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Abstract

Recent advances in epigenomics have made it possible to map genome-wide regulatory

regions using empirical methods. Subsequent comparative epigenomic studies have

revealed that regulatory regions diverge rapidly between genome of different species, and

that the divergence is more pronounced in enhancers than in promoters. To understand

genomic changes underlying these patterns, we investigated if we can identify specific

sequence fragments that are over-enriched in regulatory regions, thus potentially contribut-

ing to regulatory functions of such regions. Here we report numerous sequence fragments

that are statistically over-enriched in enhancers and promoters of different mammals (which

we refer to as ‘sequence determinants’). Interestingly, the degree of statistical enrichment,

which presumably is associated with the degree of regulatory impacts of the specific

sequence determinant, was significantly higher for promoter sequence determinants than

enhancer sequence determinants. We further used a machine learning method to construct

prediction models using sequence determinants. Remarkably, prediction models con-

structed from one species could be used to predict regulatory regions of other species with

high accuracy. This observation indicates that even though the precise locations of regula-

tory regions diverge rapidly during evolution, the functional potential of sequence determi-

nants underlying regulatory sequences may be conserved between species.

Author summary

Regions of the genome that do not encode genes but affect expression of other genes, such

as enhancers and promoters, are referred to as regulatory regions. Because of their regula-

tory functions, it was thought that enhancers and promoters should be evolutionarily con-

served. Regulatory regions can be now epigenomically identified because they are marked

by specific modifications of histone tails at the chromatin level. Interestingly, when we

compare epigenomically identified regulatory regions from different mammals, the spe-

cific positions of regulatory regions are often divergent between species. Enhancers in
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particular are highly divergent between species. In this study, we show that we can find

sequence fragments that are statistically enriched in enhancers and promoters of different

species, and that the degree of statistical enrichment can explain different levels of evolu-

tionary sequence conservation between enhancers and promoters. We further constructed

predictive models of enhancers and promoters using the enriched sequence fragments,

and show that these models can not only accurately predict enhancers and promoters of

the same species, but works comparably well when applied to other species. These results

indicate that even though the specific positions of regulatory regions have diverged

between species, the functions of sequence fragments that comprise those regions may be

conserved.

Introduction

Epigenomic modifications such as histone modifications and DNA methylation play critical

roles in development, regulation, and diseases. The study of epigenetic modifications has

made great strides in recent decades, and the specific combinations of different epigenome

components in distinct biological conditions are rapidly being discovered [1]. In particular,

epigenomic profiling is widely used to empirically identify regulatory regions including

enhancers and promoters using chromatin immunoprecipitation with massively parallel DNA

sequencing (ChIP-seq). For example, genomic regions enriched for histone H3 lysine 27 acety-

lation (H3K27ac) are considered as active enhancers [2, 3]. On the other hand, enrichment of

histone H3 lysine 4 trimethylation (H3K4me3), in particular together with H3K27ac, indicates

active promoters [4–6].

Beyond identifying regulatory regions, the next challenge is deciphering what factors deter-

mine and affect epigenomes. Among potential factors, the importance of cis-regulatory

sequences on the epigenome is well appreciated. Several cis-regulatory sequences based predic-

tive models have been constructed to classify regulatory regions [7–10]. For example, a recent

study reported random forest classifier models from the human genome that could predict

regulatory regions marked by H3K27ac and H3K4me3 modifications with relatively high accu-

racy [11].

Even though our understanding of the true nature of the relationship between specific his-

tone modifications and regulatory regions is sure to undergo much more revisions, these tech-

nical advances in genome-wide epigenomic profiling brought new approaches to study

evolution of regulatory regions. Instead of having to rely on experimentally characterized com-

parative transcription factor binding assays [12–14] and/or regions that retain sequence simi-

larities [15–18], enhancers and promoters can be identified based on the distribution of

specific epigenomic modifications such as H3K4me3 and H3K27Ac across different species [6,

19]. Interestingly, these studies show that at the genome-scale, chromosomal locations of

enhancers are highly divergent between species [6, 20, 21]. Promoters are also found in diver-

gent locations, although their positions are more constrained than enhancers, since promoters

are typically adjacent to transcription units (e.g. [6]). Thus, while regulatory regions can be

reliably predicted from sequences within specific genomes [7–11], the precise locations of reg-

ulatory regions, in particular of enhancers, diverge rapidly during evolution [6, 18, 20, 21].

It is not necessarily straightforward to reconcile these two aspects of regulatory regions. In

the simplest scenario, functional regions such as enhancers and promoters should be evolu-

tionarily conserved since they are subject to purifying selection. Indeed, this idea has been suc-

cessfully used to identify non-coding sequences with regulatory functions [16, 17, 22, 23].
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However, at the genome-scale, regulatory regions harbor little sequence similarities and their

locations are highly divergent. Rapid turnover of transcription binding sites [12, 24, 25] and

transcription rewiring [26–28] can explain some aspects of regulatory sequence evolution, but

many questions still remain [29, 30].

Here, utilizing the wealth of comparative data on epigenomically determined enhancers

and promoters, we investigated whether we could identify specific sequence fragments that

constitute enhancers and promoters, and if so, whether such sequence fragments were evolu-

tionarily conserved between species. We first performed an exhaustive search to identify

sequence fragments that are statistically over-represented in experimentally identified enhanc-

ers and promoters of several mammals [6]. A unique aspect of our study is that we focused on

distinguishing regulatory regions from nearby regions. Genomic sequences of mammals such

as humans are highly heterogeneous in many aspects such as GC contents, transposable ele-

ment contents, genic contents, and other aspects [31, 32]. By comparing regulatory regions to

their nearby non-regulatory regions, we identified sequence fragments that distinguished reg-

ulatory regions from its local genomic backgrounds. Our comprehensive exhaustive search

revealed numerous sequence fragments that were significantly enriched in regulatory regions

compared to nearby regions. Due to the nature of the exhaustive search, some of the identified

sequence fragments may be inter-related. To overcome this limitation and identify a subset of

sequence fragments that are statistically independent, and to construct prediction models to

test evolutionary hypotheses, we employed a machine learning method. Specifically, we used

the least absolute shrinkage and selection operator (LASSO) method [33], which can effectively

select one variable among the set of highly correlated variables [34]. The LASSO method is

also excellent at prediction accuracy [11, 35].

