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Identification of prognostic 
biomarkers related to the tumor 
microenvironment in thyroid 
carcinoma
Jun‑wei Du, Guo‑quan Li, Yang‑sen Li & Xin‑guang Qiu*

Thyroid Carcinoma (THCA) is the most common endocrine tumor that is mainly treated using surgery 
and radiotherapy. In addition, immunotherapy is a recently developed treatment option that has 
played an essential role in the management of several types of tumors. However, few reports exist 
on the use of immunotherapy to treat THCA. The study downloaded the miRNA, mRNA and lncRNA 
data for THCA patients from the TCGA database (https:// portal. gdc. cancer. gov/). Thereafter, the 
tumor samples were divided into cold and hot tumors, based on the immune score of the tumor 
microenvironment. Moreover, the differentially expressed lncRNAs and miRNAs were obtained. 
Finally, the study jointly constructed a ceRNA network through differential analysis of the mRNA data 
for cold and hot tumors. The study first assessed the level of immune infiltration in the THCA tumor 
microenvironment then divided the samples into cold and hot tumors, based on the immune score. 
Additionally, a total of 568 up‑regulated and 412 down‑regulated DEGs were screened by analyzing 
the differences between hot and cold tumors. Thereafter, the study examined the differentially 
expressed genes for lncRNA and miRNA. The results revealed 629 differentially expressed genes 
related to lncRNA and 114 associated with miRNA. Finally, a ceRNA network of the differentially 
expressed genes was constructed. The results showed a five‑miRNA hubnet, i.e., hsa‑mir‑204, hsa‑
mir‑128, hsa‑mir‑214, hsa‑mir‑150 and hsa‑mir‑338. The present study identified the immune‑related 
mRNA, lncRNA and miRNA in THCA then constructed a ceRNA network. These results are therefore 
important as they provide more insights on the immune mechanisms in THCA. The findings also 
provides additional information for possible THCA immunotherapy.

Abbreviations
TCGA   The cancer genome atlas
UCSC  University of California Santa Cruz
KEGG  Kyoto encyclopedia of genes and genomes
GO  Gene ontology
DEGs  Differentially expressed genes

Thyroid Carcinoma (THCA) is a common endocrine malignant tumor whose incidence has been on the rise 
over the recent years. The disease is mainly divided into four types, namely; papillary carcinoma (85%), follicular 
carcinoma (10–15%), medullary carcinoma (5–10%) and undifferentiated THCA (< 5%)1. However, traditional 
treatment methods do not significantly improve the survival rate of patients, leading to the search for new 
treatment  methods2. Notably, immunotherapy has been applied in many solid tumors, with satisfactory results 
although it has not be used extensively for the treatment of THCA. Therefore, it is important to explore the 
immune mechanisms in THCA in order to develop suitable immunotherapies.

Notably, Rudolf Virchow (the father of modern cytopathology) proposed the relationship between micro-
inflammation and subsequent development of cancer, in  18633. In addition, Paul Ehrlich in 1909 proposed the 
idea of using the immune system to control  cancer4. The tumor microenvironment, especially the immune sys-
tem, plays an essential role in regulating the progression of tumors and tumor response to treatment. It mainly 
stimulates tumor-specific immune responses by inducing the immunogenic death of tumor cells or participating 
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in immune response  mechanisms5. Moreover, tumors are divided into the cold and hot types based on the level 
of immune infiltration in the tumor microenvironment. The microenvironment of hot tumors is characterized 
by a higher degree of immune invasion and a more enhanced immune effect, with a strong antigen presentation 
ability and T cell activation. Such levels of immune infiltration lead to the production of tumor specific CD8 + T 
cells, which can clear cancer cells and generate systemic tumor specific immunity, resulting to a long-term 
anti-tumor memory  response6,7.On the other hand, the microenvironment of cold tumors has no infiltration of 
immune cells or is mainly infiltrated by suppressive regulatory cell subtypes (including regulatory T cells (Tregs), 
regulatory B cells (bregs) and Myeloid Suppressor Cells (MDSCs))8–10. Consequently, the present study divided 
the tumor samples into two groups, namely; cold and hot tumors, based on the degree of immune invasion. 
The study further screened the differentially expressed genes for lncRNA, miRNA and mRNA between the two 
groups in order to assess the immune mechanisms related to THCA.

The Cancer Genome Atlas (TCGA) database can be used for the large-scale analysis of global gene expres-
sion profiles and database mining, to assess the potential correlation between genes and the overall survival 
rate of various malignant  tumors11. In this study, the miRNA, mRNA and lncRNA data for THCA patients was 
downloaded from the TCGA database. The study also downloaded the clinical information corresponding to the 
miRNA data for the THCA patients. In addition, the ssGSEA, MCP counter, CIBERSORT and X-cell packages 
were used to evaluate the immune cells in the THCA tumor samples and normal samples. The Xcell algorithm 
and estimate package were also used to evaluate the immune and stromal scores. Furthermore, the THCA sam-
ples were divided into four subtypes through congruent clustering, in order to understand the differences in 
immune cell types, immune-related molecules, tumor size distribution and grading, in the four subtypes. Based 
on differences in the immune and stromal scores, Clusters 3 and 4 were defined as hot tumors while and Clusters 
1 and 2 were considered to be cold tumors. Thereafter, differential analysis of cold and hot tumors, enrichment 
analysis of the differentially expressed genes and construction of the protein interaction network was conducted.

Furthermore, the competitive endogenous RNA (ceRNA) includes protein coding RNA, tRNA, rRNA, long 
non coding RNA (lncRNA), pseudogene RNA and circular  RNA12. Therefore, the study compared the expres-
sion of lncRNA and miRNA in cold and hot tumors. Finally, the differentially expressed lncRNA, miRNA and 
mRNA obtained were used to construct the immune-related ceRNA network. The study identified five immune 
connected ceRNA networks in THCA, which are important in understanding the mechanism of immune inva-
sion and immunotherapy.

The present study aimed to construct a ceRNA regulatory network using microarray data collected from 
a public database and preliminarily identify the regulatory mechanism mediated by a novel lncRNA, miRNA 
and mRNA in THCA. The study therefore highlights possible targets for the development of new therapeutic 
strategies against THCA.

