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A B S T R A C T   

We performed single-cell RNA sequencing (scRNA-seq) on a population of 5,000 Tetrahymena thermophila, using 
the 10x Genomics 3′ gene expression analysis, to investigate gene expression variability within this clonal 
population. Initially, we estimated the 3ʹ-untranslated regions (3′ UTRs), which were absent in existing anno-
tation files but are crucial for the 10x Genomics 3′ gene expression analysis, using the peaks2utr method. This 
allowed us to create a modified annotation file, which was then utilized in our scRNA-seq analysis. Our analysis 
revealed significant gene expression variability within the population, even after removing the effect of cell 
phase-related features. This variability predominantly appeared in six distinct clusters. Through gene ontology 
and KEGG pathway enrichment analyses, we identified that these were primarily associated with ribosomal 
proteins, proteins specific to mitochondria, proteins involved in peroxisome-specific carbon metabolism, cyto-
skeletal proteins, motor proteins, and immobilized antigens.   

1. Introduction 

Gene expression variability is a widely observed phenomenon in 
both prokaryotes and eukaryotes [1,2]. Single-cell RNA sequencing 
(scRNA-seq) provides a powerful tool to dissect the mechanisms behind 
this variability [3–5]. While mammalian cells have been extensively 
analyzed using scRNA-seq, studies on ciliates, particularly those 
involving sequencing thousands of cells, have been comparatively rare, 
despite previous studies employing bulk RNA-seq or scRNA-seq with 
approximately 550 single cells of ciliates [6–10]. One reason for this 
disparity is the larger size of ciliate cells (typically ~500 μm in length) 
compared to mammalian cells. Most methods that enable scRNA-seq of 
thousands of cells are droplet-based, which imposes limitations on the 
size of cells that can be assessed (~40 μm) [11]. 

In this study, we present the results of a scRNA-seq analysis of a 
ciliate, Tetrahymena thermophila, conducted to investigate the gene 
expression variability. We chose T. thermophila as our subject not only 
because it serves as a primary ciliate model organism for molecular 
biology and genetics [12], but also due to its several advantageous 
characteristics as follows. Firstly, T. thermophila is relatively small, with 
dimensions of approximately 40–60 μm in length and 20–30 μm in 
width, making it suitable for droplet-based scRNA-seq techniques. 

Second, T. thermophila mRNA is transcribed from the macronucleus 
(MAC), and the complete genome sequences of the MAC have already 
been reported [13,14]. Last, T. thermophila has been observed to exhibit 
the individual variability in behavior [15]. Our preliminary experiments 
also showed that T. thermophila exhibits phenotypic plasticity, with 
these phenotypes even being inherited by offspring and we were inter-
ested in whether the phenotypic variance can be measured by scRNA-seq 
analysis (to be submitted). 

One obstacle to conducting scRNA-seq analysis on T. thermophila is 
the absence of the 3′ untranslated region (3′ UTR) annotations, crucial 
for the 10x Genomics 3′ gene expression analysis method we adopted, 
which requires accurate 3′ UTR annotation [16]. To tackle this, we 
newly annotated the 3’ UTR by applying the peaks2utr method [17] to 
the sequence data we obtained. Using this modified annotation, we then 
conducted scRNA-seq to probe the heterogeneity of the T. thermophila 
population. A primary contributing factor for the expression variability 
obtained from the scRNA-seq has been proposed to be cell cycle phase. 
To remove the variations from cell cycle phases and reveal heterogeneity 
from other sources, we regressed out the contribution from cell cycle 
phase by utilizing a recently reported set of genes with 
cell-cycle-dependent expression patterns [18]. 

In summary, we employed the 10x Genomics system to conduct 
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scRNA-seq on approximately 5,000 T. thermophila cells. To isolate the 
impact of cell-cycle-dependent genes, we conducted regression analysis 
to mitigate their effects on the gene expression data. Subsequently, we 
employed a clustering algorithm to analyze the adjusted data. These 
clusters and gene ontology (GO) and KEGG pathway enrichment anal-
ysis revealed the underlying transcriptional variability at the single-cell 
level in the T. thermophila population. 

2. Materials and methods 

2.1. Strain, medium and culture for scRNA-seq libraries preparation 

The T. thermophila SB210-E strain was used from the Tetrahymena 
Stock Center (Cornell University, USA). Cells were cultured in the 
modified Neff medium and PPY medium [19], which, after storage in 
liquid nitrogen, were revived in modified Neff medium at 30 ◦C. They 
were passaged twice in PPY medium at 30 ◦C. 

