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Genetic variants can influence the expression of mRNA and protein. Genetic regulatory loci 
such as expression quantitative trait loci (eQTLs) and protein quantitative trait loci (pQTLs) 
exist in several species. However, it remains unclear how human genetic variants regulate 
mRNA and protein expression. Here, we characterized six mechanistic models for the 
genetic regulatory patterns of single-nucleotide polymorphisms (SNPs) and their actions on 
post-transcriptional expression. Data from Yoruba HapMap lymphoblastoid cell lines were 
analyzed to identify human cis-eQTLs and pQTLs, as well as protein-specific QTLs (psQTLs). 
Our results indicated that genetic regulatory loci primarily affected mRNA and protein 
abundance in patterns where the two were well-correlated. While this finding was observed 
in both humans and mice (57.5% and 70.3%, respectively), the genetic regulatory patterns 
differed between species, implying evolutionary differences. Mouse SNPs generally targeted 
changes in transcript expression (51%), whereas in humans, they largely regulated protein 
abundance, independent of transcription levels (55.9%). The latter independent function can 
be explained by psQTLs. Our analysis suggests that local functional genetic variants in the 
human genome mainly modulate protein abundance independent of mRNA levels through 
post-transcriptional mechanisms. These findings clarify the impact of genetic variation on 
phenotype, which is of particular relevance to disease risk and treatment response.

Keywords: functional genetic variants, quantitative trait loci (QTLs), genetic regulatory pattern, maximum 
likelihood estimation, independent regulation

INTRODUCTION

Single-nucleotide polymorphisms (SNPs) play an important role in the regulation of transcription 
and translation (Montgomery et al., 2010; Schafer et al., 2015). The central dogma states that DNA 
is transcribed into mRNA, which is then translated into protein. Within this simple model, SNPs 
can influence protein abundance through their effect on mRNA expression (Levine and Tjian, 2003; 
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Goodrich and Kugel, 2010). However, genetic variants can also 
regulate protein abundance in a post-transcriptional way, regardless 
of transcription levels (Cox et al., 2007; White and Sharrocks, 
2010; Foss et al., 2011; Battle et al., 2015). These mechanisms affect 
protein production and can be associated with complex traits or 
diseases. Moreover, genetic variants quantitatively affect the levels 
of transcripts and proteins in a manner that can be identified by 
mapping quantitative trait loci to transcript (eQTL) and/or protein 
(pQTL) abundance. Protein-specific QTLs (psQTLs) are genetic 
variants that affect protein abundance irrespective of changes in 
mRNA levels. Although such variants have been identified in mice 
(Chick et al., 2016), this global regulatory process has yet to be 
fully investigated in humans.

During the past decade, genome-wide association studies 
(GWAS) have identified thousands of regulatory genetic variants 
not only in humans but also in many other species, for varieties 
of complex traits ranging from disease to quantitative traits and 
including mRNA or protein levels (Stranger et al., 2005; Melzer 
et al., 2008; Ghazalpour et al., 2011; Majewski and Pastinen, 2011; 
Stark et al., 2014; Zhou et al., 2018d). Like many other molecular 
markers that have been discovered, these genetic variants can be 
utilized as potential diagnostic and therapeutic biomarkers in many 
cancer types (Zaenker and Ziman, 2013; Zhou et al., 2015b; Garrigos 
et al., 2018; Zhou et al., 2018a; Zhou et al., 2018b). However, GWAS 
have limitations: most focus primarily on detecting genetic variants 
associated with a single trait of interest, such as the expression of 
mRNA or protein, yet complex regulatory mechanisms are likely 
to affect protein levels. Recently, a study identified pQTLs at the 
proteome scale and statistically analyzed the multiple regulatory 
relationships existing between SNPs, mRNA, and protein. This 
suggested that local pQTLs were largely mediated through 
transcriptional mechanisms (Chick et al., 2016). However, these 
data derived from mice and were limited to pQTLs, and did not 
consider other potential regulatory variants such as eQTLs and 
psQTLs. Thus, a limited number of studies have considered the 
underlying genetic regulatory mechanisms found in humans.