Methods
Data download and assessment of immune infiltration. The miRNA, mRNA and lncRNA data 
for THCA patients was downloaded from the TCGA official website (https:// portal. gdc. cancer. gov/). The data 
included 57 normal and 511 tumor samples. Notably, there are four commonly used methods to evaluate immune 
cell infiltration in the tumor microenvironment, namely: single sample Gene Set Enrichment Analysis (ssGSEA), 
the Microenvironment Cell Populations (MCP)-counter, CIBERSORT and  Xcell13–16. However, the study used 
all the four methods in order to minimize errors. The inclusion criteria included; p < 0.05 (p value < 0.1 was used 
in CIBERSORT to obtain enough samples). Moreover, the “ggplot2” package was used for plotting.

Evaluation of immune and stromal scores in the tumor and paracancerous samples. The Xcell 
method was used to calculate the immune and stromal scores in the tumor microenvironment. It is noteworthy 
that immune and stromal cells are two major types of non-tumor components that have been proposed to be 
valuable for the diagnosis and diagnostic assessment of tumors. Inclusion criteria: p < 0.05. The “ggplot2” pack-
age was used to draw violin diagrams to visualize the differences in infiltration of immune cell.

Correlation of immune cells. Results from the four evaluation methods were used to calculate the cor-
relation between different immune cells. Therefore, blue was used to represent positive correlation while red 
represented negative correlation. Correlation analysis of the immune cells in THCA showed that the interaction 
between adjacent and cancer cells was significantly different.

Cell consistent clustering. The cell consistent clustering method was used to divide the THCA samples 
into different subtypes, based on the level of immune infiltration. In addition, the Cumulative Distribution 
Function (CDF) was employed to identify the optimal number of subsets. Finally, four different subtypes were 
identified and a heat map was used to compare the immune stromal score and distribution of immune cells in 
the different subtypes. Classification of osteosarcoma patients in to various clinically significant subtypes was 
performed using the "ConsensusClusterPlus" package (http:// www. bioco nduct or. org/). The clusters were visual-
ized using a heat map and dela diagram.

Differences in the immune stromal score, immune‑related molecules, tumor size distribution 
and grading in the different subtypes. The progression and metastasis of tumors depend on the two-
way interaction between cancer cells and their environment, forming the Tumor Microenvironment (TME)17. 
Notably, the TME is usually different in different stages of tumor progression and this can either promote or 
inhibit the formation of tumors. It is also known that immune cells can be activated to promote the formation 
and progression of  tumors18. Additionally, the immune stromal score can predict the level of immune invasion 
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in the tumor microenvironment. Therefore, the present study compared the immune stromal score, expression 
of immune-related molecules, tumor size distribution and grade in the four subtypes of immune cell infiltration.

Analysis of the difference between cold and hot tumors. The progression of cancer requires tumor 
cells to be immune tolerant. Therefore, tumors can be divided into two subtypes according to the infiltration 
of T  lymphocytes19,20. In addition, different proportions of effector T cells and regulatory T cells in thermal 
tumors reflect different degrees of immunosuppression, which affects the progression of  tumors21. The study 
compared the immune stromal scores among the different subtypes. Consequently, Clusters 3 and 4 which had 
higher immune stromal scores were classified as hot tumors while Clusters 1 and 2 were considered to be cold 
tumors. Moreover, the Differentially Expressed Genes (DEGs) between the controls and patients with DTC were 
generated using the LIMMA  method22, where statistical significance was set at |log-fold change (logFC)|> 1 
and Benjamini and Hochberg-corrected False Discovery Rates (FDR) < 0.05. Furthermore, a hierarchical cluster 
heatmap based on the Euclidean distance was generated using the pheatmap package in R (Version: 1.0.12) (R 
Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Com-
puting, Vienna, Austria: URL http:// www.R- proje ct. org/). The Euclidean distance represented the expression 
intensity and direction of DEGs.

Enrichment analysis of differentially expressed genes and construction of a protein interac‑
tion network. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)23–25path-
way enrichment analyses were performed using the clusterprofiler  package26. The selection criteria included; 
logFC > 1 or < −0.5 and adjusted p value s < 0.05. Additionally, the proteins encoded by the DEGs and data for 
the PPI network were obtained using the Search Tool for the Retrieval of Interacting Genes (STRING) database 
(http:// string- db. org). Moreover, the Cytoscape software (version 3.7.0; http:// cytos cape. org/) was used to visu-
alize the interactions among the candidate  DEGs27.

Search for tumor related regulatory molecules. The differentially expressed genes between tumor and 
adjacent tumor tissues were obtained. Thereafter, the genes up-regulated in cold tumors (adjusted p value < 0.05) 
were crossed with those overexpressed in cancer. These genes were related to cancer and played a role in negative 
immune regulation. Similarly, the up-regulated genes in hot tumors were crossed with those expressed in low 
levels in cancer, which are positive immune regulatory genes. Finally, GO and KEGG enrichment analyses were 
used to obtain the immune regulatory molecules.

Differences between lncRNA and miRNA in cold and hot tumors. Differential analysis (up: | log2fc 
|> 1, down: | log2fc |> 1, adjusted p value < 0.05) was performed by comparing the cold and hot tumors using the 
limma package in R.

Construction of hub ceRNA network. The study constructed a co-expression network for DElncRNAs, 
DEmiRNAs and DEmRNAs in order to assess the functions of the lncRNAs, miRNAs and mRNAs in the ceRNA 
network and to further improve the reliability of the network. Thereafter, the ggalluvial package in R (Ver-
sion: 0.9.1) was used to visualize the ceRNA  network28. Notably, miRNAs are 19-23nt short RNAs transcribed 
from endogenous transcriptomes and distributed throughout the  cell29. On the other hand, long non coding 
RNAs (lncRNAs) are involved in a variety of cellular functions, most of which require interaction with one 
or more RNA Binding Proteins (RBPs)30. Herein, DEmRNAs targeted by the DEmiRNAs were retrieved from 
the miRDB (Version 5.0; http:// mirdb. org), miRTarBase (Version 7.0; http:// mirta rbase. mbc. nctu. edu. tw/), and 
TargetScan (Version 7.2; http:// www. targe tscan. org/ vert_ 72/)  databases31–33. Moreover, the Cytoscape software 
(https:// cytos cape. org/) was used to visualize the relationships in the ceRNA network. Additionally, the tar-
get genes for miRNA were predicted using mirdb, targetscan and mirtarbase. The study also constructed an 
immune-related ceRNA network with different lncRNA, miRNA and mRNA then defined the first five networks 
as the hubnet, using the cytohub module. The regulatory relationship between transcription factors and miRNA 
has a significant effect on genes, and the transcription factors that regulate hub miRNA can be predicted from 
GeneCards(https:// www. genec ards. org/).