From these procedures, we discovered numerous sequence fragments that are statistically

enriched in experimentally verified regulatory regions (referred to as ‘sequence determinants’

henceforth). Intriguingly, sequence determinants obtained from enhancers and promoters

show remarkable differences with respect to their impact on functional regions. Moreover,

even though sequence determinants themselves exhibit only moderate overlaps between spe-

cies, prediction models constructed using sequence determinants from different species could

be inter-changed to perform as well as prediction models from the focal species. We discuss

potential implications of these findings.

Materials and methods

Enhancer and promoter data

We used experimental annotations of liver enhancers and promoters from a previous study [6]. Fol-

lowing the definition in this study [6], we considered enhancers to be regions marked only with the

H3K27ac mark and promoters to be regions marked with H3K4me3 (with or without H3K27ac).

We selected data from seven ‘high-quality’ mammalian genomes as indicated in [6], including

Home sapiens (human), Macaca mulatta (macaque), Bos taurus (cow), Sus scrofa (pig), Canis famil-
iaris (dog), Rattus norvegicus [32], and Mus musculus (mouse). Each enhancer or promoter was

designated as foreground, and a segment of the same length 100,000 base-pairs (100kb) apart from

the foreground was selected as the background. We used these ‘regional’ backgrounds to control

for potential chromosome effect and/or regional effects. The distance of 100kb between the fore-

ground and background was selected since several genomic features such as linkage disequilibrium

blocks and GC contents show correlations that extend to ~ 100kb [32, 36]. We obtained the

genome sequences using the R Bioconductor libraries “BSgenome” [37]. Backgrounds that had

greater than 50% of nucleotides missing (not sequenced) were discarded (Table 1), and put infor-

mation on overlapped proportions between foreground and background in S1 Table.
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Enhancer and promoters in orthologous locations

Those enhancers and promoters found in orthologous locations across species were identified

as conserved (Table 1). Specifically, for each human enhancer or promoter we retrieved the 17

eutherian EPO multiple alignment using Ensembl REST API [38] and determined if the region

was conserved or not based on whether all other 6 species also showed the same histone mark

(s) in the orthologous region. For species with different genome assemblies in the alignment,

we converted the coordinates using Ensembl assembly converter [39].

Exhaustive search for sequence determinants

We examined whether specific sequence fragments in the foreground were over-represented

compared to the backgrounds by statistical testing. We used sliding windows with a specific

length (from 6-mers to 15-mers), moving from the 5’ end to the 3’ end in each foreground or

background (Fig 1). As the window moved by a base-pair (bp), a sequence fragment within

that bin was captured and recorded. Following this sliding window analysis, counts of each

sequence fragment in the foreground and background were obtained. For each sequence frag-

ment, we constructed a 2×2 contingency table that contained counts of a sequence determi-

nant in each of foreground and background region (Table 2), and we used the odds ratio (OR)

as a measure of over-representation in foreground, compared to background. The magnitude

of OR indicated how strongly over-enriched a specific element was in regulatory regions,

which we also referred to as ‘effect size’ in this study.

We used the χ2 test to test the following null and alternative hypotheses:

H0 : OR ¼ 1; ð1Þ

H1 : not H0: ð2Þ

If the expected count of a sequence fragment in any of the cell in the 2×2 contingency table

was lower than 5, we used the Fisher’s exact test instead. The resulting P-values were corrected

for multiple testing using the false discovery rate (FDR) approach [40]. Following these proce-

dures, a ‘sequence determinant’ in the statistical sense was identified as a sequence fragment

whose FDR Q-value was equal to or less than 0.05 and the OR was greater than 1. In the

Table 1. Summary of the datasets used in this study.

Enhancers Promoters

Total Conserved Total Conserved

Foreground

(Background)1
Mean (SD) of

lengths2
Foreground

(proportion)

Mean (SD) of

lengths2
Foreground

(Background)1
Mean (SD) of

lengths2
Foreground

(proportion)

Mean (SD) of

lengths2

Human 29137 (29007) 3275 (2551) 305 (1.0%) 7531 (5741) 12035 (11981) 2497 (922) 2039 (16.9%) 2772 (991)

Macaque 22089 (21732) 2514 (1791) 379 (1.7%) 3957 (3191) 11162 (10472) 2102 (789) 2085 (18.7%) 2271 (825)

Cow 31971 (31884) 1988 (1519) 457 (1.4%) 3175 (2563) 13792 (13766) 2385 (876) 2103 (15.2%) 2689 (954)

Pig 23804 (21229) 3322 (2432) 349 (1.5%) 6720 (5611) 11114 (9823) 2046 (909) 2086 (18.8%) 2368 (1006)

Dog 20070 (20026) 3181 (2212) 324 (1.6%) 5265 (3716) 11093 (11055) 2401 (903) 2103 (19.0%) 2574 (975)

Rat 22416 (21642) 2792 (2250) 384 (1.7%) 4656 (4539) 17086 (16389) 1765 (1030) 2154 (12.6%) 2296 (1139)

Mouse 18396 (18339) 2572 (1927) 355 (1.9%) 4148 (5186) 15164 (15104) 2648 (1221) 2042 (13.5%) 3150 (1345)

1 If some of background regions were discarded because they had >50% N/A nucleotides.
2 Statistic using foreground data set.

https://doi.org/10.1371/journal.pcbi.1006451.t001
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process, we tested only sequence determinants that appeared over 100 times to avoid selecting

rare sequence determinants of negligible biological relevance. For example, for 15-mers in the

human enhancer data set, most sequence fragments (63 million out of 70 million) occurred

only once. We repeated this procedure for each of the seven species and identified ‘species

sequence determinants’.

