), 3-methoxy-4-hydroxyphenylglycol (MHPG),
3-methoxy-4-hydroxyphenylglycolaldehyde (MOPEGAL)
and formation of vanillylmandelic acid (VMA),

respectively (37). These evidences indicate that the
sequential actions of enzymes (MAO, AR, COMT, ADH
and AD), which are in the sub-pathways identified by our
method, may play an important role in cancer initiation
and progression. The above biological knowledge mining
highly supports our analysis. We thus propose that
pathways, which are statistically significant in sub-
pathways but not in entire pathways, may be highly
associated with cancer initiation and progression.

DISCUSSION

In this article, we apply pathway structure information to
pathway identification. We use a pathway simplification
method to convert each metabolic pathway to an
undirected graph, and then implement sub-pathway iden-
tification by mining sub-pathways based on k-clique
concept in social network analysis. In fact, methods to
mine sub-pathways are presented by some studies in
recent years. For instance, Ogata et al. found conserved
pathway motifs in metabolic pathways (12). Koyutürk
et al. (11) found frequently occurring patterns and
modules in the KEGG pathways. However, these
methods are not fit for implementing sub-pathway

Table 1. The statistically significantly enriched sub-pathways identified by SubpathwayMiner for differentially expressed genes from lung cancer

Entire pathway ID (p-values/overlapa) Entire pathway name Sub-pathway ID Sub-pathway p-values

Path:00350 (0.1037/49%) Tyrosine metabolism Path:00350_12 0.003248
Path:00350_3 0.002156
Path:00350_5 0.004418
Path:00350_6 0.003799
Path:00350_7 0.006378
Path:00350_8 0.003975

Path:00260 (0.01109/0) Glycine, serine and threonine metabolism Path:00260_9 0.002947
Path:00564 (0.01057/88%) Glycerophospholipid metabolism Path:00564_1 0.006880

Path:00564_2 0.007549
Path:00010 (0.00012/27%) Glycolysis/gluconeogenesis Path:00010_2 0.004475

Path:00010_3 0.0008654
Path:00010_4 0.001629
Path:00010_5 0.002797
Path:00010_6 0.0004917
Path:00010_7 0.003566

Path:00220 (0.004746/59%) Urea cycle and metabolism of amino groups Path:00220_3 0.006607
Path:00220_5 0.003975
Path:00220_6 0.006607
Path:00220_7 0.004745

Path:00230 (0.000128/35%) Purine metabolism Path:00230_1 0.001154
Path:00230_10 0.006450
Path:00230_11 0.0008266
Path:00230_2 0.009967
Path:00230_4 0.001097
Path:00230_6 0.001063
Path:00230_8 0.006450
Path:00230_9 0.0005034

Path:00565 (0.0011/64%) Ether lipid metabolism Path:00565_2 0.004406
Path:00565_3 0.005799
Path:00565_4 0.003269

Path:00590 (0.002233/37%) Arachidonic acid metabolism Path:00590_1 0.0009760
Path:00590_2 0.002773
Path:00590_3 0.002411
Path:00590_4 0.003772

Path:00480 (0.005111/0) Glutathione metabolism Path:00480_1 0.005110
Path:00670 (0.009117/0) One carbon pool by folate Path:00670_1 0.009117

aThe average overlap between the significant sub-pathways found within each single pathway.
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annotation and identification in term of different purpose
of research. Therefore, we present a new sub-pathway
mining method fit for sub-pathway identification of
metabolic pathways. For evaluating our method, our
system was applied to differentially expressed gene sets
of lung cancer. We find that although some pathways
are not significant in entire pathway identification, they
are highly significant in our sub-pathway identification.
Interestingly, these differentially expressed genes
annotated to these sub-pathways are found to be highly
associated with cancer initiation and progression. This
indicates that our sub-pathway identification method is
able to recall some pathways that are associated with
cancer initiation and progression; however, those
pathways are ignored by the entire pathway identification
method.