Prediction of PD1/PDL‑1 related immune cells and hub prognostic genes. As we all know, the 
immune checkpoint PD1 and its ligand PDL1 combine to help tumor cells avoid immune killing. In thyroid 
cancer, we first assessed the relationship between Programmed cell death protein 1 (PDCD1) and CD274 Mol-
ecule (CD274) and patient prognosis. In addition, in order to explore the relationship between PD1/PDL-1 and 
immunity in thyroid cancer, the correlation between PD1/PDL-1 and immune cells were calculated using the 
“ssGSEA”, “MCP-counter”, “CIBERSORT” and “Xcell” four packages in R software. Finally, in order to further 
screen the possible prognostic markers of THCA, we analyzed the survival of all genes in thyroid cancer and 
selected the first five survival-related hub genes based on the log-rank p value. “Survival” and “survminer” pack-
ages are used for survival analysis.

Ethical statement. The present study obtained data from the TCGA and did not include any animal exper-
iment or human specimens. Ethical approval was therefore not required.
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Results
Data download, evaluation of immune invasion and comparison of immune cells between 
cancer and adjacent tissues. The study downloaded the miRNA, mRNA and lncRNA data for THCA 
patients from the TCGA database. In addition, four methods, namely; ssGSEA, MCP-counter, CIBERSORT and 
Xcell, were used to compare the levels of immune cells between cancer and adjacent tissues. The four methods 
revealed different numbers of immune cells (CIBERSORT: 22, ssGSEA: 28, MCP counter: 10, Xcell: 67). In order 
to reduce possible errors, the study used all the four evaluation methods. The results showed that cancer tissues 
had significantly more numbers of immune cells than the paracancerous ones (Fig. 1A–D).

Correlation of immune cells. The study analyzed the correlation between immune cells in tumor and 
paracancerous samples (Fig. 2A–H). The results showed that the correlations between immune cells in tumor 
and paracancerous samples were significantly different, possibly due to the synergistic infiltration of immune 
cells activated by cancer antigens. In tumor tissues, the synergistic effect of different immune cells constitutes 
the tumor immune microenvironment and plays an important role in the invasion and development of tumors.

Cell consensus clustering. The THCA samples were classified into different subtypes based to the immune 
infiltration levels. In addition, the Cumulative Distribution Function (CDF) was used to identify the number of 
optimal subgroups (Fig. 3A–C). Finally, four different subtypes were identified. Additionally, the distribution of 
cells and immune stromal scores were compared between different subtypes using a heat map. The study also 

Figure 1.  Four methods assessed the number of immune cells in cancer and adjacent tissues. (A) The 
CIBERSORT evaluation method showed that the number of B cells and T-cells in cancer tissues was less than 
that in the adjacent tissues. However, cancer tissues had a higher number of dendritic and mast cells than that 
the adjacent tissues. (B) The MCP-counter evaluation method showed that cancer tissues had a lower number 
of CD8 T cells, monocytes, myeloid dendritic cells, NK cells and T cells than that the adjacent tissues. However, 
the number of neutrophils was higher in cancer tissues. (C) The ssGSEA evaluation method showed that the 
number of most T cells and B cells in cancer tissues was lower than that in adjacent tissues. However, the cancer 
tissues had a higher number mast cells, monocytes and neutrophils. (D) The Xcell evaluation method showed 
that the number of B cells, T-cells and monocytes was lower in cancer tissues than that in the adjacent tissues. 
However, cancer tissues had a higher number of dendritic cells, mast cells and natural killer cells.
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assessed the differences in tumor purity, immune and stromal scores in innate and adaptive immune mecha-
nisms, among the four subtypes. The results showed that Clusters 3 and 4 had lower tumor purity than the other 
two subtypes. However, Clusters 3 ad 4 had higher immune and stromal scores than the other two subtypes 
(Fig. 3D).

Immune scores and immune‑related molecules in different subtypes. The immune score can be 
used to assess the level of immune infiltration in the tumor microenvironment. Therefore, the study compared 
the immune stromal scores and the expression levels of immune-related molecules in 4 different immune infil-
trating subtypes (Fig. 4A–F). Based on the ESTIMATE algorithm, the stromal score ranged from − 600 to 1700 
while the immune score was between -800 and 3500. Additionally, Clusters 3 and 4 had significantly higher 
immune scores than Clusters 1 and 2. The results therefore suggested that immune and stromal scores are impor-
tant in the classification of subtypes.

Differences in tumor size distribution and grade. The American Joint Committee on Cancer/Inter-
national Cancer Control (AJCC/UICC) recently released the 8th edition of the TNM staging  system34. Notably, 
T represents the size of tumor, N represents the level of lymph node metastasis and M shows the presence or 
absence of distant metastasis. However, the TNM staging system alone is not enough to accurately reflect the 
stage of tumors. Therefore, other tumor-related factors have been explored, leading to the identification of dif-
ferent grades of tumors (Stages 1–4)35. The present study used a pie chart to understand the differences in tumor 
size distribution and grading between the different THCA subtypes (Fig. 5A–H). The findings showed that the 
ratio of Cluster 4 at T1 and Stage1 was significantly higher than that of the other clusters, suggesting that hot 
tumors have lower pathological stages than cold tumors.

Analysis of differences between cold and hot tumors. Tumors in Clusters 3 and 4 were defined as 
hot tumors because they had higher immune stromal scores while those in Clusters 1 and 2 were considered 
to be cold tumors because they had lower immune stromal scores. Additionally, the heat map showed that the 
immune cell types of THCA and those of adjacent samples were significantly different (Fig. 6A). The study also 
used the limma package (|Log2FC|> 2, adjusted p value  < 0.05) to identify differentially expressed genes then 
drew a volcano map to examine the differences in gene expression, between cold and hot tumors (Fig. 6B).