Fig 1. Overall workflow for the exhaustive search and construction of prediction models. (A) Each sequence fragment is counted and

summarized in a k-mer sliding window for foreground (regulatory regions) and background (control). (B) Using the counts from the sliding

window, a χ2 test for each sequence fragment (of each species) is conducted to determine whether that sequence fragment is significantly over-

represented in the foreground compared to the background. Significantly over-represented sequence fragments are named ‘species sequence

determinants’. In addition, the CMH test [34] is used to detect sequence determinants that are present in all seven species (‘common sequence

determinants’). (C) The least absolute shrinkage and selection operator (LASSO) prediction models are constructed for each species using a

subset of sequence determinants from (B). These sequence determinants are randomly selected within the stratification of GC content and

fragment length. After LASSO selection, which removes some of redundant or non-significant determinants, the resulting models were applied

to its own species (same-species prediction), or the other six species (inter-species prediction) to evaluate prediction performances.

https://doi.org/10.1371/journal.pcbi.1006451.g001

Table 2. 2×2 contingency table to apply χ2 test to identify significant sequence determinants.

Count of a target

sequence fragment1
Count of the other sequence fragments1 Total count

Foreground N11 (N1+× N+1/N++) N12 (N1+× N+2/N++) N1+

Background N21 (N2+× N+1/N++) N22 (N2+× N+2/N++) N2+

Total count N+1 N+2 N++

1Numbers in the parenthesis are expected numbers to calculate the χ2 test statistics. For example, for a sequence fragment (e.g.”AACCGGTT”), N11 is its observed count

in the foreground regions, N12 is the observed count of sequence fragments that are not “AACCGGTT”, but has the same length in the foreground regions, and N21 and

N22 are the counterpart of the N11 and N12 in the background regions, respectively. The sign “+” means row-wise sums (N1+, N2+), column-wise sums (N+1, N+2), or

total sum (N++). OR is estimated as N11×N22/(N12×N21).

https://doi.org/10.1371/journal.pcbi.1006451.t002
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Common sequence determinants

We identified ‘common sequence determinants’ as sequence fragments that are enriched in

foreground regions compared to the background regions across the seven mammalian species.

For the purpose, we used the Cochran-Mantel-Haenzel (CMH) test [41] to identify enrich-

ment of sequence determinants from multiple data sets using a conditional variable, which is a

nominal covariate such as the species index [41, 42]. The CMH test is also equivalent to the

score type test of logistic regression, which has advantages in the handling of sparse count data

sets [42]. Consequently, we used the CMH to test the null hypothesis,

H0: ORjspecies¼ 1;where ORjspecies is the conditional OR in presence of the species index: ð3Þ

H1 : not H0: ð4Þ

Common sequence determinants were then defined as those whose OR|species>1 for all spe-

cies and FDR Q-value from CMH� 0.05.

LASSO prediction models using sequence determinants from exhaustive

search

We constructed prediction models that yield predictive scores for each region. We used the

least absolute shrinkage and selection operator (LASSO) method [33], which excels at predic-

tion accuracy as well as covariate selection [11, 35]. In the LASSO model, each foreground or

background region was regarded as a binary observation (foreground = 1, background = 0).

The relative frequency of each sequence determinant was regarded as an explanatory variable.

Because the space of all significant sequence determinants was extremely large (S2 and S3

Tables), including all determinants in the LASSO model was not computationally feasible.

Instead, we selected 10,000 sequence determinants, sampled according to their distribution of

GC content and fragment length, to incorporate in the LASSO models using a stratified sam-

pling approach [43]. Specifically, we stratified the whole sequence determinants by the combi-

nation of GC content (ten uniform intervals: [0~0.1],. . ., (0.9~1.0]) and length (ten lengths:

6,. . .,15bp). Then we selected samples from each of the stratified subsets so that its number out

of the 10,000 was proportional to the number of determinants in the specific subset among the

total determinants. To train LASSO models and estimate coefficient of each determinant, we

used the R function “glmnet” from the package “glmnet” using R 3.4.0.

To construct prediction models, we used both the 10,000 species sequence determinants and

the 10,000 common sequence determinants as input variables, so that we can compare the predic-

tion performances of species determinants and common determinants. We performed two types

of predictions. First, we performed same-species prediction, which evaluates prediction AUC

through a 10-fold cross-validation process [11, 35, 44, 45]. During the 10-fold cross-validation

process, an optimal penalty parameter that provides the smallest test AUC is chosen. We regarded

the smallest test AUC as same-species prediction AUC. For inter-species prediction, we used the

optimal parameter to construct a prediction model from whole data set of a species and applied

the model to the other species to calculate inter-species prediction AUCs. Workflow from the

exhaustive search to LASSO is depicted in Fig 1. In most prediction results, we provided two types

of AUC, the first one is receive operating characteristic AUC (ROC-AUC) for general perfor-

mance of prediction and the second one is precision-recall AUC (PR-AUC) for robustness of per-

formance regardless of the ratio between numbers of foreground and background [46].

Among several machine-learning methods, we selected LASSO because of its ability to reduce

the number of input variables so that those are not redundant and are statistically meaningful.

Functional conservation of sequence determinants at rapidly evolving regulatory regions
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However, other machine learning methods might be useful as well. For example, when many of

sequence determinants have strong relationship in terms of correlation, elastic net that can cap-

ture more input variables would be useful to improve prediction performances [47].

Transcription factor binding sites (TFBS) analysis

We examined the presence of transcription factor binding sites (TFBS) in the sequence deter-

minants using TOMTOM [48]. This tool assesses the similarity between individual sequence

input and specific TFBS databases and provides P-values and Q-values adjusted by FDR.

Known TFBS compiled in the JASPAR 2014 Core vertebrate database [49], the HOCOMO-

COv10_HUMAN and the HOCOMOCOv10_MOUSE [50] were used. We summarized the

proportion of significant (P<0.05) TFBS hits as ‘TFBS frequency’. For example, each human

sequence determinant was compared to the 641 known TFBS in the HOCOMOCOv10_HU-

MAN database. The number of significant comparisons out of the total 641 comparisons was

referred to as ‘TFBS frequency’. Due to the probabilistic nature of TF binding and the fact that

sequence determinants might encode partial or full TFBS, TFBS frequency indicates versatility

of a sequence determinant that can be a motif for TFBS binding. For instance, the CAGCCC

determinant from the human genome yielded 18 of 641 significant hits, thus TFBS frequency

of the determinant was 2.8%. We also used–log10min(P) instead of TFBS frequency to evaluate

the best match between a k-mer and the motifs in the database.

