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Abstract

Multi-exposure fusion (MEF) is a technique that combines different snapshots of the same

scene, captured with different exposure times, into a single image. This combination pro-

cess (also known as fusion) is performed in such a way that the parts with better exposure

of each input image have a stronger influence. Therefore, in the result image all areas are

well exposed. In this paper, we propose a new method that performs MEF and noise

removal. Rather than denoising each input image individually and then fusing the obtained

results, the proposed strategy jointly performs fusion and denoising in the Discrete Cosinus

Transform (DCT) domain, which leads to a very efficient algorithm. The method takes

advantage of spatio-temporal patch selection and collaborative 3D thresholding. Several

experiments show that the obtained results are significantly superior to the existing state of

the art.

1 Introduction

Multi-exposure fusion (MEF) methods combine different pictures of the same scene, captured

with different exposure times, into a single image. By keeping the best exposed parts of each

image, it is possible to reconstruct a result where all the details of the scene are well rendered.

Compared to High Dynamic Range (HDR), MEF doesn’t require the estimation of the camera

response function and the tone mapping of the processed values to the standard 8-bit [0, 255]

range.

The differences between the existing MEF algorithms in the literature lie in the way the

information of the input images is blended. The classical method by Mertens et al. [1] com-

putes weighted averages of the values of the input images at the same pixel location, the

weights depending on exposure, saturation and contrast. These averages can also be computed

in the Discrete Cosinus Transform (DCT) domain [2]. Other authors [3, 4] use gradient infor-

mation, and obtain the final result by solving a Poisson partial differential equation. Moreover,

to prevent the appearance of visual artifacts in the resulting images, the blending is not applied
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on a per-pixel basis. Instead, a patch-based approach or a multiresolution blending strategy

are used [5–7].

The use of image fusion techniques is not limited to multi-exposure images. Indeed, the com-

bination of several images permits to improve their quality, removing for example noise [8],

compression artifacts [9], haze [10–12], blur [13] or shaking blur from hand held video [14, 15].

In this paper we tackle the problem of fusing noisy multi-exposed images. A naive approach

would consist in independently denoising the multi-exposed images and then applying a fusion

technique to the result. We address both problems jointly for the first time in the literature, to

the best of our knowledge. We develop a technique that draws inspiration from the well known

BM3D denoising method [16] and the multi-exposure fusion method described in [2].

BM3D denoising takes advantage of the redundancy of similar image patches (i.e. small

image square blocks). Each image patch is denoised by grouping together similar patches in a

local neighborhood and stacking them in a 3D structure to which a 3D transform is applied. In

practice, the 3D transform is applied in a separable way, i.e. 2D DCT transforms followed by a

1D DCT or Walsh-Hadamard transform, as detailed in [16]. Denoising is achieved by applying

a shrinkage operator to the coefficients in the transformed domain. This denoising technique

is known as collaborative filtering.

We adapt BM3D to denoise the whole set of multi-exposure images by using the spatio-

temporal patch selection strategy proposed in [8]. The fusion method in [2], on the other

hand, merges the 2D DCT coefficients of differently exposed images. This method is not able

to merge the coefficients describing the average of the patch and copies this value from the

Mertens et al. [6] solution. In this paper we modify the algorithm to get rid of the dependence

on Mertens et al.’s result, and include an additional step to make it robust to noise. The fact

that both BM3D and the proposed fusion method work on the 2D DCT domain permits to

combine them to obtain an efficient algorithm that simultaneously denoises and fuses the

multi-exposed images.

The performed experiments in the sequences of Fig 1 show the superior performance of the

proposed technique over the naive approach, both in terms of quality of the results and

computational efficiency. The paper is organized as follows: Section 2 describes the existing lit-

erature on MEF methods. The fusion method is described in Section 3. Section 4 presents the

complete proposed technique, including the BM3D-inspired denoising stage and the fusion

Fig 1. Multi exposure data sets used for comparison.

https://doi.org/10.1371/journal.pone.0265464.g001
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method. In Section 5, we discuss the implementation of the method and compare with state of

the art algorithms. Finally we draw some conclusions in Section 6.