Enrichment analysis of DEGs and construction of protein interaction network for the 
DEGs. The results revealed 568 up-regulated and 412 down-regulated genes. Thereafter, the clusterprofiler 
package was used to conduct GO enrichment and KEGG pathway enrichment analyses of the differentially 
expressed genes related to cold and hot  tumors36. The findings showed that the up-regulated genes were mainly 
enriched in the regulation of leukocyte activation (GO: 0002694), T cell activation (GO: 0042110), regulation 
of lymphocyte activation (GO: 0051249) and leukocyte cell–cell adhesion (GO: 0007159). On the other hand, 
the down-regulated genes were mainly enriched in the hormone metabolic process (GO: 0042445), thyroid 
hormone metabolic process (GO: 0042403), hormone biosynthetic process (GO: 0042446) and thyroid hormone 
generation (GO: 0006590), as shown in Fig. 7A–D. Additionally, KEGG pathway enrichment analysis showed 
that the up-regulated differential genes were mainly enriched in the hematopoietic cell lineage (hsa04640), 
Cytokine-cytokine receptor interaction (hsa04060) and viral protein interaction with cytokine and cytokine 
receptor (hsa04061). On the other hand, the down-regulated differential genes were mainly enriched in thyroid 
hormone synthesis (hsa04918), the Rap1 signaling pathway (hsa04015) and Cortisol synthesis and secretion 

Figure 2.  Correlation between immune cells. The correlation between immune cells was assessed using 
four different methods and is shown in (A–H). Blue represents positive correlation and red depicts negative 
correlation.
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(hsa04927), as shown in Fig. 7E–H. Furthermore, the STRING online tool was used to construct a Protein–pro-
tein Interaction (PPI) network of the differentially expressed genes related to cold and hot tumors. Notably, the 
up-regulated differential genes with a node connection greater than 20 were considered to be hub genes. On 
the other hand, the down-regulated differential genes with a node connection greater than 10 were defined as 
hub genes (Fig. 7I: the protein interaction network of the down-regulated differential genes; Fig. 7J: the pro-
tein interaction network of the up-regulated differential genes). The analysis revealed 19 up-regulated and nine 
down-regulated hub genes. Moreover, the protein interaction network revealed a wide range of links between the 
markers related to the stromal scores and the markers related to immune scores in the differentially expressed 
genes, which may be related to the higher immune and stromal scores in hot tumors.

The tumor‑related regulatory molecules and enrichment analysis of tumor‑related mole‑
cules. T cell-based cancer immunotherapy, including checkpoint suppression or adoptive cell therapy, has 
greatly revolutionized cancer  treatment37. It is also well known that immunity plays a significant role in the 

Figure 3.  The consistent cluster map of immune cells. CDF (cumulative distribution function) showed that a k 
value of 4 was the optimal number for the subgroups (B). In addition, a heat map was drawn to show differences 
in tumor purity, immune and stromal scores among the different subtypes (D).
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occurrence and development of tumors. The present study first assessed the genes differently expressed in cancer 
and the adjacent tissues then crossed the genes up-regulated in cold tumors (adjusted p value  < 0.05) with those 
highly expressed in cancer. A total of 717 genes were identified to be negatively regulated immune genes, related 
to cancer. Therefore, these genes may be therapeutic targets.

Similarly, the genes that were up-regulated in hot tumors (adjpvalue < 0.05) were crossed with those expressed 
in low levels in cancer and a total of 1246 genes were identified. These genes are positively regulated immunity, 
so agonists need to be added during the treatment. In addition, the results of GO enrichment analysis showed 
that the up-regulated genes were mainly enriched in T cell activation (GO:0,042,110), regulation of T cell activa-
tion (GO: 0050863), regulation of lymphocyte activation (GO: 0051249), external side of the plasma membrane 
(GO: 0009897) and cytokine activity (GO: 0005125), as shown in Fig. 8A,B. On the other hand, KEGG pathway 
enrichment analysis showed that the up-regulated genes were mainly enriched in Cytokine-cytokine receptor 

Figure 4.  A box plot of immune scores and expression levels of immune-related molecules in the different 
subtypes. (A,B) The immune scores and immune matrix scores in the four clusters. Clusters 3 and 4 had 
higher immune scores than Clusters 1 and 2. (C–F) The expression levels of multiple immune molecules were 
compared in the four clusters. The expression levels of the molecules were higher in Clusters 3 and 4. *, p < 0.05. 
**, p < 0.01. ***, p < 0.001. ****, p < 0.0001.

Figure 5.  Tumor size distribution and grading in different subtypes. (A–H) The distribution ratio and grading 
of thyroid tumor sizes in different clusters. The ratio of Cluster 4 in T1 and Stage 1 was significantly higher than 
that of the other clusters.
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interaction (hsa04060) and viral protein interaction with cytokine and cytokine receptor (hsa04061), as shown 
in Fig. 8C,D. The down-regulated differential genes were however not enriched in related pathways.

Differences between lncRNA and miRNA in cold and hot tumors. The study then compared the 
expression lncRNA and miRNA between the cold and hot tumors (Fig. 9A–D). In addition, the limma package 
was used to identify the differentially expressed genes. Thereafter, volcano maps were drawn to compare the dif-
ferentially expressed genes between cold and hot tumors. The results revealed a total of 629 differential lncRNAs 
(|Log2FC|> 1, adjusted p < 0.05) and 114 differential miRNAs (|Log2FC|> 0.5, adjusted p value  < 0.05).

In order to understand the association of lncRNAs, mRNAs and miRNAs in DTC, the study built a ceRNA 
network based on the data mentioned above then used the ggalluvial package in R (Version: 0.9.1) to visualize the 
network. In addition, the miRNA target genes were assessed using the miRDB, Targetscan and miRTarBase data-
bases. During the analysis, a circle represented lncRNA (adj < 0.05), a diamond represented mRNA (adj < 0.05, 
logFC > 1, logFC < 0.05) and a triangle was used to depict miRNA (adjusted p < 0.05). Finally, the cytohub module 
was used to calculate the first five networks which were defined as the hubnet (Fig. 10). Notably, five miRNAs, 
namely; hsa-mir-204, hsa-mir-128, hsa-mir-214, hsa-mir-150 and hsa-mir-338 were located in the central area 
of the network and were of great significance in THCA immunity. (Supplementary Table 1) We predicted the 
transcription factors of hsa-mir-204, hsa-mir-128, hsa-mir-214, hsa-mir-150 and hsa-mir-338 in GeneCards.

Prediction of PD1/PDL‑1 related immune cells and hub prognostic genes. We first assessed 
the prognostic relationship between PDCD1 and CD274 in patients with thyroid cancer. We found that high 
PDCD1 expression may be associated with better survival trend (p = 0.056) (Supplementary Fig. 1). Then we 
explored the correlation between PDCD1 and CD274 and immune cells in thyroid cancer. In Supplementary 
Fig. 2, the results of the four algorithms ssGSEA, MCP-counter, CIBERSORT and Xcell showed that PDCD1 
and CD274 are significantly related to a variety of immune cells (Activated CD4 T cells, Activated CD8 T cells, 
Activated dendritic cells and NK cells). Finally, to find prognostic makers of THCA, we performed survival cor-
relation analysis on all genes in samples of thyroid cancer patients, and finally determined five hub genes based 
on the log-rank value: CD47, CILP, DERA, KLHL33, PSMB8 (Supplementary Figs. 3–7).