Analysis of the relationship between biological factors of sequence

determinants

Sequence determinants from the exhaustive search as well as from the LASSO prediction mod-

els were further analyzed to explore relationships between their effect sizes and several biologi-

cal factors such as GC content and TFBS binding properties. For this analysis, we used the

following linear model;

log
2
ðORÞi� GC contentiþTFBS frequencyiþGC contenti�TFBS frequencyi þ εi; ð5Þ

where i is the index of each sequence determinant and εi ~N(0,σ2). In this model, we log2

transformed the OR values to improve normality. We applied the model to enhancer and pro-

moter sequence determinants from common, human, and mouse sets.

Results

Promoter sequence determinants are strongly over-represented relative to

enhancer sequence determinants

To identify sequence fragments that are significantly enriched in enhancers or promoters com-

pared to nearby background regions (sequence determinants), we first performed an exhaus-
tive search. Briefly, we examined sequence fragments of lengths from 6 to 15 bp, using a sliding

window approach (Fig 1). We tested statistical over-representation of the specific sequence

fragment in the enhancers or promoters compared to their backgrounds using a contingency

table test based on their ORs. The P-values were adjusted via the false discovery procedure [40]

(Materials and Methods).

Following these procedures, we identified numerous sequence determinants associated

with enhancers and promoters of each species (referred to as ‘species sequence determinants’,

Materials and Methods). Fig 2(A) and 2(B) show the numbers of significant sequence determi-

nants from human enhancers and promoters based on their OR and length. The majority of

sequence determinants in enhancers and promoters were found in 7–11 bps. Human enhancer

Functional conservation of sequence determinants at rapidly evolving regulatory regions
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determinants were slightly yet significantly longer than promoter determinants (mean lengths

for human enhancers and promoters were 9.20 and 9.01, P<1×10−5 by two sample t-test).

However, there was no consistent pattern across the seven mammals when comparing the

length of sequence determinants in enhancers and promoters. Sequence determinants were

also generally GC-rich and TFBS-rich compared to non-significant sequence fragments (see

below). Remarkably, with respect to OR, sequence determinants from enhancers and promot-

ers were highly distinct. Strongly enriched sequence determinants, such as those with

OR� 2.0, were 140-fold more abundant in promoters than in enhancers (Fig 2). Accordingly,

the ORs of sequence determinants were significantly higher in promoter sequence determi-

nants than in enhancer sequence determinants (P< 10−15 by Wilcoxon’s rank sum-test in all

seven species, Fig 3).

We then examined sequence determinants that occurred more frequently than expected in

all seven mammalian species, which we referred to as ‘common sequence determinants’ (Mate-

rials and Methods). Similar to the results from the above analysis, common sequence determi-

nants had higher ORs in promoters than in enhancers (P< 10−15 by Wilcoxon’s rank sum-

test, Fig 2(C) and 2(D), S4 Table). When we compared the entries of common sequence deter-

minants to those of species sequence determinants, we found that 39% and 57% of all human

enhancer and promoter determinants overlapped with common enhancer and promoter

sequence determinants, respectively (S5 Table). Therefore, regardless of their species-wise dis-

tribution, sequence determinants that mark promoters tended to have significantly greater OR

thus presumably stronger effects on regulatory potential of target regions in terms of marginal

effect size, compared to those found in enhancers.

Fig 2. Heatmaps of the sequence determinant counts according to sequence length and OR from the exhaustive search. The

X-axis corresponds to the length of sequence determinants and Y-axis to the OR of each sequence determinant. (A) and (B) are

from human species sequence determinants while (C) and (D) are from common sequence determinants. The count information

of species sequence determinants in the other six species are summarized in S2 and S3 Tables. OR in the heatmaps for the

common sequence determinants represents the minimum OR value among all seven individual ORs. The total numbers of

sequence determinants are 107,287 in (A), 101,625 in (B), 69,503 in (C), 59,783 in (D).

https://doi.org/10.1371/journal.pcbi.1006451.g002

Functional conservation of sequence determinants at rapidly evolving regulatory regions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006451 October 5, 2018 8 / 21

https://doi.org/10.1371/journal.pcbi.1006451.g002
https://doi.org/10.1371/journal.pcbi.1006451


LASSO approach supports different effect sizes of enhancer and promoter

sequence determinants

The exhaustive search allowed us to identify all sequence determinants that were marginally

enriched. However, some sequence determinants might be highly correlated with each other,

because they were extracted from overlapping regions (Fig 1). The LASSO approach is capable

of selecting one variable among the highly correlated variable sets, in addition to selecting vari-

ables of substantial effect [33]. Therefore, we next used the LASSO approach to select essential

variables among the many correlated variables, and to construct prediction models that dis-

criminate enhancers and promoters from their corresponding background regions (Materials

and Methods). The total numbers of sequence determinants from the human enhancers and

promoters were 107,287 and 101,625, respectively (S2 and S3 Tables). AUCs increased as the

number of input sequence determinants increased, to stabilize around 7,000 sequence deter-

minants (S1 Fig). We thus chose 10,000 sequence determinants for each set of sequence deter-

minants using a stratified sampling approach [43], to select a subset that is representative of

the original distribution with respect to GC contents and lengths (Materials and Methods).

Following these steps, prediction models were constructed for both same-species prediction

and inter-species prediction.

We investigated the distribution of ORs and the lengths of selected sequence determinants

from the LASSO approach (‘LASSO-selected sequence determinants’), and from same-species

prediction. The same-species prediction model of human enhancers and promoters had a total

of 4321 and 1343 LASSO selected sequence determinants, respectively (S6 and S7 Table). Con-

sistent with the results from the exhaustive search, marginal ORs from the enhancer models

were significantly lower than those from the promoter models in all species (Wilcoxon test,

P< 10−15, S2 Fig).