2 Related work

The literature on MEF is very extensive. Mertens et al. [1] proposed to combine the images by

averaging, choosing for each pixel a different weight depending on saturation, contrast and

well-exposedness. Since such an average produces ghosting effect if the images are not well

aligned, several methods were proposed to take motion into account, such as An et al. [17], Liu

et al. [18], Hessel et al. [19] Li et al. [20], Ocampo et al. [21] and Hayat et al. [22].

Instead of averaging directly pixel values, several methods prefer to fuse gradient informa-

tion, and then obtain the final image by solving a Poisson equation [3]. Some authors [4, 23–

25] propose to merge all gradient values, while others (Kuk et al. [26]) choose the gradient cor-

responding to the better exposed image.

Deciding independently for each pixel which is the correct combination is not a robust

strategy and leads to visual artifacts. Common approaches to improve the results involve the

use of pyramidal image representations or patches. Several methods [6, 7, 27, 28] adopted the

Laplacian pyramid [29]. Patch-based methods make the fusion more robust by involving all

the pixels in a small window [5, 30–32]. The method in [2] uses a DCT transform. The 2D

DCT coefficients of the patches at the same spatial location and different exposure are com-

bined depending on its magnitude. This combination is not valid to set the patch illumination,

which is obtained using the Mertens et al. [6] algorithm.

The use of alternative color systems to the standard RGB is often proposed, specially

YCbCR [33] which separates the luminance from the chromatic components. Since the chro-

matic components contain few high frequency information, a simpler strategy can be used to

fuse them. Published methods differ depending on which one of the previously exposed tech-

niques is applied to the Y component [2, 34, 35].

For non static sequences, the fusion creates ghosting effects near the boundary of moving

objects. A possible strategy to address this problem is to weight the fusion considering patch

correlation, thus discarding dissimilar patches which might belong to a different object.

Another common choice is to register the whole sequence into a reference exposure [2, 36–38].

A straightforward strategy is to select the better exposed image as reference and generate a new

sequence where the color of each image is equalized with respect to this reference. This new

sequence can be fused using a MEF method, as proposed in [39–42]. Such a strategy avoids the

creation of ghosting effects due to motion, but the fusion does not permit to get rid of noise.

Several methods (Z. G. Li et al. [43, 44], Singh et al. [45], Raman et al. [46], Li et al. [47])

divide the images into low and high frequency components using the Bilateral [48] or the

Guided filter [49]. This separation permits an additional enhancement of the image details.

Multi-exposure fusion might be accomplished by the use of variational techniques [50–52].

The proposed methods favor the geometry of the short exposure views and the chromaticity of

the ones with longer exposure. Other methods are defined in order to maximize particular

quality measures as [53–56].

Recently, neural networks have been proposed for multi exposure fusion. They can be

divided into two categories, depending on whether they require the ground truth to be cor-

rectly exposed in all image areas to define the loss function (supervised methods) or not (unsu-

pervised or self-supervised method). For HDR Kalantari et al. [57] and Wu et al. [58] proposed

supervised methods. For MEF, Xu et al. [59] proposed a Generative Adversarial Network

(GAN) strategy to fuse pairs of images with different exposure time. In the group of the self-

supervised methods, Prabhakar et al. [60, 61] designs a metric which evaluates the quality of
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the multi-exposure fusion image. Xu et al. [62] trained a self-supervised neural network to pre-

serve the similarity between the fusion result and the source exposures.

Li et al. (CNNFEAT) [63] combines the several exposures depending on a series of descrip-

tors learnt by a neural network. Zhang et al. [64] and Zhang et al. [65] propose unified deep

learning frameworks for several fusion tasks, including MEF.

