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Abstract

Background: The dominant paradigm for modeling the complexities of interacting populations and food webs is a system
of coupled ordinary differential equations in which the state of each species, population, or functional trophic group is
represented by an aggregated numbers-density or biomass-density variable. Here, using the metaphysiological approach to
model consumer-resource interactions, we formulate a two-state paradigm that represents each population or group in a
food web in terms of both its quantity and quality.

Methodology and Principal Findings: The formulation includes an allocation function controlling the relative proportion of
extracted resources to increasing quantity versus elevating quality. Since lower quality individuals senesce more rapidly
than higher quality individuals, an optimal allocation proportion exists and we derive an expression for how this proportion
depends on population parameters that determine the senescence rate, the per-capita mortality rate, and the effects of
these rates on the dynamics of the quality variable. We demonstrate that oscillations do not arise in our model from
quantity-quality interactions alone, but require consumer-resource interactions across trophic levels that can be stabilized
through judicious resource allocation strategies. Analysis and simulations provide compelling arguments for the necessity of
populations to evolve quality-related dynamics in the form of maternal effects, storage or other appropriate structures. They
also indicate that resource allocation switching between investments in abundance versus quality provide a powerful
mechanism for promoting the stability of consumer-resource interactions in seasonally forcing environments.

Conclusions/Significance: Our simulations show that physiological inefficiencies associated with this switching can be
favored by selection due to the diminished exposure of inefficient consumers to strong oscillations associated with the well-
known paradox of enrichment. Also our results demonstrate how allocation switching can explain observed growth
patterns in experimental microbial cultures and discuss how our formulation can address questions that cannot be
answered using the quantity-only paradigms that currently predominate.
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Introduction

From time immemorial, man has desired to comprehend the complexity

of nature in terms of as few elementary concepts as possible.

Abdus Salam

Everything should be made as simple as possible, but not simpler.

Albert Einstein

Abdus Salam’s observation applies well to the early pioneers of

mathematical ecology who between 80–100 years ago used simple

coupled nonlinear-differential and difference equations to model

the temporal dynamics of interacting biological populations

[1,2,3,4,5,6] (for reviews see [7] and [8]). Invoking Einstein’s

dictum, we argue that over the course of time, in the process of

developing a comprehensive theory of consumer-resource inter-

actions or, more generally, trophic-flow processes, the models that

continue to be invoked are generally too simple to capture some

important processes influencing the dynamics of populations.

These are processes that relate to a concept of population quality

that inter-alia has been articulated in the context of maternal

affects (e.g. see [9]), variable C-N ratios and hence palatability of

plants [10], and other nutritional or stochiometric measures of an

organism’s tissue content [10,11,12]). All of these affect per-capita

growth and death rates, where the latter includes both senescence

and susceptibility to exploitation by predators and disease (possibly

in both directions when grazers select high quality plants, but it is

generally low quality individuals that succumb to predators and

disease). Thus the use of a single variable representing merely the

abundance of the population, whether as density of numbers or

biomass, is often inadequate when processes relating to maternal

effects or other quality-related effects are more than secondary in
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determining population trends. These ‘‘carry-over’’ or ‘‘time-

delay’’ processes may sometimes be captured through structuring

populations into age or stage classes with their characteristic

‘‘time-to-maturation’’ constants [13], or through explicitly includ-

ing cohort effects whereby conditions in the year of birth influence

subsequent survival and reproductive success [14], maternal effects

passed on from mothers to their offspring [9,15], or other features

of the health, body, or nutritional condition of individuals in a

population in response to environmental conditions of the recent

past [16,17].

Here we propose that the simplest next step in capturing many

of these carry-over effects, without making the details too explicit is

to augment the standard ‘‘quantity’’ or abundance variable

formulation by adding a second variable to provide a measure

of the current ‘‘average quality’’ of each of the populations in a

trophic network or food web. The resultant quantity-quality (Q-Q)

models are generally simpler than those incorporating three or

more demographic classes for each population [7,18], which is

often taken to be the next step in incorporating multiple

intraspecific factors into population modeling formulations.

Our Q-Q approach falls within the ambit of second-order

dynamical descriptions of population growth. The importance of

such second-order descriptions has been advocated for some time,

primarily by Ginzburg and collaborators [15,19,20]. They take an

inertial view of population growth in arguing that environmental

forces affect the rate of change of the per-capita growth rate rather

than directly affecting the per-capita growth rate itself. This leads

them to formulate a second order differential equation for the

abundance N(t) at time t involving both
d2logN

dt2
and

dlogN

dt
, rather

than the usual first order equation involving
dlogN

dt
alone. Here

we propose an order equivalent mathematical formulation for

population growth in positing two first-order differential equations

of the process rather than one second-order differential equation.