Fig 3. Contrasting odds ratio distributions of enhancer and promoter sequence determinants using boxplots. Sequence determinants from promoters

have significantly higher Odds Ratio than those from enhancers in all seven species (P< 10−15 by Wilcoxon’s rank sum-test in all species).

https://doi.org/10.1371/journal.pcbi.1006451.g003
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We investigated the relative frequencies of individual LASSO-selected sequence determi-

nants in foreground and background regions, shown as density plots in S3 Fig. In promoters,

marginal density of the relative frequencies of LASSO-selected sequence determinants is highly

distinct from that of the background, which is consistent with the high effect size of LASSO-

selected promoter sequence determinants. On the other hand, marginal densities of LASSO-

selected enhancer sequence determinants are similar to those in the background. This observa-

tion indicates that in addition to having weaker marginal effects than promoter sequence

determinants, the frequency distribution of enhancer sequence determinants is similar

between foreground and background.

Interestingly, LASSO selected sequence determinants were significantly longer for enhanc-

ers than for promoters (mean lengths of 9.22 in enhancers and 8.32 in promoters in human, P
<1×10−15 by two sample t-test, S6 and S7 Table). This pattern was consistent in other species

(P< 10−15 by two-sample t-test in all cases). When we applied LASSO approach to 10,000

common sequence determinants, we observed similarly significant differences of effect size

and length between enhancer and promoter sequence determinants (S2 and S4 Figs).

Distinctive effects of GC content and TFBS frequency on enhancer and

promoter sequence determinants

We examined two aspects of sequence determinants to understand what features affect

enhancer and promoter potentials of specific sequence fragments. Specifically, we used a linear

model to analyze the effect of the frequency of G and C nucleotides (GC content) and the fre-

quency of transcription factor binding sites (TFBS frequency). The effect sizes of sequence

determinants were response variables, and GC content, TFBS frequency, and their interaction

term were explanatory variables. When we analyzed the results of the LASSO-selected

sequence determinants, several patterns became clear. First, this model explained a large

amount of variation observed in promoter sequence determinants, but only a modest portion

of those in enhancer sequence determinants (Table 3). Nevertheless, we found that main fac-

tors of GC content and TFBS frequency were positively correlated with the log2-transformed

Table 3. Linear model results of log2OR ~ GC content + TFBS frequency + GC content × TFBS frequency + ε.

Dataset Region Variable Estimate Standard error P-value SSR

Human Enhancer

(n = 4321,

R2 = 0.127)

GC contents 0.56 0.024 < 1×10−15 0.11

TFBS frequency 0.44 0.11 0.00012 0.003

GC × TFBS NS

Promoter

(n = 1342,

R2 = 0.360)

GC contents 6.40 0.30 < 1×10−15 0.21

TFBS frequency 22.65 2.74 < 1×10−15 0.03

GC × TFBS -41.84 4.61 < 1×10−15 0.04

Mouse Enhancer

(n = 4423,

R2 = 0.0287)

GC contents 0.25 0.026 < 1×10−15 0.020

TFBS frequency 0.87 0.097 < 1×10−15 0.018

GC × TFBS NS

Promoter

(n = 1615,

R2 = 0.372)

GC contents 5.23 0.23 < 1×10−15 0.21

TFBS frequency 18.79 1.89 < 1×10−15 0.038

GC × TFBS -37.82 3.09 < 1×10−15 0.059

We used LASSO-selected species sequence determinants for these analyses. NS indicates that the interaction terms were not statistically significant at P = 0.05. In such

cases we conducted log2OR ~ GC content + TFBS frequency + ε model instead of the original model. Numbers of sequence determinants, R2 values of the models, and

Type III partial sum of square in regression (SSR) for each variable are also provided.

https://doi.org/10.1371/journal.pcbi.1006451.t003
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OR of sequence determinants both in enhancers and promoters (Table 3, S8 and S9 Tables).

However, interaction terms between the two main factors were significantly negative only in

promoters. Thus, while GC content and TFBS frequency worked additively to determine the

strength of regulatory potential for enhancer sequence determinants, these two factors were

antagonistic with each other in promoter sequence determinants (Fig 4(A) and 4(B)). This

Fig 4. Relationships between several biological variables using LASSO selected sequence determinants from human. First, we

present the results from our linear model in Table 3 ((A): Enhancer model results, (B): Promoter model results). To demonstrate the

relationship between log2OR and TFBS frequency, we regressed out GC content on log2OR and drew scatterplots between the

resulting partial residual of log2OR and TFBS frequency. We further separated the points into two groups, above and below 0.5 GC

content. As seen in Fig 4(A) and 4(B), a clear interaction effect was detected only in the promoter model, and TFBS frequency for

low GC content is positively correlated with log2OR in both models, although the positive correlation is clearer in the promoter

model (R2: 0.012 and 0.021, P-value: 2.7×10−5 and 0.026, for enhancer and promoter, respectively). In Figs 4(C) and 4(D), the

negative relationships between GC content and TFBS frequency in enhancers and promoters are depicted in comparison to the

background. The green and blue points are results from LASSO selected sequence determinants, while the gray points are control

data sets consisting of randomly selected sequence fragments that are not sequence determinants.

https://doi.org/10.1371/journal.pcbi.1006451.g004
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observation is consistent with previous studies that found a lack of transcription factor binding

enrichment at GC-rich promoters compared to GC-poor promoters [51]. We also evaluated–

log10min(P) instead of TFBS frequency to evaluate the best match between a k-mer and the

motifs in the database, and obtained highly similar results for the same models (S10 Table).

In summary, TFBS frequency was positively correlated with effect size in both of enhancer

and promoters when GC content was low. On the other hand, the estimated coefficients of GC

content and TFBS frequency were higher in promoters than in enhancers, indicating that the

effects of these factors were stronger in promoters compared to in enhancers. Accordingly, the

R2 of the linear models were substantially higher for promoters than for enhancers (Table 3, S8

and S9 Table). Second, the relationships between GC contents and TFBS frequency were nega-

tive in both of enhancer and promoter analysis (Fig 4(C) and 4(D)). Accordingly, sequence

determinants that were GC-rich tended to lack TFBS, and low GC sequence determinants

tended to harbor more TFBS than high GC sequences [51]. The whole set of sequence determi-

nants obtained from exhaustive search yielded similar results (S11 Table).