There is very few literature dealing with noise removal during multi-exposure image fusion,

and most published papers are focused on HDR. Akyuz et al. [66] denoise each frame before

fusion, but this is performed in the radiance domain. Tico et al. [39] combine an initial fusion

result with the image in the sequence with the shortest exposure. This combination is per-

formed in the wavelet domain and coefficient attenuation is applied to the coefficients of the

difference. Min et al. [67] filter the set of images with spatio-temporal motion compensated

anisotropic filters prior to HDR reconstruction. Lee et al. [68] use sub-band architecture for

fusion, with a weighted combination using a motion indicator function to avoid ghosting

effects. The low frequency bands are filtered with a multi-resolution bilateral filter while the

high frequency bands are filtered by soft thresholding. Ahmad et al. [69] identify noisy pixels

and reduce their weight during image fusion.

3 MEF algorithm

We propose a novel algorithm for multi-exposure fusion which will serve as basis for the joint

fusion and denoising method. It operates in the DCT domain and it is inspired by the fusion

method in [2]. Compared to [2], we introduce a new strategy for fusing the average coefficient

of the DCT and a completely different color management. It also includes a novel noise

removal step, allowing for its application with moderately noisy images.

The basic algorithm, applied to single-channel images, is described first. Its extension to

color images is presented in Section 3.2. Finally, a modification that confers denoising capabil-

ity to the method is proposed in Section 3.3.

3.1 Single channel image fusion

Let’s denote by Yk, k = 1, 2, . . ., K a sequence of luminance images acquired with different

exposure taking values in the range [0, 1]. This sequence is supposed to be static. We split the

images Yk into nb partially-overlapped patches of b × b pixels, fBlkg; l ¼ 1; . . . ; nb, and the 2D

DCT transform of each patch is computed.

At a given pixel location, some of these patches may belong to under or over exposed parts

of the images, while others may be well exposed. Both under and over exposed patches will

have non-zero DCT coefficients of small magnitude, due to the lack of high frequency infor-

mation. Conversely, the coefficients of well exposed patches will be large. These considerations

lead to the following equation that aggregates the non-zero DCT coefficients of all the patches

corresponding to the same spatial location:

B̂lðxÞ ¼
XK

k¼1

wlkðxÞB̂
l
kðxÞ; x 6¼ 0; l ¼ 1; 2; . . . ; nb; ð1Þ

where B̂lk denotes the DCT transform of patch l in image k, and the weights wlkðxÞ are defined

depending on the frequency ξ,

wlkðxÞ ¼
jB̂lkðxÞj

p

PK
n¼1
jB̂lnðxÞj

p x 6¼ 0 : ð2Þ

where p> 0 is a parameter of the method. We observe that, for a given frequency, patches
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having higher coefficient magnitudes (i.e. well exposed patches) contribute more than the oth-

ers to the weighted sum in Eq (1).

This strategy does not apply to the zero frequency DCT coefficient, ξ = 0, i.e. the average of

the patch values. Since large zero frequency coefficients correspond to over-exposed images,

applying the same weighted combination would simply overexpose the fused image. We

weight these coefficients depending on the average value of the patch and on the average value

of the image to which it belongs:

B̂lð0Þ ¼
XK

k¼1

wlkð0ÞB̂
l
kð0Þ; l ¼ 1; 2; . . . ; nb; ð3Þ

where

wlkð0Þ ¼
1

C
e� ðB̂ lkð0Þ� 0:5Þ2=s2

l � e� ðmk � 0:5Þ2=s2
g ; ð4Þ

with μk the average of the values of image k, C a normalizing constant, and σl and σg parameters

of the method. Observe that 0.5 corresponds to the center of the [0, 1] range. Well exposed

images are supposed to have an average value close to 0.5. The weighting factor (4) favors

patches whose average value is close to this central value, and that belong to well exposed

images. For all the experiments in this paper we fixed σg = 0.3 and σl = 0.5.

Finally, the fused patches are obtained after applying the inverse DCT transform to the

result of the aggregation

BlðxÞ ¼ F � 1
ðB̂lðxÞÞ; l ¼ 1; . . . ; nb: ð5Þ

Since patches are partially overlapped, the pixels in overlapping areas are averaged to pro-

duce the final image.