The sub-pathway identification method provided by
SubpathwayMiner tends to identify certain local areas of
pathways because the method is based on k-clique concept
in social network analysis. For example, in the ‘Results’
section, some of differentially expressed genes of lung
cancer were annotated to the ‘Tyrosine metabolism’
pathway. As illustrated in Figure 4, these differentially
expressed genes (red enzymes) annotated to the
‘Tyrosine metabolism’ pathway are mostly concentrated
in local areas of the pathway. Thus, some sub-pathways
corresponding to local areas of the pathway are statisti-
cally significant although the entire pathway is not statis-
tically significant (Table 1). These identified sub-pathways
usually perform certain type-specific functions compared
with their entire pathways. For example, we have found
that the sub-pathways (path:00350_5, path:00350_6,
path:00350_7, path:00350_8) can efficiently contain the
‘norepinephrine metabolism’ pathway which is highly

associated with cancer initiation and progression, and
which belongs to a minor pathway (or sub-pathway) of
the ‘Tyrosine metabolism’ pathway (in the right-bottom
part of Figure 4). This indicates that certain cancer may be
more associated with these genes concentrated in local
areas of pathways. It may be a common biological
phenomenon that some genes tend to perform certain
type-specific functions (e.g. norepinephrine metabolism),
which may cause the certain results (e.g. cancer). These
type-specific functions tend to distribute in local areas of
the pathway instead of entire pathway.
SubpathwayMiner provides much flexibility in

annotation and identification of pathways. It uses a new
method to automatically store data relative to pathway
annotation and identification. This enables our system
to support most of organisms in the KEGG GENE
database. Data can also be automatically updated on
demand by the user. Therefore, users are able to receive
the most up-to-date pathway analysis results. Our system
is developed in R programming environment, which has
proved to be a powerful tool for computational biology
and bioinformatics. More and more computational
biology and bioinformatics studies are carried out in
R environment (42,43). The functions provided by
SubpathwayMiner can easily be applied to these
R-based studies. For example, the system developed here
can efficiently support pathway analysis of probe sets
of microarrays by cooperating with bioconductor
(http://www.bioconductor.org). Currently, the system
supports pathway analysis of probe sets from about
40 kinds of Affymetrix chips and from some other
kinds of microarrays (e.g. Illumina chips) using the
probe-gene relationship provided by bioconductor.
SubpathwayMiner’s definition of sub-pathways is based

Figure 4. The tyrosine metabolism pathway where the differentially expressed genes of lung cancer were annotated. The enzymes identified in all
genes of Homo sapiens were colored green. The enzymes identified in the submitted genes were colored red. The results show that these genes were
mostly concentrated in local areas of the pathway such as the right-bottom part of the figure.
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on distance similarity among enzymes because of adopting
k-clique concept in social network analysis. The sub-
pathway identification method can thus efficiently
identify local areas of pathways. Moreover, some studies
suggest that the functional similarity between two enzymes
increases as their distance in pathways decreases (12,14).
This indicates that the sub-pathway mining strategy
presented here tends to find the sub-pathways in which
enzymes have highly similar functions. In addition, the
present method for mining sub-pathways can provide
great flexibility in identification of sub-pathways,
especially in the highly connected pathways which
commonly occur in some well-annotated genomes (e.g.
Homo sapiens and Saccharomyces cerevisiae). For
example, the system is able to divide the ‘tyrosine
metabolism’ pathway (Figure 4) into 12 sub-pathways
(when k=4) and then to identify significantly enriched
sub-pathways within these sub-pathways. The sub-
pathway identification can also be made more flexible by
using different values of the distance parameter k. It can
be expected that expect that SubpathwayMiner will be a
beneficial pathway annotation and identification tool.

FUTURE DEVELOPMENT

We plan to adopt two strategies to improve our current
system in the future. First, the current system uses the
k-clique concept to mine sub-pathways. However, some
other methods based on mining sub-graphs may be
available. Therefore, we will add more sub-pathway
mining methods to mine sub-pathways. This will provide
more sub-pathway identification strategies for users.
Second, the current system supports sub-pathway identi-
fication of metabolic pathways. Furthermore, we will
extend sub-pathway identification to more KEGG
pathways. These strategies will no doubt increase
abilities of sub-pathway identification in our system.
Because our system adopts the module design, the
extension of the system will become more available.
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