LASSO prediction models can be inter-changed between species

The prediction accuracy of the human promoter same-species prediction model was very

high, with an AUC of 0.97 (Fig 5). Same-species prediction models from other six species

exhibited similarly high AUCs (S12 and S13 Table), indicating that promoters can be accu-

rately predicted from sequence determinants. We also evaluated prediction AUCs using

10,000 non-sequence determinants, while matching the distributions of GC content and length

as those of sequence determinants. We then constructed prediction models using LASSO for

enhancers and promoters in human and mouse, respectively. We iterated the process five

times to measure variability of the AUCs. Results are shown in S6 Fig. The AUCs of models

using non-sequence determinants were lower than AUCs with sequence determinants. For

example, human and mouse enhancer prediction AUCs with non-sequence determinants

showed 0.507 and 0.002, and 0.500 and 0.007 for mean and standard deviation, respectively.

These results indicate that non-sequence determinants had poor prediction performances. In

case of promoters, the mean and standard deviation of AUCs were 0.636 and 0.006 for human,

and 0.608 and 0.004 for mouse, respectively. These values were higher than those of enhancers,

likely reflecting the effect of GC contents (e.g., [52]). Nevertheless, they were substantially

lower than the AUCs with sequence determinants, indicating that sequence determinants have

superior prediction performances than non-sequence determinants.

Next, we tested if prediction models constructed from one species could be used in different

species, to investigate if different genomes use similar sequence determinants to encode pro-

moters. Indeed, when we calculated AUCs of inter-species prediction between seven species of

promoters, the AUCs were all above 0.9, indicating high accuracy (Fig 5).

On the other hand, the LASSO prediction models of enhancers had the following differ-

ences from those of promoters. First, the enhancer models using 10,000 species determinants

had 2.5- to 4.2-fold greater numbers of explanatory variables than the promoter models (S12

Table). However, their AUCs were generally lower than those of the promoter models (Fig 5).

We found that same-species prediction AUCs for enhancer models were greater than 0.7, and

the highest was when mouse model were used to predict mouse enhancers, 0.76 (S12 Table).

Nevertheless, inter-species prediction results using enhancer models showed similar AUCs to

same-species enhancer predictions (Fig 5).

We tested if the high inter-species prediction accuracies were driven by the presence of

highly conserved regulatory elements across different mammalian species. The proportions of

conserved enhancer regions among the seven species were much smaller than those of
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promoter regions, as previously described [6] (Table 1). Interestingly, we observed similar

AUCs before and after removing highly conserved regulatory regions at both enhancers and

promoters (S14 Table), suggesting that conserved regulatory regions were not responsible for

the high predictabilities across species. We then extracted 10 subsets of 10,000 sequence deter-

minants from human enhancer and promoter sequence determinants (all subsets were mutu-

ally exclusive with each other subset) and constructed LASSO models to apply to the same-

species (human) prediction and inter-species (mouse enhancer) prediction. We found that the

AUCs of these 10 subsets were highly similar (S6 Fig). Thus, even though the regulatory

regions themselves were not conserved in terms of their precise location, mammalian enhanc-

ers and promoters have inter-changeability in terms of prediction between species.

Fig 5. Prediction accuracies of LASSO models as measured by AUCs. (A) ROC curves of the human same-prediction result from

ten-fold cross validation. Solid lines represent prediction with human species sequence determinants, while dashed lines represent

those with common sequence determinants. (B) Cross-species prediction AUCs based on human prediction models. The Y-axis

represents relative AUC value calculated as the ratio between cross-species prediction AUC and same-species prediction AUC

based on the human models constructed using human species sequence determinants (circle or cross marks) and common

sequence determinants (triangle or “x” marks), respectively. (C) PR curves of the human same-prediction result from ten-fold cross

validation. (D) Cross-species prediction results PR-AUCs based on human prediction models.

https://doi.org/10.1371/journal.pcbi.1006451.g005
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We also constructed LASSO models using 10,000 common sequence determinants from all

seven species. AUC values for promoter prediction were highly similar to those obtained from

models using species sequence determinants (Fig 5, S13 Table), indicating that sequence fragments

that were commonly enriched in all 7 species harbor sufficient signals for promoter prediction. On

the other hand, enhancer prediction results using 10,000 common sequence determinants showed

slight decrease of AUC compared to same-species prediction (mean AUC of prediction with spe-

cies determinants: 0.723, that with common determinants: 0.679). Interestingly, mean numbers of

LASSO selected common sequence determinants were significantly lower than the species ones in

enhancers (1613 and 3970 for common sequence determinants and species sequence determinants,

respectively; P<1×10−5 by paired t-test), while they were not significantly different in promoter

models (1138 and 1342 for common sequence determinants and species sequence determinants,

respectively; P = 0.2114 by paired t-test). This implies that each of the common enhancer sequence

determinants may have higher predictive capabilities than species sequence determinants.

Impact of sequence composition and prediction performance

While background and foreground of enhancers exhibit similar GC distribution, foreground

regions of promoters are substantially skewed towards GC-rich regions (the average difference

was 10.0%, higher in promoters than in enhancers) (S7 Fig). Therefore, we investigated how

GC content difference between foreground and background might affect prediction analyses.

First, to measure the impact of GC content alone in prediction performances, we calculated

AUCs using only GC content as a predictor (Table 4). Second, we constructed LASSO models

using sequence determinants of low-GC content (GC content�0.5) to measure prediction

performances without effects of high GC content sequence determinants. For this analysis, we

randomly selected 10,000 sequence determinants with stratification of GC content and

sequence length. These results were then compared to those of the original AUCs.