Discussion
Thyroid Carcinoma is one of the most common malignant tumors. In addition, screening of RNA transcripts has 
been conducted over the past 20 years and lncRNAs as well as miRNAs were shown to be strongly associated with 
tumorigenesis and metastasis in  THCA38–40. Interactions between tumor cells and various components of the 
TME are significant and contribute to all the hallmarks of  cancer41. Additionally, the TME can affect the growth 
and spread of tumors. Therefore, identifying the critical genes in the THCA microenvironment is important 
for the appropriate management and treatment of the cancer. Moreover, analysis of immune infiltration in the 
TME is significant for immune-related treatment of THCA. Consequently, the present study aimed to identify 
immune-related mRNAs, lncRNAs and miRNAs and further explore the relationship between these RNAs.

Existing evidence suggests that lncRNAs play a vital role in biological functions through multiple levels 
of regulation, including transcriptional, post-transcriptional, and epigenetic  regulation42,43. Numerous studies 
have also shown that there is a complex and closely related regulatory network between miRNA and lncRNA. 

Figure 6.  Differences in immune cell types and differentially expressed genes in cold and hot tumors. (A) The 
different immune cell types in cancer and adjacent tissue samples. (B) The up-regulation and down-regulation 
of differentially expressed genes in cold and hot tumors.
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Figure 7.  The GO, KEGG and PPI analysis of DEGs related to cold and hot tumors. (A–D) GO analysis of DEGs related 
to cold and hot tumors. (E–H) KEGG pathway analysis of DEGs related to cold and hot tumors. (I,J) PPI analysis of DEGs 
related to cold and hot tumors. (I) The down-regulated genes. (J) The up-regulated genes. BP, Biological Process; CC, Cellular 
Component; MF, Molecular Function; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, Protein–
protein Interaction; DEGs, Differentially Expressed Genes.



10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:16239  | https://doi.org/10.1038/s41598-021-90538-3

www.nature.com/scientificreports/

For instance, the relationship between miRNA and lncRNA was established in triple negative breast  cancer44. 
Moreover, the ceRNA hypothesis was proposed to explain the mechanism of tumorigenesis. The hypothesis sug-
gests that lncRNAs with sequences similar to their target miRNA can regulate mRNA expression by acting as a 
sponge of miRNA. This hypothesis therefore provides a novel theoretical insights and suggests valuable strategies 
as well as research directions for the diagnosis and treatment of  malignancies45.

There are currently few studies on ceRNA networks related to THCA. Therefore, the present study down-
loaded mRNA, lncRNA and miRNA data of patients with THCA from the TCGA. The samples were then divided 
into the cold and hot tumors, through immune  evaluation46. The microenvironment of hot tumors usually 
has a high level of immune infiltration and the immune effect is often relatively higher, with a strong antigen 
presentation ability and T cell activation. Such levels of immune infiltration in turn lead to the production of 
tumor-specific CD8 + T cells, which can eliminate cancer cells and generate systemic tumor-specific immunity, 
forming a long-term anti-tumor memory  response6,7. However, "cold" tumors have no immune cell infiltration 
in the tumor microenvironment or are mainly infiltrated by inhibitory regulatory cell subtypes (including regu-
latory T cells (Tregs), regulatory B cells (Bregs) and MDSCs)8–10. This in turn results to the inhibition of cancer 
growth. Moreover, the study used DEGs to construct a ceRNA network then identified a hubnet consisitng 
of five miRNAs, namely; hsa-mir-204, hsa-mir-128, hsa-mir-214, hsa-mir-150 and hsa-mir-338. The complex 
relationship between transcription factors and miRNAs’ regulation of genes is worthy of further exploration. 
We have predicted five hub miRNAs-related regulatory transcription factors (hsa-mir-204: ZNF341/JUND/
SCRT1/TRIM28/EZH2, hsa-mir-128: SP1/BCL11A/IRF4/EBF1/CBFB, hsa-mir-214: CEBPB/MAX/EP300/
GABPA/STAT3, hsa-mir-150: CHD2/ZBTB10/SP1/MXD4/FEZF1, hsa-mir-338: USF2/KLF1/HIC1). Notably, 
miRNAs are RNA molecules with a length of approximately 22 nucleotides. They bind to the 3’-untranslated 
region (3’-UTR) of their respective target genes and exert their effect on gene expression by inhibiting protein 
translation degrading  mRNA47. It is also known that miRNA plays an important role in the occurrence and 
development of cancer. For instance, hsa-mir-204 was shown to be associated with several types of cancer, 
including  melanoma48, breast  cancer49 and liver  cancer50. It was also shown that hsa-mir-128-3p can increase 
the sensitivity of colorectal cancer cells to  chemotherapy51. In addition, hsa-mir-128-3p was significantly associ-
ated with resistance to chemotherapeutic agents. Nonetheless, there are few related reports on THCA. It is also 
noteworthy that hsa-mir-214 was reported to play a crucial role in regulating the proliferation and metastasis of 
papillary THCA  cells52. Additionally, hsa-mir-150 and hsa-mir-338 were associated with the proliferation and 
invasion of various tumors, including colorectal  cancer53, non-small cell  carcinoma54 and cervical  cancer55. In 

Figure 8.  GO and KEGG enrichment analysis of immune-related genes. (A,B) The up-regulated DEGs were 
functionally enriched in GO. (C,D) The main pathways of the up-regulated DEGs were enriched in KEGG.
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THCA, these hub miRNAs as well as the related lncRNA and mRNA jointly affected the tumor microenviron-
ment. Their effect may be closely related to immune cell infiltration and tumor invasion.