In the present study, we assessed six regulatory relationship 
models in humans. The correlations between genotype, 
transcript levels, and protein abundance were quantified from 
lymphoblastoid cell lines (LCLs) of 62 unrelated HapMap Yoruba 
individuals from Ibadan, Nigeria (YRI). Our results show that 
genetic regulatory patterns in which transcription levels directly 
affected protein abundance were predominant in both humans 
and mice; however, one specific pattern was enriched in humans. 
Additionally, the regulatory loci underlying the human-enriched 
regulatory pattern were enriched in psQTLs that were predicted to 
independently affect protein abundance. This may be associated 
with a differential regulatory mechanism, with possible biological 
functional diversity between human and mice.

MATERIALS AND METHODS

Datasets
Genome-wide genotypes and mRNA and protein quantification 
data from 62 YRI HapMap human LCLs were obtained from 
a recent study (Battle et al., 2015). We selected 4,340 genes in 

which mRNA and protein were quantified in at least half of the 
individuals for further analysis. Gene and protein expression 
data of 62 samples were downloaded from Supplementary 
Data 4 (Battle et al., 2015). Genotypes contained approximately 
15.8 million variants imputed from either HapMap or the 1000 
Genomes project (14.9M SNPs and 0.9M indels). SNPs and indels 
within a ±20-kb region of each gene and which had a minor allele 
frequency greater than 10% were selected as QTL candidates, 
leading to 2,118,301 variants. Although a ±20-kb region may be 
considered conservative, it is reasonable in our case because we 
are primarily interested in the difference between protein and 
RNA levels that can be explained by variants that function in cis. 
Corresponding genotype data can be obtained from: http://eqtl.
uchicago.edu/dsQTL_data/GENOTYPES/.

We also downloaded local pQTLs from the study by Chick 
et al. (2016), which measured genome-wide transcript and protein 
expression in livers from 192 Diversity Outbred mice. For 6,707 
proteins detected in at least half of the samples, the most probable 
models linking a QTL genotype to transcript and protein abundance 
were also obtained from the original paper. Here, we focus on the six 
models where a local QTL affects transcript or protein abundance, 
and obtained the number of local QTLs that can be best explained 
by each model from Table S6 (Chick et al., 2016).

QTL Mapping
QTLs were identified in human YRI HapMap individuals using 
R software. Prior to QTL mapping analysis, we used standardization, 
quantile normalization, and principal components analysis to 
ensure that the data (mRNA and protein abundance) followed a 
standard normal distribution with no unidentified confounders 
(Battle et al., 2015).

In the first round of identification of regulatory patterns, we 
used only one pQTL for each gene corresponding to the smallest 
p value in linear regression, regardless of whether the p values 
were significant. In the second round, all eQTLs and pQTLs 
were mapped through linear regression analysis using the “lm” 
R package; psQTLs were identified using likelihood ratio test 
(LRT) with the following two linear models performed by the 
”lrtest” function in “lmtest” R packages:

y x xS R= + + +β β β ε0 1 2

y xR= + +β β ε0 2

where xS is the genotype, xR is the level of mRNA expression, and 
y is the level of protein expression. The p value was recorded as 
significant evidence. We filtered eQTLs, pQTLs, and psQTLs 
using a cutoff p value (4.8 × 10−4) that was determined at a false 
discovery rate (FDR) of 0.1 after multiple hypothesis corrections 
(Pickrell et al., 2010).

Maximum Likelihood Model and  
Model Selection
For each candidate gene in the dataset, we evaluated six possible 
genetic regulatory relationships between SNP, and mRNA and 
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protein abundance using the maximum likelihood model. The 
best model was selected by the minimum Bayesian information 
criterion (BIC) value. BIC values and corresponding weight 
values were calculated using the “bbmle” package of R.