We found the AUCs using only GC content reflected the amount of GC content differences

between foreground and background (S7 Fig). For example, average AUCs using only GC con-

tent were 0.589 and 0.837 in enhancers and promoters, respectively. However, both of those

AUCs were considerably lower than the original AUCs (differences of 0.134 and 0.107 in

enhancers and promoters, respectively), meaning that GC content could not explain all of the

variation between foreground and background. This observation is consistent with a prior

study utilizing a similar approach [52]. Moreover, models with low-GC sequence determinants

had higher AUCs than those using only GC contents. In other words, models without high GC

Table 4. Comparisons between the original AUC to those obtained using low-GC sequence determinants (AUC with low-GC sequence determinants), and GC con-

tent only (AUC with GC content).

Enhancer Promoter

Original

AUC

AUC with low-GC sequence

determinants

AUC with GC

content

Original

AUC

AUC with low-GC sequence

determinants

AUC with GC

content

Human 0.715 0.732 0.579 0.966 0.941 0.861

Macaque 0.713 0.723 0.600 0.967 0.933 0.873

Cow 0.714 0.712 0.640 0.938 0.897 0.803

Pig 0.702 0.724 0.577 0.946 0.889 0.830

Dog 0.717 0.724 0.571 0.949 0.896 0.843

Rat 0.741 0.736 0.560 0.916 0.856 0.818

Mouse 0.756 0.768 0.593 0.929 0.886 0.830

Average 0.723 0.731 0.589 0.944 0.900 0.837

https://doi.org/10.1371/journal.pcbi.1006451.t004
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content sequence determinants outperformed the AUCs with only GC contents. Interestingly,

mean AUCs with low-GC sequence determinants in enhancers were even higher than those of

the original AUCs, which may imply that low-GC enhancers sequence determinants had better

prediction performances than high-GC sequence determinants when they were jointly used

for prediction. In conclusion, prediction performances of the sequence determinants detected

by LASSO cannot be attributed to their GC contents.

Discussion

Understanding specific histone modifications marking enhancers and promoters has opened the

way to identify these regions using ChIP-seq, which complements and scales up traditional tran-

scription factor binding assays [1, 6, 53]. Even though our understanding of the exact molecular

nature of regulatory regions continues to improve, technical advances in epigenomic assays have

opened a new opportunity to study evolution of regulatory regions using unbiased genome-wide

epigenomic profiling. We were motivated by two observations: that regulatory regions identified

from epigenomic assays can be predicted with high accuracy in case of same-species prediction

[7–11], yet that they are highly divergent between different species [6, 18, 20, 21]. The fact that reg-

ulatory regions can be predicted with high accuracy implies that specific sequence fragments can

encode regulatory function. Indeed, previous studies often referred to such fragments as cis-regu-

latory motifs. Since they encode function, they are likely to be subject to natural selection (largely

purifying selection) and thus evolutionarily conserved. However, genome-wide studies indicate

that regulatory regions, especially enhancers, are highly divergent between species. To investigate

this potentially paradoxical pattern of evolution of regulatory regions, we used a powerful

approach to examine every possible sequence fragments for their statistical enrichment in experi-

mentally verified enhancers and promoters of seven mammalian species. This approach, which

we named exhaustive search, revealed that numerous sequence fragments were statistically over-

represented in enhancers and promoters (which we named as sequence determinants).

Sequence determinants underlying enhancers and promoters exhibited intriguing differ-

ences with respect to their degree of enrichment (effect size), GC content, and the frequencies

of known TFBS. Notably, the degree of statistical enrichment was significantly higher for pro-

moter sequence determinants compared to enhancer sequence determinants. This observation

suggests that sequence determinants may have greater impacts on the regulatory potential of

promoters than of enhancers. This idea is also consistent with the fact that promoters are more

evolutionarily conserved than enhancers [6].

We next applied a machine-learning method, LASSO, to reduce interdependence among

sequence determinants and construct prediction models based on the non-redundant

sequence determinant set. Same-species prediction models generated from these sequence

determinants had high AUCs for enhancers and promoters (Fig 5 and S12 and S13 Tables),

affirming the predictor power of sequence determinants [11, 52]. The AUCs from these mod-

els are on par with those from previous studies that utilized different approaches (e.g., [11]).

We observed that enhancer models utilized greater numbers of predictors yet exhibited lower

accuracy compared to promoter models, which can be explained by promoter sequence deter-

minants associated with significantly higher effect sizes compared to enhancer sequence deter-

minants (Figs 2 and 3, S2 and S4 Figs). Furthermore, we applied prediction models generated

from one mammal to other mammals, to directly test whether sequence determinants from

one species could be used to predict regulatory regions in other species. Remarkably, even

though the sequence determinants themselves had only moderate overlaps between species (S5

Table), models constructed from one species could predict promoters in other species with

high accuracies (S12 and S13 Tables). As for enhancer models, AUCs from inter-species
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prediction models were also comparable to same-species predictions (Fig 5). In other words,

the extent to which prediction models could be inter-changed between species was similar

between enhancers and promoters (Fig 5).

We used a cutoff effect size for sequence determinants as 1, for the following reasons. First,

many sequence determinants have extremely low p-values despite low effect sizes due to their

abundance, especially those with shorter lengths. For example, 25% of human enhancer

sequence determinants among those of top 10,000 lowest p-values have effect sizes smaller

than 1.2. Second, when we constructed a human enhancer prediction model using randomly

selected 10,000 sequence determinants with effect sizes smaller than 1.2, the resulting AUC

was 0.715, which is equivalent to the original AUC. Moreover, when we applied this model to

mouse, the inter-species AUC was 0.680, even higher than the original AUC (0.647). There-

fore, setting an arbitrary cutoff value is likely to result in the loss of true sequence determinants

that are important in terms of prediction performances.

Integrating the main findings that 1) there are a large number of sequence determinants

that potentially contribute to the regulatory roles of enhancers and promoters; 2) the strength

of statistical enrichment of sequence determinant is greater for promoters, which are more

evolutionarily conserved than enhancers; 3) prediction accuracies of models generated using

sequence determinants from different species are comparable to each other, we hypothesize

the following. Even though the specific motifs that encode regulatory regions are different

between species [6, 18, 20, 21], the function of specific sequence determinants could be con-

served between species. There may exist a large reservoir of potential sequence determinants

that can contribute to regulatory regions of many species.