In this study, seven differentially expressed mRNAs (BCL2, KCTD15, CDH2, GPAM, ITPR1, TUB and RGS6) 
were identified. These genes play an important role in the TME of many cancers and affect the efficacy of immune 
responses towards tumors. For example, the antiapoptotic B-cell lymphoma 2 (BCL2) gene was shown to be a 
key player in the development and progression of various types of cancer, including  pancreatic56 and prostate 
 cancer57. The gene is also actively involved in many pathways. On the other hand, KCTD15 is a member of the 
emerging class of KCTD ((K) potassium Channel Tetramerization Domain containing) proteins. In addition, 
downregulation of KCTD15 was reported to induce apoptosis and cell death, suggesting that it has a role in cel-
lular homeostasis and  proliferation58. The regulatory relationship of mir-204 and Cadherin 2 (CDH2) has success-
fully established a ceRNA network in breast  cancer59. Moreover, Glycerol-3-phosphate acyltransferase (GPAM) 
is a key enzyme in the biosynthesis of triacylglycerols and phospholipids. Furthermore, MSC-AS1 facilitates the 
progression of LUAD by sponging miR-33b-5p to up-regulate  GPAM60. Previous studies also showed that BCL2 
Apoptosis Regulator (BCL2)61 and Cadherin 2 (CDH2)62 play an important role in the pathogenesis of thyroid 
cancer. Therefore, the present study further combined these mRNAs with tumor-related lncRNAs and miRNAs 
in thyroid cancer, providing a basis for studying the common mechanisms of multiple genes in thyroid cancer.

In recent years, immunotherapy has been considered an exciting therapeutic strategy for various types of 
 cancers63. PD-L1 engages PD-1 receptor and induces PD-1 signaling, which can promote the initiation of T cell-
mediated immunosuppressive programs. In this study, our survival curve shows that PD1 may be related to a 
better prognosis trend. Some other cancer studies have shown that PD-L1 overexpression was related to favorable 

Figure 9.  Differences in the expression of lncRNA and miRNA in cold and hot tumors. (A,B) Differential 
expression of lnRNA in cold and hot tumors (|Log2FC|> 1, adjusted p < 0.05). (C,D) Differential expression of 
miRNA in cold and hot tumors(|Log2FC|> 0.5, adjusted p value  < 0.05).
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 prognosis64–66. The regulatory relationship between PD1/PDL1 and immune cells plays a very meaningful role in 
the immune infiltration mechanism of tumors, but there is very little research in thyroid cancer. In this study, we 
further elaborated the correlation between PD1/PDL1 and a variety of immune cells in thyroid cancer. First, we 
found that PD1/PDL1 is significantly positively correlated with Activated CD4 T cells, Activated CD8 T cells and 
NK cells. This result is consistent with previous studies. Activated CD8 T cell has been verified to be a favorable 
prognostic factor for a variety of  cancers67–69. In thyroid cancer, the tumor microenvironment infiltration of NK 
cells may regulate the expression of PD1/PDL1, which in turn affects the prognosis of  patients70. Activated den-
dritic cells are central regulators of the adaptive immune response, and as such are necessary for T-cell-mediated 
cancer immunity. In recent years, immunotherapy resistance has become more and more common in tumors. 
Some pathways can increase the risk of recurrence of immunotherapy. For example, the loss of PTEN is associ-
ated with increased levels of CCL2 and VEGF, decreased T cell infiltration, and resistance to PD-1  blockade71. 
Alterations in β-catenin/WNT signaling caused decreased CCL4 production, which led to diminished infiltration 
of CD103 + dendritic cells and impaired anti-tumor immune  responses72.

While the present study provided some insightful findings, it had a major limitation. Given that the study 
was based of Bioinformatics analyses, it lacked validation from in vivo and in vitro experiments. Nonetheless, 
the study identified five hubnets related to THCA and these may be associated with immune infiltration in can-
cer and tumor invasion. These results therefore provide more information on tumor invasion and mechanism 
of action in patients with THCA. The findings also highlight the possible targets for the treatment of THCA.

Conclusions
The study identified a hubnet consisting of seven mRNAs (BCL2, KCTD15, CDH2, GPAM, ITPR1, TUB and 
RGS6) and five miRNAs, namely; hsa-mir-204, hsa-mir-128, hsa-mir-214, hsa-mir-150 and hsa-mir-338. Moreo-
ver, the ceRNA network was used to determine the relationship between miRNA, lncRNA and immune-related 
mRNA. Understanding of the molecular role of THCA in the tumor microenvironment is important in designing 
appropriate treatment options.

Figure 10.  Construction of a ceRNA network. A ceRNA network consisting of 629 lncRNAs, 114 miRNAs and 
980 mRNAs was constructed. The first five networks were then selected and defined as the hubnet. The circle 
represents lncRNA (adjusted < 0.05), the diamond represents mRNA (adjusted p < 0.05, logFC > 1, logFC < 0.05) 
and the triangle depicts miRNA (adjusted p < 0.05).
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Data availability
The data used in this study is available in the TCGA database.

Received: 23 January 2021; Accepted: 10 May 2021

References
 1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 69(1), 7–34 (2019).
 2. Wang, Y. et al. CITED1 contributes to the progression of papillary thyroid carcinoma via the Wnt/beta-catenin signaling pathway. 

Onco Targets Ther. 12, 6769–6777 (2019).
 3. Balkwill, F. & Mantovani, A. Inflammation and cancer: back to Virchow?. Lancet 357(9255), 539–545 (2001).
 4. Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J. & Schreiber, R. D. Cancer immunoediting: from immunosurveillance to tumor 

escape. Nat. Immunol. 3(11), 991–998 (2002).
 5. Galluzzi, L., Senovilla, L., Zitvogel, L. & Kroemer, G. The secret ally: immunostimulation by anticancer drugs. Nat. Rev. Drug 

Discov. 11(3), 215–233 (2012).
 6. Ayers, M. et al. IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest. 127(8), 2930–2940 

(2017).
 7. Martinez-Lostao, L., Anel, A. & Pardo, J. How do cytotoxic lymphocytes kill cancer cells?. Clin. Cancer Res. 21(22), 5047–5056 

(2015).
 8. Kather JN, Suarez-Carmona M, Charoentong P, Weis CA, Hirsch D, Bankhead P, et al. Topography of cancer-associated immune 

cells in human solid tumors. Elife 2018; 7.
 9. Mauri, C. & Menon, M. Human regulatory B cells in health and disease: therapeutic potential. J. Clin. Invest. 127(3), 772–779 

(2017).
 10. Lindau, D., Gielen, P., Kroesen, M., Wesseling, P. & Adema, G. J. The immunosuppressive tumour network: myeloid-derived sup-

pressor cells, regulatory T cells and natural killer T cells. Immunology 138(2), 105–115 (2013).
 11. Jia, D. et al. Mining TCGA database for genes of prognostic value in glioblastoma microenvironment. Aging (Albany NY) 10(4), 

592–605 (2018).
 12. Qu, S. et al. Circular RNA: A new star of noncoding RNAs. Cancer Lett. 365(2), 141–148 (2015).
 13. Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12(5), 453–457 (2015).
 14. Barbie, D. A. et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462(7269), 

108–112 (2009).
 15. Becht, E. et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expres-

sion. Genome Biol. 17(1), 218 (2016).
 16. Aran, D., Hu, Z. & Butte, A. J. xCell: Digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 18(1), 220 

(2017).
 17. Meurette, O. & Mehlen, P. Notch Signaling in the Tumor Microenvironment. Cancer Cell 34(4), 536–548 (2018).
 18. Kim, J. & Bae, J. S. Tumor-associated macrophages and neutrophils in tumor microenvironment. Mediators Inflamm. 2016, 6058147 

(2016).
 19. Gajewski, T. F. The next hurdle in cancer immunotherapy: Overcoming the non-t-cell-inflamed tumor microenvironment. Semin. 