It was assumed that the models of regulatory patterns were 
established based on a Markov chain. The maximum likelihood 
estimation for these models can be performed using joint 
probability distributions as follows:

 
Pattern# model : , ,1 P S R N P S P R|S P N( ) = ( ) ( ) ( )  (1)

 
Pattern# model : , ,2 P S R N P S P R P N|S( ) = ( ) ( ) ( )  (2)

 
Pattern# model : , ,3 P S R N P S P R|S P N|S( ) = ( ) ( ) ( )  (3)

 
Pattern# model : , , | |4 P S R N P S P R S P N R( ) = ( ) ( ) ( )  (4)

 
Pattern# model : , , | ,5 P S R N P S P R P N S R( ) = ( ) ( ) ( )  (5)

 
Pattern# model : , , | | ,6 P S R N P S P R S P N R S( ) = ( ) ( ) ( )  (6)

where S is the SNP genotype, R is the mRNA level, and N is 
the protein level. P(R|S) and P(N|S) mean that the phenotype 
(mRNA and protein level) is associated with an SNP; P(N|R) 
in model #4 means that N is associated with R; and P(N|S, R) 
in model #5 means that N is associated with R, which may be 
affected by other SNPs or other common factors, but is unrelated 
to S. However, P(N|R, S) in model #6 means that N is associated 
with R, which may be influenced by other SNPs or other common 
factors as well as S.

It was assumed that mRNA and protein levels follow a normal 
distribution of N (0,1). We further assumed that traits R and 
N are normally distributed under each genotypic mean of a 
SNP, so that the likelihoods corresponding to each of the joint 
probability distributions were based on a normal probability 
density function.

 
Pattern# model :1

3
L = p S p(R |S )p(N )1 j i j iθ( ) ( )∑∏ j=1l

m
 (7)

 
Pattern# model :2

3
L = p S p(R )p(N |S )2 j i i jθ( ) ( )∑∏ j=1l

m
 (8)

 
Pattern# model :3

3
L = p S p(R |S )p(N |S )3 j i j i jθ( ) ( )∑ j=1ll

m∏  (9)

 
Pattern# model :4

3
L = p S p(R |S )p(N |R )4 j i j i iθ( ) ( )∑ j=1ll

m∏
  

  (10)

 
Pattern# model :5

3
L = p S p(R )p(N |S ,R )5 j i i j iθ( ) ( )∑ j=1ll

m∏
  

  (11)

 
Pattern# model :6 L = p S p(R |S )p(N |R ,S )6 j i j i i jθ( ) ( )

j=11l

m 3∑∏
  

  (12)

where i is the individual from 1 to m, p(Sj) is the probability of 
genotype Sj (j = 1, 2, 3) and was derived from the prior probability 
of the population, and p(Ri) and p(Ni) are from the normal 
probability density function. Other conditional probabilities 
were based on the normal conditional probability density 
function with means and variances for each component given by 
the following equations:
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where ρ is the correlation coefficient between R and N, and 
µRSj

 and µNSj
 are the genotype-specific means for R and N, 

respectively. The θ of each likelihood model was determined as 
follows:

θ µ σ µ σ1 1 2 3= ( ) =RS R N Nj
j, , , , , , ,

 

θ µ σ µ σ2 1 2 3= ( ) =R R NS Nj
j, , , , , , ,

 

θ µ σ µ σ3 1 2 3= ( ) =RS R NS Nj j
j, , , , , , ,

 

θ µ σ µ σ ρ µ4 1 2 3= ( ) =RS R N N Rj
j, , , , , , , , ,

 

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Human Genetic RegulationWang et al.

4 September 2019 | Volume 10 | Article 806Frontiers in Genetics | www.frontiersin.org

θ µ σ µ σ ρ5 1 2 3= ( ) =R R NS Nj
j, , , , , , , ,

 

θ µ µ σ µ σ ρ6 1 2 3= ( ) =RS R R NS Nj j
j, , , , , , , ,

 

We maximized the corresponding likelihood value for 
each model and evaluated the parameters using the maximum 
likelihood with initial values mean = 0 and standard deviation = 1. 
Then, the BIC value and the weight of each maximum likelihood 
model were calculated for each gene in the following functions 
using the “bbmle” package in R:

BIC log logi i iL k n= − + ( )2
 

wight e

e

dBIC

k

dBIC

i

k

i =
−

=

−∑ 1

6

 

where Li is the maximum likelihood for the candidate model 
i, ki is the number of parameters in the model i, and n is the 
sample size. wighti is interpreted as the probability that model 
i is the best model, so Σ wighti = 1. Lower values of BIC mean 
that the weight value was closer to 1. dBIC is the difference in 
BIC with respect to the BIC of the best candidate model: dBICi = 
BICi  –  min BIC. Larger values of dBIC mean that the weight 
value was closer to 0.