3.2 Color image fusion

We use an orthonormal version of the well known YUV color space, described by the follow-

ing linear transformation.

Y
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V
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The Y channel, given by the normalized average of the RGB values, represents the luminance,

while U and V contain the chromatic information. The use of an orthonormal transform is

motivated by the denoising stage described below. The matrix rows are mutually orthogonal

which guarantees that noise is not color correlated by the transform. Each row has an Euclid-

ean norm equal to one which permits to maintain the same noise standard deviation of the

original image. This transformation can be obtained from the classical YUV decomposition by

applying an orthogonalization method [70]. This color transformation was used for example

in [16].

The Y channel is processed as described in the previous section. However, for the U and V

components, we apply the weighted average defined by Eqs (1) and (2) to all the coefficients,
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including ξ = 0. The reason is that aggregating the average values of the chromaticity compo-

nents (i.e. the values of the zero coefficients in the transformed domain) does not increase the

risk of over-exposure, but enhances the patch average chromaticity, making the result more

colorful than when applying the single channel method to each of the R, G and B components.

This is noticeable in Fig 2, in which both strategies are compared.

3.3 Noise removal

The most common noise model is the additive white Gaussian noise (AWGN). The observed

noisy image v is related to the underlying clean image u by

v ¼ uþ n;

being n a noise image, independently and identically distributed at each pixel as a zero-mean

Gaussian random variable with standard deviation σ. For other types of noise, the initial data

can be modified by using variance stabilization transforms or whitening strategies, or the

designed algorithm might be modified by adapting locally the parameters or applying multi-

scale methods. For this reason, AWGN is the most commonly assumed model in order to

design general noise removal algorithms.

Denoising can be achieved by using a thresholding estimator that projects the noisy image

to an orthonormal basis and reconstructs the denoised result with the transform coefficients

larger than a given threshold [71].

Following this principle, the fusion method proposed in Sections 3.1 can naturally incorpo-

rate noise removal by modifying the weight definition (2) to

wlkðxÞ ¼
ThrsðjB̂lkðxÞjÞ

p

PK
n¼1
ThrsðjB̂lnðxÞjÞ

p ; x 6¼ 0 ð6Þ

where

ThrsðjB̂
l
kðxÞjÞ ¼

0 jB̂lkðxÞj < T � s

jB̂lkðxÞj otherwise

8
>><

>>:

Since the modified YUV color transformation is orthonormal, the noise standard deviation

is not modified by the linear transformation proposed in Section 3.2, converting from RGB to

the mentioned space. Thus, the same thresholding can be applied to each channel. The

Fig 2. Comparison between applying the fusion to each RGB channel independently and using the YUV

luminance and chromatic components. The luminance of the two results is identical, while the color is enhanced by

the latter strategy.

https://doi.org/10.1371/journal.pone.0265464.g002
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threshold parameter T is set to 2.7 as usual when denoising by thresholding in an orthonormal

basis [16]. Fig 3 compares the application of the fusion chain with and without this DCT

thresholding stage.

When dealing with high levels of noise, the DCT thresholding method described above is not

enough to provide good denoising results. The next section describes how the fusion method

can be combined with a collaborative denoising technique to obtain much better results.

4 Joint noise removal and fusion procedure

We assume, as in the previous sections, an AWGN noise model with standard deviation σ and

that the input images are co-registered. Many variants have been proposed to deal with the

noise removal of image sequences having the same exposure and noise conditions. Such meth-

ods cannot be directly used for multi-exposed images.

We propose a joint noise removal and fusion procedure. The noise removal stage is an

adaptation of the BM3D collaborative DCT thresholding technique proposed in [16]. The use

of such technique permits a natural integration with the fusion method proposed in Section 3,

since both denoising and fusion are performed in the DCT domain.