Cells in the late exponential growth phase were loaded onto a 10x 
Chromium platform using the 10x Single Cell 3ʹ v3 chemistry, targeting 
5,000 cells. The filtration was performed using a 40-μm mini cell strainer 
(Biomedical Science, Tokyo, Japan) to prevent clogging in the sample 
line. Our preliminary experiments confirmed that this filtration step did 
not reduce cell numbers. The filtrated cells were loaded onto a 10x 
Chromium platform. Libraries were sequenced with NextSeq2000 
(Illumina, San Diego, CA) (read one, 28 bp; and read two, 91 bp) to 
achieve 112,594 mean reads per cell by the Kazusa DNA Research 
Institute (Chiba, Japan). 

2.2. Mapping to genes by Cell Ranger 

Sequencing data were analyzed using the 10x Cell Ranger pipeline, 
version 7.0.1. In order to select the reference MAC sequence, we 
compared JCVI-TTA1-2.2 (National Center for Biotechnology Informa-
tion [NCBI] USA) and Tetrahymena_thermophila_mac_genome_v5 
(Tetrahymena Genome Database [TGD]) [20,21]. The percentage of 
reads confidently mapped to the genome was 81.5 % and 14.4 % for 
NCBI and TGD sequences, respectively (Table S1). The low percentage 
for the TGD sequence indicated that it did not cover the entire genome; 
hence, we used the NCBI database sequence for further analysis. 

For 3ʹ UTR annotation, we applied the peaks2utr method [17] to the 
BAM files generated from the MAC sequence by Cell Ranger. Then, we 
used the modified annotation files to map reads to the MAC sequence 
and annotated genes by using Cell Ranger once again. The number of 
cells was set to 5,000, and intron mode was used. Four annotated genes, 
TTHERM_02141639, TTHERM_02641280, TTHERM_02653301, and 
TTHERM_002141639 in JCVI-TTA1-2.2, were excluded from subse-
quent analyses because these sequences were homologous to the ribo-
somal RNA (rRNA) genes. 

2.3. Analysis of the RNA expression matrix 

The expression matrix obtained from Cell Ranger was processed 
using Seurat [22]. First, we normalized the data by applying sctransform 
[23]. After normalization, the principal component analysis (PCA) was 
applied to the 3,000 selected variable features. Then we clustered the 
data by using the first 10 principal components via the Louvain algo-
rithm (resolution = 0.25). For the visualization, we used UMAP and the 
markers of each cluster were identified by Wilcoxon Rank Sum test with 
the Bonferroni correction using Seurat’s findmarker function with min. 
pct = 0.25 and logfc.threshold = 0.25. 

2.4. Cell cycle scoring and regressing out 

Cell phases were scored using the CellCycleScoring function [24] in 
Seurat. The markers of each cell phase (Table S2) are based on the list 
from Zhang et al. [18]. This score was then used to regress out the effect 

of the cell phase. This process was conducted by applying sctransform to 
the data with setting vars.to.regress to these scores. The same clustering 
and marker extraction were then applied to the regressed-out data. To 
check the validity of the resulting cluster, we applied the significance 
test for clustering, sc-SHC [25]. We chose family-wise error as α = 0.25, 
which is used for the real data application in Grabski et al. 

2.5. Gene ontology and KEGG pathway enrichment analysis 

Gene Ontology (GO) and KEGG pathway enrichment analyses were 
conducted using DAVID, version 2021 (DAVID Knowlegebase, v2023q4) 
[26]. P-values were calculated using Fisher’s exact test with Bonferroni 
correction. 

2.6. Data availability 

The FASTQ file, analyzed file, and 3’ UTR annotation file can be 
found in DDBJ with the accession numbers DRR440460, E-GEAD-611, 
and BR001895-BR002394, respectively. 

3. Results and DISCUSSION 

3.1. Mapping of reads 

First, we annotated 16,265 3′ UTRs for the MAC sequence available 
in the NCBI database by applying the peaks2utr method. We confirmed 
that the distribution of the length of 3’ UTR (median length = 214) was 
comparable to the previous report [6]. Subsequently, we mapped the 
obtained reads to this modified sequence. 