For each gene, we calculated BIC values and weights, which 
represented the relative quality and probability of six genetic 
regulatory models. The most likely model was predicted by the 
minimum BIC value and the maximum weight.

Chromatin state enrichment analysis
Annotation of human LCL GM12878 chromatin states were 
obtained from: http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg
19&g=wgEncodeBroadHmm (Accession: wgEncodeEH000784). 
In total, 15 chromatin states were annotated and used to segment 
the genome. We calculated the relative ratio showing whether a 
particular chromatin state of QTLs was enriched in the regulatory 

pattern by the formula ratio
       

     ij
ij j

i

of QTL of QTL

of QTL o
=

( ) ( )
( )
# / #

# / # ff QTL ( ) . 

Here, i is the chromatin state from 1 to 15, and j is the regulatory 
pattern from 1 to 6.

Gene Functional Annotation
Gene functional enrichment analysis was performed by Database 
for Annotation, Visualization, and Integrated Discovery 
(DAVID) Bioinformatics Resources 6.8 (https://david.ncifcrf.
gov/summary.jsp). The gene list of each regulatory pattern was 
submitted to run the functional annotation tool. The Benjamini 
method was chosen to perform multiple test correction. Modified 
Fisher’s exact p values were recorded for significantly enriched 
annotation terms.

RESULTS

Regulatory Patterns With a Direct Effect 
From RNA to Protein Driven by Most Local 
Genetic Variants
Six general patterns of how genetic variation leads to local 
regulation of transcript and/or protein abundance were 
investigated in human cells (Figure 1). Three regulatory patterns 
with SNPs that affect only mRNA or protein concentrations 
have previously been explored in multiple studies (Melzer et al., 
2008; Pickrell et al., 2010; Ghazalpour et al., 2011; Majewski 
and Pastinen, 2011; Lourdusamy et  al., 2012; Stranger et al., 
2012; Wu et al., 2013; Hause et al., 2014; Consortium, 2015). 
These patterns also described how protein abundance was 
not determined by the levels of coding transcripts. The poor 
mRNA–protein correlation is supported by recent studies, 
which revealed influences from multiple processes including 
the spatial and temporal variations of mRNAs as well as the 
local availability of resources for protein biosynthesis (Liu 
et al., 2016). The three regulatory patterns are shown in the 
top row of Figure 1: SNPs that affect transcript levels without 
changing protein abundance (pattern #1, Figure 1A), SNPs that 
affect protein abundance without changing transcript levels 
(pattern #2, Figure 1B), and SNPs that affect transcript levels 
and protein abundance separately (pattern #3, Figure  1C). An 
additional three regulatory patterns that describe an association 
between mRNA and protein levels are shown in the bottom 
row of Figure 1: SNPs that affect transcript levels and thereby 
downstream protein abundance (pattern #4, Figure 1D), SNPs 
that play an independent role in regulating protein abundance, 
which is separately influenced by transcript levels (pattern #5, 
Figure  1E), and SNPs that cause both transcriptional and 
translational changes, but in which transcriptional changes 
also influence protein levels (pattern #6, Figure 1F).

To explore whether a predominant regulatory pattern exists 
in human cells, we selected 4,340 genes for which both mRNA 
and protein levels were measured in at least half of 62 unrelated 
HapMap Yoruba individuals for pQTLs identification. We only 
considered local SNPs (cis eQTLs, pQTLs and psQTLs) as 
candidate regulatory variants, which mapped to the target gene 
within a ±20-kb window. In our initial analysis, we used the same 
strategy published by Chick and colleagues (Chick et al., 2016) to 
select the candidate dataset that adopted only one pQTL for each 
gene with the lowest p value (regardless of whether the p value 
was significant). All pQTLs were identified by QTL mapping 
analysis based on a linear regression model. One of the six 
possible regulatory patterns between SNP, mRNA, and protein 
was determined for each pQTL using a maximum likelihood 
model and BIC scoring. The model with the smallest BIC value 
was considered to be the most probable regulatory relationship 
explained by the observed data.