BM3D is a patch-based image denoising method, which means that first the image is split

into overlapping patches which are processed independently. Each patch is denoised by find-

ing groups of similar patches in a local neighborhood and stacking them in a 3D structure. A

separable 3D transform is applied to this structure (that is, 2D DCT transforms of each patch

followed by a 1D transform in the third dimension of the stack) and denoising is achieved by

setting to zero all the coefficients below a fixed threshold that depends on the standard devia-

tion of the noise (which is assumed to be known). After computing the inverse 3D transform

of the thresholded coefficients a denoised stack of patches is obtained. Since patches are par-

tially overlapped the final denoised image is obtained after averaging, at each pixel position,

the contributions of each denoised patch, in a process known as aggregation. This process

should not be confused with the aggregation in the DCT domain described in Section 3.1 and

modeled by Eqs (1) and (3).

In the original BM3D implementation this process is repeated two times, first applied to the

noisy image, and then using as input both the noisy image and the first denoising result

Fig 3. Noisy example with sequence office and noise with standard deviation σ = 15. Top, from left to right: one

image from the multi-exposure set, fusion without DCT thresholding, fusion with DCT thresholding. Bottom: detail of

the images.

https://doi.org/10.1371/journal.pone.0265464.g003
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(known as oracle). In this second step the thresholding operation in the DCT domain is

replaced by a Wiener filtering guided by the oracle image. The authors show that this two steps

process restores more details and improves the denoising performance.

A naive solution to our problem would consist in denoising each multi-exposed image with

the previous algorithm and then apply the fusion method described in Section 3 to the

denoised set. However, we propose a more efficient method, which produces better results.

Instead of processing each image independently, we use information of the whole multi-

exposed set to denoise each image. In particular, the group of similar patches used to create

each 3D stack is searched using the patch-selection procedure proposed in [8], which has

proved to reduce the dependence on noise in the patch comparison, improving the robustness

of the denoising method and reducing the usual artifacts of collaborative filtering.

Given the multi-exposed set of images and an initial patch location x, we associate to x a 3D

block composed by the 2D patches from the set located at the same spatial position. Then, we

search for similar 3D blocks associated to other spatial locations y. The distance between dif-

ferent 3D blocks is computed as

d3Dðx; yÞ ¼
X

image i in set

jjPiðxÞ � PiðyÞjj ð7Þ

where Pi(x) and Pi(y) denote the 2D patches referenced by x and y in image i (each 2D patch is

referenced by its top-left vertex). We extract from the selected 3D blocks, the set of 2D patches

belonging to each one of the images. Each set of 2D patches is denoised independently apply-

ing the collaborative strategy as proposed in [16].

Since the fusion method described in Section 3 operates in the DCT domain, it can be inte-

grated with the BM3D algorithm. For each group of 2D patches belonging to a particular expo-

sure, a collaborative 2D+1D transform and threshold is applied. After applying the inverse 1D

transform, and prior to the computation of the inverse 2D-DCT transforms, we group the 2D

DCT coefficients of the patches belonging to the same selected spatial location and having dif-

ferent exposures. The multi-exposure fusion described by Eqs (1) and (3) is performed on each

of these groups. After this fusion step, only one DCT transformed patch is obtained at each

selected location, to which the inverse DCT is applied. Fig 4 illustrates the process.

By repeating the operation on each patch location and applying aggregation in the image

domain, we obtain the final denoised and fused result. In our implementation no second itera-

tion of the algorithm is performed.

Fig 4. Processing scheme of a specific reference patch.

https://doi.org/10.1371/journal.pone.0265464.g004
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5 Discussion and experimental results

In this section we compare the proposed method with state of the art algorithms for exposure

fusion. We compare with Mertens et al. [1], Ma et al. [5], Li et al. [44], Kou et al. [28], Ma et al.