The genome mapping rate was high at 81.5 %, but the transcriptome 
mapping to the NCBI database was only 13.4 %, with 67.5 % classified as 
intergenic regions by Cell Ranger. To investigate the origin of this 
apparent low percentage of the transcriptome mapping, we conducted 
the read mapping with four different annotations, with or without 3′UTR 
and with or without rRNA, respectively (Table S1). We found that the 
mapping with 3′UTR and rRNA yielded 78.8 % transcriptome mapping, 
while without 3′UTR and rRNA was 9.6 % and without 3′UTR and with 
rRNA (the original annotation) was 31.6 %. Therefore, the low tran-
scriptome mapping percentage was primarily due to most obtained 
reads corresponding to rRNA genes (and their associated 3′ UTRs). Also, 
we confirmed that the annotation of 3′UTR enhanced the transcriptome 
mapping rate from 9.6 % to 13.4 %. Although only 13.4 % of all reads 
were mapped to the transcriptome, our results covered 21,875 genes, 
which correspond to 80.7 % of the annotated genes (26,996 genes). 

In the 10x single cell 3’ v3 chemistry method, mRNA was selectively 
obtained using polyA capture, but still approximately 65 % of all reads 
were attributed to rRNA. Kolisko et al. [7] performed RNA-seq on a 
single cell of T. thermophila using the polyA captured method, and also 
reported that approximately 90 % of reads were mapped to rRNA. These 
high amounts of rRNA contamination may be because T. thermophila has 
a larger amount of rRNA than other organisms. It contains a large 
amount of rRNA resulting from a large amount of rDNA, about 9,000 
copies [27]. On the other hand, 2.7 % of reads remained unmapped. Cell 
Ranger analyzes only annotated genes as transcriptomes, so this is likely 
a sequence read that is not currently annotated as a coding sequence 
(CDS). Reads unmapped by this analysis may include unannotated CDS, 
non-coding RNAs, alternative splicing RNAs. 

3.2. Clustering results 

The expression patterns were divided into seven clusters by 
analyzing the outputs from Cell Ranger using Seurat (Fig. 1(a) and (c)). 
Each cluster was characterized by a set of genes exhibiting high 
expression within that cluster (Fig. 1(c)). Each cluster contained be-
tween 9 and 272 significantly upregulated genes (Table S3). 

To characterize each cluster, GO and KEGG pathway enrichment 
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Fig. 1. scRNA-seq clustering analysis 
(a, b) UMAP representation of the RNA expression pattern before and after regression of cell cycle-dependent genes, respectively. (c, d) Heat maps showing dif-
ferential expression in the population before and after regression of cell cycle dependent genes, respectively. 
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analyses were performed for the six clusters, excluding cluster 0 (Fig. 2 
(a)). Based on these analyses, the clusters showed different profiles:  

Cluster 0: Functional classification was not appreciable. Among the 
nine genes analyzed, one was designated as encoding hypo-
thetical proteins, three lacked GO terms and the remaining 
five were identified as the genes associated with intracellular 

anatomical structure, translation, protein folding, membrane 
transport and electron transfer.  

Cluster 1: Highly enriched in ribosome and carbon metabolism  
Cluster 2: Highly enriched in carbon metabolism including glycolysis/ 

gluconeogenesis, TCA cycle, and biosynthesis of amino acids  
Cluster 3: The enrichment analyses were not applicable well, but 

characterized by the expression of histones 

Fig. 2. The Gene Ontology (GO) and KEGG pathway enrichment analyses 
(a) and (b) represent the GO term and KEGG term, before and after regression, respectively. The gene ratios are depicted by differences in circle size, while the 
adjusted p-values for multiple comparisons using Bonferroni correction are represented by variations in color. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 
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Cluster 4: Highly enriched in motor proteins  
Cluster 5: The enrichment analyses were not applicable well, but 

characterized by the expression of cytoskeletal proteins 
unique to ciliates 

Cluster 6: The enrichment analyses were not applicable, but charac-
terized by the expression of immobilization antigen and 
papain family cysteine protease. 