Oncol. 42(4), 663–671 (2015).
 20. Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348(6230), 56–61 (2015).
 21. Fridman, W. H., Pages, F., Sautes-Fridman, C. & Galon, J. The immune contexture in human tumours: Impact on clinical outcome. 

Nat. Rev. Cancer 12(4), 298–306 (2012).
 22. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucl. Acids Res. 

43(7), e47 (2015).
 23. Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucl. Acids Res. 28(1), 27–30 (2000).
 24. Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28(11), 1947–1951 (2019).
 25. Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M. & Tanabe, M. KEGG: Integrating viruses and cellular organisms. 

Nucl. Acids Res. 49(D1), D545–D551 (2021).
 26. Gong, J. et al. Integrated analysis of circular RNA-associated ceRNA network in cervical cancer: Observational study. Medicine 

(Baltimore) 98(34), e16922 (2019).
 27. Kohl, M., Wiese, S. & Warscheid, B. Cytoscape: Software for visualization and analysis of biological networks. Methods Mol. Biol. 

696, 291–303 (2011).
 28. Rosvall, M. & Bergstrom, C. T. Mapping change in large networks. PLoS ONE 5(1), e8694 (2010).
 29. Lundstrom, K. Micro-RNA in disease and gene therapy. Curr. Drug Discov. Technol. 8(2), 76–86 (2011).
 30. Ferre, F., Colantoni, A. & Helmer-Citterich, M. Revealing protein-lncRNA interaction. Brief Bioinform. 17(1), 106–116 (2016).
 31. Wong, N. & Wang, X. miRDB: An online resource for microRNA target prediction and functional annotations. Nucl. Acids Res. 

43(Database issue), D146–D152 (2015).
 32. Chou, C. H. et al. miRTarBase update 2018: A resource for experimentally validated microRNA-target interactions. Nucl. Acids 

Res. 46(D1), D296–D302 (2018).
 33. Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife 2015; 4.
 34. Lee, J. et al. Clinical value of lymph node ratio integration with the 8(th) edition of the UICC TNM classification and 2015 ATA 

risk stratification systems for recurrence prediction in papillary thyroid cancer. Sci. Rep. 9(1), 13361 (2019).
 35. Perrier, N. D., Brierley, J. D. & Tuttle, R. M. Differentiated and anaplastic thyroid carcinoma: Major changes in the American Joint 

Committee on Cancer eighth edition cancer staging manual. CA Cancer J. Clin. 68(1), 55–63 (2018).
 36. Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 

16(5), 284–287 (2012).
 37. Medina-Echeverz, J. et al. Synergistic cancer immunotherapy combines MVA-CD40L induced innate and adaptive immunity with 

tumor targeting antibodies. Nat. Commun. 10(1), 5041 (2019).
 38. Li, H. M. et al. Overexpression of LncRNA HOTAIR is associated with poor prognosis in thyroid carcinoma: A study based on 

TCGA and GEO data. Horm. Metab. Res. 49(5), 388–399 (2017).
 39. Wang, Y. et al. MYH9 binds to lncRNA gene PTCSC2 and regulates FOXE1 in the 9q22 thyroid cancer risk locus. Proc. Natl. Acad. 

Sci. USA 114(3), 474–479 (2017).
 40. Zhu, H. et al. Onco-lncRNA HOTAIR and its functional genetic variants in papillary thyroid carcinoma. Sci. Rep. 6, 31969 (2016).
 41. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: The next generation. Cell 144(5), 646–674 (2011).
 42. Muers, M. RNA: Genome-wide views of long non-coding RNAs. Nat. Rev. Genet. 12(11), 742 (2011).
 43. Caley, D. P., Pink, R. C., Trujillano, D. & Carter, D. R. Long noncoding RNAs, chromatin, and development. ScientificWorldJournal 

10, 90–102 (2010).



14

Vol:.(1234567890)

Scientific Reports |        (2021) 11:16239  | https://doi.org/10.1038/s41598-021-90538-3

www.nature.com/scientificreports/

 44. Augoff, K., McCue, B., Plow, E. F. & Sossey-Alaoui, K. miR-31 and its host gene lncRNA LOC554202 are regulated by promoter 
hypermethylation in triple-negative breast cancer. Mol. Cancer 11, 5 (2012).

 45. Salmena, L., Poliseno, L., Tay, Y., Kats, L. & Pandolfi, P. P. A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language?. Cell 
146(3), 353–358 (2011).

 46. Galon, J. & Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. 
Drug Discov. 18(3), 197–218 (2019).

 47. Patel, N. et al. Regulating BMI1 expression via miRNAs promote Mesenchymal to Epithelial Transition (MET) and sensitizes breast 
cancer cell to chemotherapeutic drug. PLoS ONE 13(2), e0190245 (2018).

 48. Diaz-Martinez, M. et al. miR-204-5p and miR-211-5p contribute to BRAF inhibitor resistance in melanoma. Cancer Res. 78(4), 
1017–1030 (2018).

 49. Muller, V., Oliveira-Ferrer, L., Steinbach, B., Pantel, K. & Schwarzenbach, H. Interplay of lncRNA H19/miR-675 and lncRNA 
NEAT1/miR-204 in breast cancer. Mol. Oncol. 13(5), 1137–1149 (2019).

 50. Yu, Y. et al. MiR-204 inhibits hepatocellular cancer drug resistance and metastasis through targeting NUAK1. Biochem. Cell Biol. 
97(5), 563–570 (2019).

 51. Liu, T. et al. Exosome-transmitted miR-128-3p increase chemosensitivity of oxaliplatin-resistant colorectal cancer. Mol. Cancer 
18(1), 43 (2019).

 52. Liu, F. et al. miR-214 regulates papillary thyroid carcinoma cell proliferation and metastasis by targeting PSMD10. Int. J. Mol. Med. 
42(6), 3027–3036 (2018).