[55], Hessel et al, (EEF) [19], Xu et al. [35], Zhang et al. (IFCNN) [64], Li et al. (CNNFEAT)

[63], Hayat et al. (MEF-Sift) [22] and Martorell et al. [2]. The results from Ma et al. [5] and Ma

et al. [55] were computed with the software downloaded from the corresponding author’s web-

page. The results of Mertens et al. [1] were obtained from the dataset provided in [56, 72]. The

code for Hessel et al. (EEF) [19, 73], Xu et al. (FusionDN) [35, 74], Zhang et al.(IFCNN) [64,

75], Li et al. (CNNFEAT) [63, 76] and Hayat et al. (MEF-Sift) [22, 77] were obtained from the

corresponding GitHub webpages. The code by Xu et al., originally proposed to fuse only pairs

of images, has been adapted to fuse any sequence. We fuse the first two images of the set, this

output is then combined with the third input image, and so on until all the images in the

sequence have been fused. The results from Li et al. [44], Kou et al. [28] and Martorell et al. [2]

were computed with the code provided by the authors. In all cases, default parameter settings

are adopted.

Our results were computed using the same parameters for all the tests in this section. We

use patches of size 8 × 8 pixels which is the standard size used by patch based denoising algo-

rithms, as for example the BM3D [16]. The threshold for the collaborative filtering is set to the

standard value 2.7σ. For the fusion stage, we fixed p = 7 as the power exponent of the coeffi-

cient magnitudes in Eq (2), σg = 0.3 and σl = 0.5 for the combination of the ξ = 0 coefficients.

These latter parameters were set experimentally.

A sliding window approach is applied for the DCT based denoising/fusion. Once it is pro-

cessed, the window is moved along both directions with a displacement step of Nstep = 2. The

fact that the whole window is fused permits the processing of all the pixels in the image.

5.1 Noise-free sequences

In this case, we just compare the ability of fusing the different exposure images. We use for our

method just the fusion algorithm described in section 3, but without applying any thresholding

of the DCT. Note that none of the compared methods include this noise filtering step.

Fig 5 displays the results of all the methods on the “Belgium House” data set. Most methods

produce a result with good global illumination. However, looking closer at the images in Fig 6,

we observe that many outdoor details in Mertens et al. [1] and Ma et al. [5] are overexposed. Li

et al. [44] and Kou et al. [28] are not able to maintain the letters on the blackboard on the right

side of Fig 6 and Ma et al. [55] is not able to preserve the details on the tree at the top of the

image. Li et al. [63] the fusion result is over-smoothed, while the result by Hayat et al. [22] is

over-saturated at the bright parts. The results of [2], Hessel et al [19], Zhang et al. [64] and

ours are quite similar.

5.2 Noisy sequences with white uniform Gaussian noise

We compare in Fig 7 the results of all the algorithms on a noisy multi exposure sequence

obtained after adding noise with standard deviation σ = 15 to the clean images (see Fig 8). We

apply all the algorithms with their default parameters. It is clear from this figure, that none of

the methods (except ours) is well adapted to the presence of noise. See Fig 9 for details of the

results.

In the next experiment we add noise of standard deviation 25 to the clean multi-exposed

images (see Fig 8) and apply the original BM3D algorithm [16] to denoise each one of them.

We then apply the different multi exposure fusion methods to the denoised data (except our

method, which is applied directly to the noisy sequence) and display the results in Fig 10. An
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excerpt of the results is zoomed in and displayed in Fig 11. We observe that our method is the

only one able to denoise and fuse the multi exposure sequence without producing noticeable

artifacts.

5.2.1 Numerical evaluation. We propose a quantitative evaluation of the results by adapt-

ing the MEF-SSIM index proposed by Ma et al. [56] to take into account that the initial images

are noisy.

Fig 5. Results of fusion of noise-free multi-exposure images with different methods.

https://doi.org/10.1371/journal.pone.0265464.g005

Fig 6. Excerpt of the results shown in Fig 5.

https://doi.org/10.1371/journal.pone.0265464.g006
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We begin by briefly describing this measure. Ma et al. decompose each patch xk, k = 1, 2, . . ., K
of the set of input images as

xk ¼ jjxk � mxk
jj �

xk � mxk

jjxk � mxk
jj
þ mxk

¼ ck � sk þ lk ð8Þ

where ck ¼ jjxk � mxk
jj, lk ¼ mxk

and sk ¼ ðxk � mxk
Þ=jjxk � mxk

jj roughly represent the con-

trast, luminance and structure components of a patch xk. Using the previous decomposition,

they compute the desired contrast and structure of the output image, respectively, as