To observe gene expression patterns of cells in each cell cycle, we 
scored cells based on the genes that had been previously reported as cell 
cycle-dependent [18] and mapped on UMAP (Fig. 3 (a)). Cells express-
ing genes for MAC-late S phase were found in cluster 3, whereas cells 
expressing genes for MAC-amitosis phase were found in cluster 4. Cells 
expressing MAC-G1 phase genes were distributed across various clusters 
on UMAP (Fig. 3 (a)), indicating that the expression pattern of MAC-G1 

Fig. 3. The mapping of genes that have been reported to exhibit cell-cycle dependent expression on UMAP calculated from the gene expression scores of cluster 5B, 7, 
5A, 5C, 1 and 2 in Zhang et al. [18]. 
(a) and (b) represent the gene mapping before and after regression, respectively. The cell-cycle phases are labeled above each panel as MAC/MIC. 
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phase genes differed among individual cells. 
When analyzing the top 30 significantly upregulated genes within 

cluster 3, we found that ten of them were histone genes, including hhf1, 
hhf2, hho1, hht1, hht2, hta1, hta2, hta3, htb1, and htb2. Additionally, 
three genes associated with HMGC high mobility group (HMG) box 
protein for DNA bending or supercoiling, hmgb1, hmgb2, and nhp6b, and 
two genes for structural maintenance of chromosomes, smc2 and smc4, 
were identified. Notably, hhf1, hhf2, hmgb1, and hmgb2 are registered as 
genes expressed during the MAC-S phase in TGD. These findings sug-
gested that cluster 4 probably consisted of cells in the MAC-S phase. 

3.3. Regressing out the cell cycle scores 

To observe the expression variability without the effects of the cell 
cycle, we regressed out the cell cycle score using the function provided 
in Seurat [22]. After this procedure, mapping of cells that expressed the 
MAC-late S and MAC-amitosis phase genes on UMAP were scattered 
across different clusters, indicating that the regression had been suc-
cessful (Fig. 3 (b)). The resulting expression pattern was divided into six 
clusters (Fig. 1(b) and (d), Table S4), which were confirmed from the 
significance test by sc-SHC (α = 0.25). 

We conducted GO and KEGG enrichment analyses to each cluster, 
except for clusters 0 and 4 as it only consisted of six and four genes 
(Fig. 2(b)), respectively. Based on this, the clusters show distinct 
profiles:  

Cluster 0: Functional classification was not appreciable. Among the six 
genes analyzed, two were designated as encoding hypothet-
ical proteins, two lacked GO terms, while the remaining two 
were identified as the genes for elongation factor Tu, related 
to translation, and vps16, a protein localized in the amine- 
terminal region, which appears to be associated with mem-
brane transport.  

Cluster 1: Highly enriched in ribosome and carbon metabolism  
Cluster 2: Highly enriched in ribosome, carbon metabolism, and 

biosynthesis of secondary metabolites and amino acids  
Cluster 3: The enrichment analyses were not applicable well, but 

characterized by the expression of ciliate-specific cytoskeletal 
proteins including tetrins that located in oral apparatus.  

Cluster 4: Characterized by the expression of immobilization antigen 
and papain family cysteine protease, though the enrichment 
analyses were not applicable.  

Cluster 5: Highly enriched in cilia-specific motor proteins including 
tubulin and dynein. 

Despite both showing expression of ribosomal and carbon metabolite 
genes, notable differences were observed in the carbon metabolite 
pathways between clusters 1 and 2. Cluster 1 marker genes included 
those for certain mitochondrial-specific tricarboxylic acid (TCA) cycle- 
related genes (citrate synthase I, aconitate hydratase, and succinyl- 
CoA synthetase) and F0F1-ATPase/synthase related genes (ATP syn-
thase F1, α and β subunits) (Fig. S1). Phosphoenolpyruvate carbox-
ykinase, depicted with a dotted line in cluster 1 of Fig. S1, has been 
reported to be localized in both the cytosol and the mitochondria [28]. 
Conversely, cluster 2 marker genes comprised peroxisome-specific 
genes, such as those involved in the glyoxylate cycle (isocitrate lyase 
and malate synthase) [29], and gluconeogenesis-specific (fructose-1, 
6-bisphosphate). Additionally, both clusters included genes for 
acetyl-CoA acyltransferase or enoyl-CoA hydratase involved in the 
β-oxidation of fatty acids. 