By comparing the proportion of six models derived from 
human data in this study with those from mice summarized 
by Chick et al., we can better understand if there is a general 
relationship pattern through which local pQTLs affect protein 
expression, regardless of species. A similar distribution 
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FIGURE 1 | General genetic regulatory patterns across SNPs, mRNA, and protein. (A, B) Genetic variants known as eQTLs and pQTLs were considered to be the 
source of quantitative traits (mRNA or protein abundance), corresponding to pattern #1 and pattern #2. (C) Pattern #3 occurs when mRNA and protein share the 
same genetic variants while protein abundance is not associated with transcription levels; they are regulated by different independent mechanisms. (D) Pattern #4 
occurs when genetic variants lead to the alteration of transcription, further to variation of protein abundance. (E) Pattern #5 occurs when genetic variants regulate 
protein abundance independently of mRNA levels. (F) Pattern #6 occurs when genetic variants and mRNA levels are dependent and co-regulate protein abundance. 
Overall, cis-acting SNPs act on mRNA and/or protein abundance through these likely regulatory patterns. 

FIGURE 2 | Distribution of genetic regulatory patterns. (A) Genetic regulatory patterns in human lymphoblastoid cell lines. (B) Local mouse regulation models 
according to Chick et al. (2016). This study identified the best local QTLs (±10 Mb of the gene midpoint) for each of the 6707 proteins in Diversity Outbred (DO) 
mice, and used Bayesian Information Criterion (BIC) to assess eight models between SNPs, mRNA, and protein. The six local regulation models associated with 
genetic variations were extracted to compare with those in humans.
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of regulatory patterns was observed in humans and mice 
(Figure 2). The predominant regulatory patterns in which 
mRNA and protein levels correlated well (patterns #4 to #6; 
Figures 1D–F) were observed both in humans (57.5%) and 
mice (70.3%). The Pearson correlation coefficients of mRNA 
and protein levels in patterns #4 to #6 were higher than 
that of patterns #1 to #3 (Figure S1, A). Almost half of the 
testing genes show a weak correlation with protein (Pearson 
correlation coefficient <0.2, n = 2554, Figure S1, B). Although 
the proportion of patterns #4 to #6 was predominant in both 
humans and mice, the pattern of genetic variants differed; in 
mice, local genetic variants primarily affected transcription 
levels (pattern #4, 51%), whereas in humans, they mainly 
regulated protein abundance regardless of the mRNA level 
(pattern #5, 55.9%). This indicates the existence of evolutionary 
differences in the mechanisms of genetic regulation and the 
fact that local human pQTLs preferentially regulate protein 
abundance through a post-transcriptional mechanism.

QTL Analysis in Association With 
Regulatory Patterns
If protein abundance is regulated by pQTLs through a post-
transcriptional mechanism, it would also correlate with 
transcriptional changes, so protein abundance may appear 
unchanged and potential regulatory pQTLs will not be found. 
To overcome this, we analyzed SNPs that were significantly 

associated with protein abundance while including the 
mediation of their coding mRNA levels, i.e., psQTLs. Given that 
protein abundance may be indirectly affected by eQTLs through 
changing mRNA levels, candidate datasets for model testing were 
extended to include all significant eQTLs, pQTLs, and psQTLs, 
rather than limiting them to the best pQTLs as above. Significant 
psQTLs were identified using the LRT; eQTLs and pQTLs were 
identified using QTL mapping analysis. All QTLs were filtered 
at an FDR threshold of 0.1. The regulatory patterns were then 
re-identified with extended QTL sets by the maximum likelihood 
estimation, where the aim was to find parameter values that 
made the observed data most likely to be in accordance with 
the statistical model. The best model was also determined by the 
minimum BIC score.