ĉ ¼ max
k¼1;���;K

ck ¼ max
k¼1;���;K

jjxk � mxk
jj: ð9Þ

and

�s ¼
PK

k¼1
wðxk � mxk

Þsk
PK

k¼1
wðxk � mxk

Þ
; ŝ ¼

�s
jj�sjj

; ð10Þ

Fig 7. Results of fusion of noisy multi-exposure images with different methods. The noise standard deviation of

each input image is 15.

https://doi.org/10.1371/journal.pone.0265464.g007

Fig 8. Noisy multi-exposure data sets used for comparison. On the first row, the noise standard deviation of each

input image is 15. On the second row the standard deviation is 25.

https://doi.org/10.1371/journal.pone.0265464.g008
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where w(�) is a weighting function that determines the contribution of each source image patch

in the structure of the fused image patch (see Ma et al. [56] for more details on these weights.)

With that, the desired output patch result is

x̂ ¼ ĉ � ŝ: ð11Þ

Finally, the value that measures the structural similarity between a set of input patches {xk},

k = 1, 2, . . ., K from a sequence of multi-exposure images and the corresponding patch of the

fused image y is given by

Sðfxkg; yÞ ¼
2sx̂y þ C

s2
x̂ þ sy2 þ C

: ð12Þ

Fig 9. Excerpt of the results shown in Fig 8. It is clear from this figure, that our method is the only one that takes

noise into account.

https://doi.org/10.1371/journal.pone.0265464.g009

Fig 10. Results of fusion and denoising. Our method is the only one applied directly to the noisymulti-exposure

images. The rest of methods fuse denoised versions of the images obtained using the BM3D algorithm. The noise

standard deviation of each input image is 25.

https://doi.org/10.1371/journal.pone.0265464.g010
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The final measure is given by the mean of S({xk}, y) with {xk} centered at each pixel of the

image

QðYÞ ¼
1

M

XM

j¼1

SðfxkgðjÞ; yðjÞÞ: ð13Þ

The defined strength of the signal ĉ needs to be modified in order to subtract the noise

energy. Indeed, the strength of the noisy patches writes as the sum of the signal and noise ener-

gies. In order to evaluate the noise removal in the fused image y, we redefine

ĉ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðĉ2 � s2; 0Þ

p
: ð14Þ

We denote this modified measure as MEF-SSIMn. Larger values indicate a better performance

of the method.

The values of MEF-SSIMn for the examples of Figs 7 and 10 are displayed in Table 1. As it

can be seen, our method has the best MEF-SSIMn score.

5.3 Realistic multi exposure noisy images

The AWGN model does not hold in practice for real photographs. The noise is approximately

white and additive at the camera sensor. However, it is signal dependent, meaning that the

noise standard deviation at each pixel depends on its noise-free value. The noise characteristics

Fig 11. Excerpt of the results shown in Fig 10.

https://doi.org/10.1371/journal.pone.0265464.g011

Table 1. Values of MEF-SSIMn for the examples of Figs 7 and 10.

Mertens et al.

[1]

Ma et al.

[5]

Li et al.

[44]

Xu et al.

[35]

Kou et al.

[28]

Ma et al.

[55]

Martorell et al.

[2]

Li et al.

[63]

Hessel et al

[19]

Zhang et al.

[64]

Hayat et al.

[22]

Ours

Fig 7 0.607 0.349 0.611 0.567 0.666 0.599 0.570 0.695 0.553 0.572 0.634 0.841

Fig

10

0.728 0.673 0.727 0.689 0.740 0.730 0.738 0.755 0.709 0.709 0.742 0.758

https://doi.org/10.1371/journal.pone.0265464.t001
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are then modified by the camera processing pipeline, consisting of demosaicking, color pro-

cessing, gamma correction and compression [78].