The model proposed by Ginzburg and Colyvan ([15], p. 90) is

highly appealing for its simplicity since it involves only three

parameters yet is still able to fit a wide array of population

patterns. Their formulation, however, is conceptually too simple in

not providing any guidance on how to link consumer-resource

equations in a multispecies or food web setting. It also ignores the

critical process of explicit switches in the allocation of extracted

resources to increasing abundance versus elevating quality. We

make explicit this and other key consumer-resource interaction

processes: first through the incorporation of an extraction (or

feeding) function that appears in both the consumer and resource

equations and is at the core of the metaphysiological formulation

[21] (also see [22]); and second through an allocation function that

distributes varying proportions, depending on season or the state

of the populations, of extracted resource to increasing abundance

versus average quality of the consumer population.

Ginzburg and Colyvan interpret the second or ‘‘hidden

variable’’ in their second order formulation, cast in terms of the

derivative of the logarithm of their abundance variable N, as a

quality variable and interpret it as ‘‘energy resources stored inside

an individual’’ ([15], p 44.). We also refer to our second variable as

a ‘‘quality’’ variable, but allow a wider interpretation that may

differ from one class of organisms to another. In mammals this

quality variable may be related to fat storage or other features of

individual body condition [16,23]. In plants it may be related to

structural fiber content or carbohydrate storage [24]. In relatively

simple organisms, such as bacteria and protists, quality could be

related to metabolic potential: the ability to create biomass per

unit biomass of the organisms involved as a function of

concentrations of environmental nutrients [11] or temperature

[25]. Brown, Gillooly et al. [26] have suggested that metabolic

potential can be conveniently measured through comparative rates

of carbon dioxide uptake in autotrophs or oxygen consumption

in aerobes among individuals within populations. The average

quality of a population of microbes, as discussed later, may provide

a mechanism through which a culture of these organisms switches

between quality-dominated versus abundance-dominated growth

modes and exhibits growth patterns that cannot be captured by

adding time delays to abundance-only models [27].

The dominant paradigm for modeling single and multiple

species as dynamical systems has been a demographic one in

which, if we ignore migration but explicitly consider extrinsic

removal (e.g. predation by carnivores or cropping by herbivores),

the rate of change of numbers or density Ni in the ith species

(population) has the underpinning structure [28]:

dNi

dt
~birth rate �SS death rate �SS extrinsic removal rate ð1Þ

In multispecies contexts where each population is represented by a

single quantity or abundance variable, the demographic paradigm

dominates in that growth rates are most often interpreted as net

birth-minus-death rates, even in the predation and competition

models of Lotka and Volterra [2,6]. Refinements that build on the

Lotka-Volterra approach, which itself is neutral on whether to

interpret population density in terms of biomass or numbers,

remain overwhelmingly dominant today [7,8,29].

An alternative paradigm is to think in terms of physiological and

extractive process that act directly on the biomass density Xi of the

ith species, rather than numbers per se—that is, we do not think in

terms of births and deaths—and take a metaphysiological view to

obtain the underpinning structure [21,30,31,32,33,34,35]. In this

paradigm biomass gains come through feeding and extraction of

resources and biomass losses occur in three different ways, which

are: an intrinsic metabolic loss rate, an extrinsic decay rate due to death

from senesce and disease, and an extrinsic removal rate due to deaths

from the consumption of predators or even harvesting by humans.

This leads to the model:

dXi

dt
~growth rate � extrinsic decay rate �

extrinsic removal rate,

ð2Þ

where

growth rate~conversion efficiency|feeding rate{

metabolic loss rate
ð3Þ

A demographic paradigm is clearly best suited to addressing

problems that focus directly on numbers, such as how best to

conserve species close to extinction [36] or how to optimize the

number or biomass of animals harvested or culled for food, sport,

or some other management related objective [37]. The advantages

of a metaphysiological over a demographic paradigm in develop-

ing general trophic interaction models has been extensively argued

by one of us [21,22,31,38] and its value as a framework for

understanding mammalian herbivore ecology has been developed

in detail by the other [39]. But like the demographic approach,

the application of a metaphysiological multispecies paradigm to

developing deep insights into trophic and food web ecology is

inadequate because the quality of the biomass of each population

itself needs to be known if the potential for this biomass to generate

new biomass is to be modeled with sufficient precision. The age- or
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stage-structure of a population affects its aggregated biomass

quality through shifts in the proportion constituted by prime-

staged reproductives versus individuals from other stages (e.g.

immature or senescing individuals). Improved quality is expressed

through lessened susceptibility to mortality from all causes,

coupled generally with higher reproductive rates, for most animal

populations [40]. The quality of the biomass may also be

expressed through the extent of fat stores in animals or

carbohydrate stores in plants that restrict the extent of population

shrinkage during adverse periods. For plants, however, the features

associated with higher biomass quality tend to increase suscepti-

bility to tissue losses via herbivory [41].