In total, we identified 16,726 eQTLs, 8,364 pQTLs, and 5,475 
psQTLs after multiple hypotheses correction (FDR = 0.1, p value =  
4.8 × 10−4; Table 1) and obtained 23,241 combinations for all 
candidate QTLs and their associated mRNAs and proteins. 
Our results showed that pQTLs and psQTLs were specifically 
enriched in pattern #5 (SNP > protein, mRNA > protein), 
which indicated that many local human genetic variants 
affected protein abundance regardless of transcription levels. In 
contrast, most eQTLs that influenced protein abundance were 
found in pattern #4 (SNP > mRNA > protein, Figure 3). The 
same trend held true when a more stringent FDR of 0.01 was 
applied (Figure S2). This showed that eQTLs and pQTLs could 
affect protein abundance by different mechanisms. Although 
including a large number of eQTLs as input for model testing 
could change the overall proportion of patterns (Figure S3), 
the proportion of patterns including pQTLs and psQTLs has 
not been changed compared to the previous results (Figure 2, 
Human pQTLs; Figure 3, pQTLs and psQTL). Given that the 
proportion of pQTLs that overlapped with eQTLs is smaller in 
humans than in mice (Figure S4), humans have more genomic 
regulatory variants with independent functions than mice, 
which may explain the complex regulatory mechanism of 
species evolution.

TABLE 1 | Number of cis-QTLs identified at FDR ≤ 0.1 and a cutoff p value ≤ 
4.8 × 10−4.

QTL set Individuals Pairs1 cis-QTLs qtlGenes2

eQTL 75 17,158 16,726 731
pQTL 62 8,438 8,364 440
psQTL 62 5,514 5,475 407

1Pairs were defined as combinations of SNPs and their associated mRNAs and proteins.
2qtlGenes were defined as genes with at least one QTL.

FIGURE 3 | Genetic regulatory patterns in eQTLs, pQTLs, and psQTLs.
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Specificity of Cis-Regulatory QTLs in 
Variant Regulatory Patterns
To characterize cis-regulatory QTLs in the predominant 
regulatory patterns, we performed genomic location 
enrichment analysis based on the hypergeometric test. Human 
genome annotation was downloaded from the UCSC Genome 
Browser for specific regions, including promoter, gene body, 
upstream, and downstream regions. To examine the annotated 
functional elements of the identified genomic variants of 
different patterns, we performed an analysis of chromatin state 
enrichment using annotation of the human LCL GM12878. 
These states corresponded to active, weak, and inactive 
promoters, strong and weak enhancers, insulators, transcribed 
regions, and large-scale repressed and inactive domains (Ernst 
and Kellis, 2010; Ernst et al., 2011). The relative ratio shows 
whether a particular chromatin state of QTLs was enriched in 
the regulatory pattern (Materials and Methods). This analysis 
not only verified the identified QTL but also provided insights 
into the potential regulatory mechanisms underlying the 
different chromatin states.

We found that QTLs corresponding to different regulatory 
patterns tended to be enriched in different genomic regions 
(Figure 4). Because pattern #4 (SNP > mRNA > protein) and 
pattern #5 (SNP > protein, mRNA > protein) were the two 
main regulatory patterns across species, we focused further 
analysis on these patterns. Human QTLs showed many distinct 
features compared with those of mice (Figures 4A, B). QTLs 
corresponding to pattern #4 (SNP > mRNA > protein) were 
significantly enriched in the upstream regions of genes. These 
upstream regions were annotated to have chromatin states 
associated with active promoters, strong or weak enhancers, 
or polycomb repressed states (Figure 5). QTLs associated with 
pattern #5 were enriched in exon regions (Figure 4C). This 
indicates that the function of genomic variants depends on 
the genomic region. For example, regulatory variants located 
in promoter or enhancer regions tended to regulate gene 
expression through transcriptional mechanisms, while some 
regulatory variants located in the gene body independently 
regulated the protein abundance through post-transcriptional 
or translational mechanisms.