Supporting information

S1 Fig. Changes of AUC according to the number of input sequence determinants.

(TIF)

S2 Fig. Distribution of effect sizes (ORs) from the LASSO. We drew boxplots of effect sizes

of the LASSO selected determinants for species determinants (A), and common determinants

(B). In general, effect sizes from the enhancer analysis are smaller than those from the pro-

moter analysis.

(TIF)

S3 Fig. Distribution of relative frequencies of sequence determinants in foreground and

background regions. The X-axis is log10 transformed relative frequency and Y-axis is density

of the relative frequency. FG and BG in the figure legends stand for foreground and back-

ground, respectively.

(TIF)

S4 Fig. Heatmaps of the LASSO selected sequence determinant counts for human, accord-

ing to their marginal OR and sequence length. X-axis of the heatmaps is the length of

sequence determinants and Y-axis of those is OR of each sequence determinants. (A) and (B)

are from human species sequence determinants and (C) and (D) are from common sequence

determinants. Note that the counts of species sequence determinants in the other six species

are summarized in S6 and S7 Table.

(TIF)

S5 Fig. AUCs from LASSO prediction models using non-sequence determinants with

matching GC content and sequence length as true sequence determinants. We applied

LASSO and iterated the process five times. Colored points are AUCs using same number of
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matched sequence determinants. AUCs with sequence determinants are clearly higher than

those with non-sequence determinants.

(TIF)

S6 Fig. AUCs using 10 subsets of sequence determinants of human enhancer (green) and

promoter (blue) for same species prediction (filled lines) and inter species prediction

(dashed lines). Mean and standard deviation of each set of the 10 replicated AUCs are also

shown.

(TIF)

S7 Fig. Distribution of GC content of the regulatory regions (enhancers in green and pro-

moters in blue) and their correspondent control regions (dashed lines).

(TIF)

S1 Table. Overlapped proportions of foreground and background regions.

(PDF)

S2 Table. Summary of enhancer species sequence determinants in seven species. Enhancer

sequence determinants are generally concentrated in the low OR ranges.

(PDF)

S3 Table. Summary of promoter species sequence determinants in seven species. Promoter

sequence determinants are generally concentrated in the high OR ranges.

(PDF)

S4 Table. Summary of common sequence determinants determined from the CMH test.

Numbers of intersecting significant species sequence determinants from all seven species are

shown in parentheses. Note that the ORs in this table represent the minimum ORs among the

seven species.

(PDF)

S5 Table. The proportion of species sequence determinants that are also found in common

sequence determinants. There are few enhancer sequence determinants with large effect size

that are common in the 7 mammalian species. On the other hand, the proportion of overlap-

ping promoter sequence determinants is consistent across different effect sizes.

(PDF)

S6 Table. Counts of LASSO-selected enhancer sequence determinants. The numbers out-

side the parentheses are from LASSO with species sequence determinants, while those in the

parentheses are from LASSO with common sequence determinants.

(PDF)

S7 Table. Counts of LASSO-selected promoter sequence determinants. The numbers out-

side the parentheses are from LASSO with species sequence determinants, while those within

the parentheses are from LASSO with common sequence determinants.

(PDF)

S8 Table. Results of linear model analyses from five mammalian species. The model used is:

log2OR ~ GC contents + TFBS Frequency + GC contents × TFBS Frequency + ε. NS indicates

that the interaction terms were not statistically significant at P = 0.05. In such cases, we con-

ducted log2OR ~ GC contents + TFBS Frequency + GC contents + ε model instead. R2 values

of the models are also provided.

(PDF)
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S9 Table. Linear model results of log2OR ~ GC contents + TFBS Frequency + GC contents ×
TFBS Frequency + ε. The data sets used in this analysis are from results of LASSO selected com-

mon sequence determinants. Test results whose interaction terms are NS indicate that the interac-

tion terms were not statistically significant at P = 0.05, and we conducted log2OR ~ GC contents

+ TFBS Frequency + GC contents + εmodel instead. R2 values of the models are also provided.

(PDF)

S10 Table. Linear model results of log2OR ~ GC content + -log10min(P) + GC content ×
-log10min(P) + ε. We used same models that were used in Table 3 and substituted -log10min

(P) for TFBS frequency.

(PDF)

S11 Table. Linear model results of log2OR ~ GC contents + TFBS Frequency + GC

contents × TFBS Frequency + ε. The data sets used in this analysis are from results of exhaus-

tive search. When interaction term of the model was not significant (NS), we conducted

log2OR ~ GC contents + TFBS Frequency + ε model instead.

(PDF)

S12 Table. Prediction results using LASSO approach and 10,000 species sequence determi-

nants for enhancers and promoters. The 10,000 determinants were selected using stratified

random sampling from the exhaustive search results. Columns refer to LASSO models trained

for the seven species, and rows show test data sets to be predicted by the LASSO trained mod-

els. The values in parenthesis under the species names indicate the number of LASSO selected

sequence determinants of enhancers (left) and promoters (right). AUC values out of parenthe-

sis are receiver operating characteristic (ROC)-AUCs and those in parenthesis are precision-

recall (PR)-AUCs. Note that the AUC values in diagonal terms are same-species prediction

AUC and the other values in off-diagonal terms are inter-species prediction AUC values.

(PDF)

S13 Table. Prediction result using the LASSO approach and 10,000 common sequence

determinants in enhancers and promoters. The 10,000 determinants were selected using

stratified random sampling from the exhaustive search results. Columns of the table are

LASSO models that were trained from the seven species, and rows are test data sets to be pre-

dicted by the LASSO trained models. The values in parentheses under the species names are

the number of LASSO selected sequence determinants of enhancers (left) and promoters

(right). AUC values outside of parenthesis are receiver operating characteristic (ROC)-AUCs

and those in parenthesis are precision-recall (PR)-AUCs. Note that the AUC values in diagonal

terms are same-species prediction AUC and the other values in off-diagonal terms are inter-

species prediction AUC values.

(PDF)

S14 Table. Prediction results using human and mouse data sets without globally conserved

regions. Using the information described in Table 1, we conducted the same procedure of
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(PDF)
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