In order to test our fusion and noise removal method with a ‘realistic’ noise case, we use

RAW images which contain the acquired data at the sensor of the camera. This data can be

obtained by selecting the RAW as output format when using professional reflex cameras. We

add signal dependent white noise to a set of multi exposure RAW images and simulate a typical

camera processing pipeline, obtaining their final color version in a common graphics format

(PNG, JPEG, etc.).

The results in Fig 12 show that, even in this situation, the proposed method is able to

denoise and fuse the images without introducing artifacts.

5.4 Computational analysis

The time complexity of the proposed algorithm is OðjYjÞ, where |Y| denotes the size of each

image in the multi-exposure sequence.

Assuming that the 3D transforms used for the collaborative filtering are performed in a sep-

arable way (i.e. 2D transforms followed by 1D transforms, as detailed in [16]), the overall num-

ber of operations of the algorithm, per pixel, is approximately

CT 2D
þ 2Kb2N2

S þ 2Kb2CT 1D
þ 2Kkb2 þ kC0T 2D

þ kb2 ð15Þ

where:

• CT 2D
denotes the number of operations required to compute the 2D DCTof the stack of

patches similar to the one centered at the considered pixel. If we consider a neighborhood of

size NS × NS around the pixel, this implies the computation of KN2
S 2D DCTs, where K is the

number of images in the sequence. The time complexity can be reduced by pre-computing

the transforms in each block of size K × NS × NS and reusing them in overlapping blocks,

similarly to what is proposed in [16].

Fig 12. Realistic noise simulation. From left to right: three noisy images with different exposures and the fusion and noise removal result. Below

an excerpt of each image.

https://doi.org/10.1371/journal.pone.0265464.g012
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• The second term accounts for the 3D block matching step. This implies the exhaustive

search, in a NS × NS neighborhood of the pixel, of 3D blocks of size K × b × b.

• The third term counts the number of operations for the computation of the 1D DCT trans-

forms (direct and inverse) of the k nearest neighbors of each patch, in each frame. CT 1D

denotes the cost of computing a 1D DCT transform (direct or inverse) of a vector of size k.

• The fourth term accounts for the fusion step, which involves k 3D blocks of patches of size

K × b × b.

• The fifth term accounts for the number of operations needed to compute the k inverse 2D

DCT transforms of the fused patches. C0T 2D
denotes the cost of computing the inverse 2D

DCT transform of a patch of b × b pixels.

• Finally, the last term counts the number of operations involved in the image aggregation

step.

Observe that the number of denoising operations per pixel, for each image, is smaller than

that for the original BM3D algorithm, since only one step of the collaborative filtering is

applied. In addition, the inverse DCT is applied only to the fused patches, since it is not neces-

sary to denoise each individual image of the multi-exposure set.

Moreover, the previous estimation assumes that an exhaustive-search algorithm has been

used for block matching. The costs CT of the DCT transforms depends on the availability of

fast algorithms. By using predictive search techniques and fast separable transforms the com-

plexity of the algorithm could be significantly reduced. Moreover, the overall number of opera-

tions can be further reduced by processing only one out of each Nstep < b pixels in both the

horizontal and vertical directions. Due to the overlapping of the patches, the aggregation step

used in the final step of the algorithm guarantees that all the pixels are correctly processed. In

this case, the overall complexity of the method is reduced by a factor N2
step.

6 Conclusions

In this paper we propose a patch-based method for the simultaneous denoising and fusion of a

sequence of multi-exposed images. Both tasks are performed in the DCT domain and take

advantage of a collaborative 3D thesholding approach similar to BM3D [16] for denoising, and

the proposed fusion technique. For the collaborative denoising, a spatio-temporal criterion is

used to select similar patches along the sequence, following the approach in [8]. The overall

strategy permits to denoise and fuse the set of images without the need of recovering each

denoised image image in the multi-exposure set, leading to a very efficient procedure.

Several experiments show that the proposed method permits to obtain state-of-the-art

fusion results even when the input images are noisy. As future work, we plan to extend the cur-

rent approach to multi-exposed video sequences.
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