Biological Functions Associated With 
Predominant Regulatory Patterns
To determine the significant biological functions of the genes 
affected by the two predominant regulatory patterns (pattern#4: 
SNP > mRNA > protein and pattern #5: SNP > protein, mRNA > 
protein), we analyzed the functional annotation enrichment 
according to Gene Ontology Biological Process terms using 
DAVID. Whole genome-wide genes were used as background 
for enrichment calculation. The significantly enriched terms 
of biological processes are shown in Figure 6 and Figure S5. 
Genes in the two regulatory patterns were enriched in the 
basic biological processes of cellular activity, such as metabolic 
processes. However, some functions were differentially 
enriched. For example, human genes with regulatory pattern 

#4 were differentially enriched in cellular macromolecular 
complexes and organelle-related processes, including organelle 
organization, cellular component organization, and biogenesis 
(p value =  3.39 × 10−10 and 7.29 × 10−9, respectively, Figure 6A). 
Human genes with regulatory pattern #5 were specifically 
enriched in cellular localization and macromolecular 
complex subunit organization (p value  = 1.26 × 10−5 and  
2.19 × 10−5, respectively, Figure 6B). This suggested that when 
genetic variation acts as an independent regulator of protein 
abundance, genes are associated with cellular localization and 
macromolecular complex subunit organization. In general, 
our findings indicate the diversity of biological functions 
between human and mice, and the existence of differential 
genetic functions.

DISCUSSION

In this study, we examined human genetic variants that affect 
transcription levels and/or protein levels. Overall, our results 
show that human pQTLs near a gene primarily affect protein 
levels independently of transcription levels. These findings are 
supported by the fact that the mutant phenotype caused by the 
same genetic variants is also susceptible to gene expression (Vu 
et al., 2015), indicating that genetic variants and transcription 
levels together play a regulatory role.

We also investigated the different relationships between 
genetic variants and their associated mRNA and protein 
expression levels. We found that some genetic variants were 
best explained by regulatory patterns that do not correlate 
significantly with transcription and protein levels, as seen 
in patterns #1 to  #3. Protein levels were not determined by 
transcription levels is the main difference between patterns #1 
to #3 and #4 to #6. This suggested that there are potential 
regulatory networks with multiple genetic variants or other 
regulatory elements. It is well documented that protein levels 
are not always proportional to mRNA expression (De Sousa 
Abreu et al., 2009; Gry et al., 2009; Vogel and Marcotte, 2012) 
because regulation can occur at different levels, including RNA 
stability, translation efficiency, protein stability, and protein 
post-translational modifications (Zhou et al., 2015a; Zur et al., 
2016; Zhou et al., 2017). Although our results indicate that 
protein levels were mainly controlled by local pQTLs following 
regulatory pattern #5 where SNPs and mRNA regulate protein 
levels independently, the actual regulatory network may not 
be limited by this. Thus, pattern #5 may be a sub-network in 
a complex regulatory network where mRNA and protein are 
affected by other SNPs or regulatory factors, such as trans-acting 
SNPs and/or co-regulated genes (Zhou et al., 2018c). The core 
gene, which has a direct effect on a change in the expected value 
of a phenotype, was found to be likely affected by large numbers 
of weak trans-acting (peripheral) variants through regulatory 
network and thus affect the trait indirectly (Liu et al., 2019). The 
overall effects on protein level are mediated through multiple cis 
and trans variants (and gene regulatory networks). Additionally, 
regulatory pattern #5 may involve the adjustment of elongation 
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or termination phases of translation, which is consistent with 
the result of a recent study showing that some special amino acid 
sequences of nascent chain modulate polypeptide elongation 
speed in the ribosome (Chadani et al., 2017). The present study 
focused on how each individual SNP acts from RNA to protein 
in cis, and our results provide a complementary explanation for 
the regulatory control of protein levels.

A limitation of this study is that we only examined genetic 
variants in LCLs because of the need to collect three dimensions 
of data for the same individuals. LCL data are commonly used 
to investigate the role of regulatory variation in gene expression 
(Cheung et al., 2005; Duan et al., 2008; Dimas et al., 2009; Wu 
et al., 2013; Hause et al., 2014). Moreover, LCLs demonstrate a high 
level of replication across populations and samples (Li et al., 2008; 

FIGURE 4 | Location distributions of QTLs corresponding to regulatory patterns. (A) Genomic location enrichments of QTLs corresponding to regulatory patterns in 
humans. S, SNP; R, mRNA; P, protein. Color shading indicates the corrected p value ≤ 0.01 from hypergeometric tests. (B) Genomic location enrichments of QTLs 
corresponding to regulatory patterns in mice. Color shading indicates the corrected p value ≤ 0.1 from hypergeometric tests. (C) Enrichment of human regulatory 
patterns located in the gene body. The significance of enrichment is represented by the p value of hypergeometric tests. *p value ≤ 0.05.