Given the pivotal roles of mitochondria and peroxisomes, we assume 
cells in cluster 1 may be in an active metabolite state, primarily 

producing ATP through the TCA cycle and electron transport system. 
Conversely, cells in cluster 2 may be in an active metabolite state, 
focusing on producing acetyl-CoA from fatty acids and synthesizing 
sugars and proteins. Our speculation rests on the previous findings that 
the glyoxylate cycle in Tetrahymena serves both an auxiliary pathway to 
the TCA cycle and a crucial role in synthesizing essential substances such 
as proteins and glycogen, necessary for growth [30,31]. The auxiliary 
role in the TCA cycle was underscored by the report that, when quan-
tifying carbon flow in Tetrahymena, the flow of carbon through the 
glyoxylate bypass is approximately one-third of the flow through the 
TCA cycle, and furthermore, the malate generated in the glyoxylate 
cycle is transported to the mitochondria [30]. The role for the substance 
synthesis was clarified by the report that inhibition of fatty acid 
β-oxidation in peroxisomes and inhibition of isocitrate lyase activity 
resulted in a decrease in the supply of acetyl-CoA derived from the 
β-oxidation in peroxisomes, leading to reduced protein and glycogen 
synthesis, and consequently, a slower growth rate in Tetrahymena [31]. 

In summary, our scRNA-seq cluster analysis reveals the presence of 
approximately six distinct semi-macro states of gene expression during 
the log phase. This observation challenges the conventional under-
standing that the internal state of microorganisms remains uniform 
throughout this growth phase due to a constant growth rate [32]. Our 
findings align with recent scRNA-seq studies on Bacillus subtilis, which 
also reported similar gene expression heterogeneity [5], underscoring a 
broader pattern of variability within microbial populations that extends 
beyond individual species. 

The fluctuation of gene expression patterns, and thus phenotypic 
variability, is widely acknowledged across various organisms [33]. 
However, the underlying causes of this variability—whether arising 
from inter-individual interactions or inherent instability within indi-
vidual cells—remain to be fully elucidated. 

Malate may serve as a crucial metabolite for inter-individual in-
teractions within cell populations, besides the role in the TCA cycle and 
glyoxylate cycle. Outside the cell, we have observed the leakage of 
malate into the culture supernatant (data not shown) and this secreted 
malate likely plays a role in intercellular communication. In such in-
teractions, cells producing higher levels of malate may secrete it into the 
surrounding medium, while cells producing lower levels may utilize the 
excreted malate. Although chemotaxis towards amino acids and pep-
tides has been well-studied in Tetrahymena, research on chemotaxis to-
wards dicarboxylic acids, including malate, is still forthcoming [34]. 
However, in Pseudomonas fluorescence, chemotaxis towards dicarboxylic 
acids including malate, succinate, and fumarate has been observed, 
suggesting these metabolites function as cell-to-cell signaling molecules 
[35]. Furthermore, studies in experimental molecular evolution using 
Escherichia coli have shown that maintenance of genetic diversity 
through cell-to-cell interactions mediated by secreted L-glutamine oc-
curs [36]. Thus, malate-mediated cell-to-cell interactions could signifi-
cantly contribute to the dynamics of Tetrahymena populations and the 
emergence of diverse gene expression patterns. 

The evolutionary selection of phenotypic fluctuation suggests a 
profound biological significance. For instance, the partitioning of 
metabolic reactions into discrete tasks could confer enhanced robustness 
against environmental perturbations. In our preliminary experiments, 
we observed that Tetrahymena populations exhibit differentiation into 
entities with varying levels of kinetic energy, which further illustrate 
how such phenotypic diversity could bolster resilience to environmental 
changes. Notably, the aggregation of slower-moving individuals could 
facilitate swarm formation, highlighting a potential adaptive advantage 
in phenotypic variability. 

In this context, our study not only contributes to the growing body of 
evidence for gene expression heterogeneity among microorganisms but 
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also raises important questions about the adaptive roles of such vari-
ability. It suggests that the fluctuating phenotype, far from being a mere 
byproduct of cellular processes, may be an evolutionarily favored trait 
that enhances the survival and adaptability of microbial populations. 
Future research should aim to dissect the mechanisms driving this 
variability and explore its implications for microbial ecology and evo-
lution. Understanding the balance between genetic stability and 
phenotypic plasticity could unveil new dimensions of microbial survival 
strategies in fluctuating environments. 

4. Conclusions 

First, the use of the peaks2utr enabled us to newly annotate 16,265 3’ 
UTR for T.thermophila genome sequences (NCBI). Second, our scRNA-seq 
analysis revealed that cell phases (especially the MAC-late S phase) were 
the main contributors to gene expression variability. Third, after 
removing this cell phase-related variability, resulting heterogeneity was 
mainly attributed to ribosomal proteins, mitochondria-specific or 
peroxisome-specific carbon metabolism, cytoskeletal proteins, motor 
proteins, and immobilized antigens. 
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