 53. Fan, H., Liu, X., Zheng, W. W., Zhuang, Z. H. & Wang, C. D. MiR-150 alleviates EMT and cell invasion of colorectal cancer through 
targeting Gli1. Eur. Rev. Med. Pharmacol. Sci. 21(21), 4853–4859 (2017).

 54. Lu, W. et al. Long non-coding RNA linc00673 regulated non-small cell lung cancer proliferation, migration, invasion and epithelial 
mesenchymal transition by sponging miR-150-5p. Mol. Cancer 16(1), 118 (2017).

 55. Luan, X. & Wang, Y. LncRNA XLOC_006390 facilitates cervical cancer tumorigenesis and metastasis as a ceRNA against miR-
331-3p and miR-338-3p. J. Gynecol. Oncol. 29(6), e95 (2018).

 56. Wang, L. et al. Methylation of HSP70 orchestrates its binding to and stabilization of BCL2 mRNA and renders pancreatic cancer 
cells resistant to therapeutics. Cancer Res. 80(20), 4500–4513 (2020).

 57. Renner, W., Langsenlehner, U., Krenn-Pilko, S., Eder, P. & Langsenlehner, T. BCL2 genotypes and prostate cancer survival. Strahl-
enther Onkol. 193(6), 466–471 (2017).

 58. Smaldone, G. et al. KCTD15 is overexpressed in human childhood B-cell acute lymphoid leukemia. Sci. Rep. 9(1), 20108 (2019).
 59. Wang, X. et al. Construction and analysis of competing endogenous RNA networks for breast cancer based on TCGA dataset. 

Biomed. Res. Int. 2020, 4078596 (2020).
 60. Li, S., Yang, S., Qiu, C. & Sun, D. LncRNA MSC-AS1 facilitates lung adenocarcinoma through sponging miR-33b-5p to upregulate 

GPAM. Biochem. Cell Biol. 99(2), 241–248 (2021)
 61. Kolenda, T. et al. Good or not good: Role of miR-18a in cancer biology. Rep. Pract. Oncol. Radiother. 25(5), 808–819 (2020).
 62. Wan, Y. et al. Identifying hub genes of papillary thyroid carcinoma in the TCGA and GEO database using bioinformatics analysis. 

PeerJ 8, e9120 (2020).
 63. Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359(6382), 1350–1355 (2018).
 64. Darb-Esfahani, S. et al. Prognostic impact of programmed cell death-1 (PD-1) and PD-ligand 1 (PD-L1) expression in cancer cells 

and tumor-infiltrating lymphocytes in ovarian high grade serous carcinoma. Oncotarget 7(2), 1486–1499 (2016).
 65. Droeser, R. A. et al. Clinical impact of programmed cell death ligand 1 expression in colorectal cancer. Eur. J. Cancer 49(9), 

2233–2242 (2013).
 66. Schalper, K. A. et al. In situ tumor PD-L1 mRNA expression is associated with increased TILs and better outcome in breast car-

cinomas. Clin. Cancer Res. 20(10), 2773–2782 (2014).
 67. Schumacher, K., Haensch, W., Roefzaad, C. & Schlag, P. M. Prognostic significance of activated CD8(+) T cell infiltrations within 

esophageal carcinomas. Cancer Res. 61(10), 3932–3936 (2001).
 68. Farhood, B., Najafi, M. & Mortezaee, K. CD8(+) cytotoxic T lymphocytes in cancer immunotherapy: A review. J. Cell Physiol. 

234(6), 8509–8521 (2019).
 69. Szabo, P. A. et al. Single-cell transcriptomics of human T cells reveals tissue and activation signatures in health and disease. Nat. 

Commun. 10(1), 4706 (2019).
 70. Delivanis, D. A. et al. Pembrolizumab-induced thyroiditis: Comprehensive clinical review and insights into underlying involved 

mechanisms. J. Clin. Endocrinol. Metab. 102(8), 2770–2780 (2017).
 71. Peng, W. et al. Loss of PTEN promotes resistance to t cell-mediated immunotherapy. Cancer Discov. 6(2), 202–216 (2016).
 72. Spranger, S., Bao, R. & Gajewski, T. F. Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature 

523(7559), 231–235 (2015).

Acknowledgements
We thank the researchers who provided their data for this analysis and largely contributed to the success of the 
present study.

Author contributions
D.J.W. and Q.X.G. came up with the research idea while L.G.Q. conducted the data analyses. In addition, L.Y.S. 
contributed significantly to processing the data and wrote the manuscript. All the authors read and approved 
the final manuscript.

Funding
The present study was supported by Medical Science and Technology Program of Henan Province (SBGJ 
202002040).

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 021- 90538-3.

Correspondence and requests for materials should be addressed to X.Q.

https://doi.org/10.1038/s41598-021-90538-3
https://doi.org/10.1038/s41598-021-90538-3


15

Vol.:(0123456789)

Scientific Reports |        (2021) 11:16239  | https://doi.org/10.1038/s41598-021-90538-3

www.nature.com/scientificreports/

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Identification of prognostic biomarkers related to the tumor microenvironment in thyroid carcinoma
	Methods
	Data download and assessment of immune infiltration. 
	Evaluation of immune and stromal scores in the tumor and paracancerous samples. 
	Correlation of immune cells. 
	Cell consistent clustering. 
	Differences in the immune stromal score, immune-related molecules, tumor size distribution and grading in the different subtypes. 
	Analysis of the difference between cold and hot tumors. 
	Enrichment analysis of differentially expressed genes and construction of a protein interaction network. 
	Search for tumor related regulatory molecules. 
	Differences between lncRNA and miRNA in cold and hot tumors. 
	Construction of hub ceRNA network. 
	Prediction of PD1PDL-1 related immune cells and hub prognostic genes. 
	Ethical statement. 

	Results
	Data download, evaluation of immune invasion and comparison of immune cells between cancer and adjacent tissues. 
	Correlation of immune cells. 
	Cell consensus clustering. 
	Immune scores and immune-related molecules in different subtypes. 
	Differences in tumor size distribution and grade. 
	Analysis of differences between cold and hot tumors. 
	Enrichment analysis of DEGs and construction of protein interaction network for the DEGs. 
	The tumor-related regulatory molecules and enrichment analysis of tumor-related molecules. 
	Differences between lncRNA and miRNA in cold and hot tumors. 
	Prediction of PD1PDL-1 related immune cells and hub prognostic genes. 

	Discussion
	Conclusions
	References
	Acknowledgements