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Human Genetic RegulationWang et al.

9 September 2019 | Volume 10 | Article 806Frontiers in Genetics | www.frontiersin.org

Ding et al., 2010). Although gene expression was reported to 
show tissue specificity (Sonawane et al., 2017), many genomic 
variants regulate protein expression through post-transcriptional 
rather than transcriptional regulation, which provides additional 
explanation for the functional evolutionary difference among 
species. Hence, further investigation of the control of protein 
regulation across cell lines or tissues will be necessary for testing 

if specific regulatory patterns exist in tissues. Our study provides 
a suitable method that can be expanded for further application.

In summary, we found that protein abundance in human 
cells was primarily modulated by local QTLs and their coding 
transcripts. This was generally consistent with findings in 
mouse cells, although the predominant regulatory path 
of local pQTLs differed. Human functional variants play 

FIGURE 5 | Chromatin states of QTLs corresponding to human regulatory patterns S, SNP; R, mRNA; P, protein. Color shading indicates the relative ratio, 
which is the proportion of particular state QTLs corresponding to each regulatory pattern divided by the ratio of that particular state QTL to the total QTL. 
The ratio value indicates whether a particular chromatin state of QTLs was enriched in each regulatory pattern, and is calculated by the following formula: 

ratio ij
ij j

i

NO QTL NO QTL

NO QTL NO QTL
=

( ) ( )
( ) ( )

. / .

. / .
, where i is the chromatin state from 1 to 15 and j is the genetic regulatory pattern from 1 to 6.
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regulatory roles independent of transcription levels and can 
mainly be explained by psQTLs, implying that local genetic 
variants largely contribute to biological function through post-
transcriptional mechanisms.
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SUPPLEMENTARY FIGURE 1 | Correlation between mRNA and protein levels. 
(A) Pearson correlation coefficient of mRNA and protein levels in three gene sets. 
Blue solid line represents genes that have patterns with weak or no correlation 
between mRNA and protein levels (patterns #1, 2, and 3); red solid line 
represents genes that have patterns with a strong correlation between mRNA 
and protein levels (patterns #4, 5 and 6); green dashed line represents the total 
gene set (n = 4340). Overlapping genes were removed from the two subsets 
in this plot. (B) The number of genes corresponding to different correlation 
coefficients (n = 4340).

SUPPLEMENTARY FIGURE 2 | Distributions of genetic regulatory patterns in 
two subsets of QTLs. Genetic regulatory patterns have the same distribution 
characteristics in the two subsets of eQTL, pQTL, and psQTL (left, FDR = 0.01; 
right, FDR = 0.1).

SUPPLEMENTARY FIGURE 3 | Overall distribution of genetic regulatory 
patterns including eQTLs, pQTLs, and psQTLs.

SUPPLEMENTARY FIGURE 4 | Venn diagram of local QTL distribution for 
humans and mice. In humans, 38% of local pQTLs overlap with eQTLs; in mice 
(Chick JM, et al.), 80% of local pQTLs overlap with eQTLs.

SUPPLEMENTARY FIGURE 5 | Functional annotation enrichment of Gene 
Ontology (GO) biological process (BP) terms. Gene sets were from regulatory 
pattern #4 (SNP > mRNA > protein) and pattern #5 (SNP > protein, mRNA > 
protein) of humans (pattern_H) and mice (pattern_M). Colors represent Fisher’s 
exact p value of a gene set enriched in a specific BP term. Dot size represents 
the gene percentage. The top 10 significant BP terms merged from each group 

are shown.

FIGURE 6 | Gene annotation enrichment analysis of biological process. (A) Regulatory pattern #4: SNP > mRNA > Protein. (B) Regulatory pattern #5: SNP > 
Protein, mRNA > Protein.
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