Whatever the interpretation of quality, it is clear that growth,

conversion efficiency, metabolic expenditures, susceptibility to

disease, rates of senescence or other decay processes, as well as

predation (extraction), birth and death rates are all dependent in

one way or the other on some measure of the quality of the

individuals making up the population. The utility of a second-

order quantity-quality (Q-Q) versus a first-order quantity-only

description of a population’s dynamical response, though, depends

on the relative time scales over which the quantity and quality

variables respond, as measured for example by their ‘‘character-

istic return times’’ to equilibrium [42]. If these return or, as we will

refer to them, response times of the quantity and quality variables

are comparable, as is the case for maternal effects [9] that persist

across a generational time scale, then it is essential that the

carryover effect of changing biomass quality on the future

dynamics of this biomass be taken into account [15,19,20]. If

the response time for quality is around two orders of magnitude or

more shorter than quantity response times (e.g. organisms running

out of energy on times scales of days when their generation time is

years), then a first order description is likely to be adequate. But if

quality response times are at most an order-of-magnitude faster

than quantity response times (e.g. organism with storage effects

that last months but have generation times scales of a year or two),

then a two dimensional description is needed to understand the

role that quality may play in shaping the interactions between

consumer and underlying resource populations.

A biomass density currency is more generally applicable than a

numerical currency in plants and other organisms where

individuals are either not distinct or vary enormously in size and

the complexity of size class enumeration is best avoided.

Nevertheless, the size structure of the population itself affects the

intrinsic growth potential and decay rates of biomass because of

the allometric scaling of metabolic processes [26,43]. Representing

size, stage or age structure directly, however, leads to models that

can become rather complex in multispecies settings, particularly if

they are continuous-time integro–differential [44] or partial-

differential [45] equation models; although it may be necessary

to know details of size or age-class structure in systems where

predation (or parasitism) is size or age-class specific [7,18]. The

addition of a single quality variable that represents the changing

metabolic action potential inherent in an aggregate biomass

measure of the population provides a next level of description. It

both is a surrogate for size-distribution effects in those populations

where the size distribution changes in a smooth or predictable way

throughout a seasonal cycle, and it provides a handle for modeling

the response of the population to changes in resource abundance.

Finally, a biomass currency is more broadly encompassing than

one based on energy flow (e.g. [46,47]) because biomass includes

not only energy, but also mineral and other nutrients needed in

some balanced proportions for growth [48], which can be

captured at an aggregated level through a concept of average

population quality.

In the rest of this paper we formulate our two-state Q-Q

approach as a natural extension of the metaphysiological paradigm

[21,22,31,38] outlined in the Methods Section at the end of the

paper. We then use our Q-Q model to explore aspects of consumer-

resource interaction dynamics that cannot be obtained using a one-

state metaphysiological approach to modeling each population. In

particular, we focus on the role of the extracted-resource allocation

function to quantity versus quality in both constant and switching

modes in stabilizing consumer-resource interactions. Most impor-

tantly we demonstrate that an allocation function, appropriately

switching between increasing the abundance versus elevating the

average quality of the consumer population can greatly dampen

oscillations in consumer abundance that would otherwise be driven

by strong seasonal oscillations in the abundance and average quality

of the underlying resource populations.

Results

The development of the model this section extends the

metaphysiological Eqs. 4–9 presented in the Methods Section,

using notation summarized in Table 1.

A Two-State Q-Q Model with Specified Resources
We begin by considering the growth of a consumer population

when resources behave as an aggregated external input R(t) whose

dynamics are independent of the consumer in question. Clearly

this is rarely the case, except for plants with a substantial

ungrazable biomass component (e.g. underground) or filter feeders

in fast flowing streams. It may also be reasonable to ignore

coupling consumers back to resources when considering, say, the

intra-seasonal dynamics of herbivore quantity and quality

variables (i.e. the units of time are days or weeks and the model

applies for no more than a couple of months), with feedback

coming only when modeling at longer time scales (e.g. seasons or

years). Also a particular consumer may only be weakly coupled to

a particular resource if it is but one of many consumers on that

resource and the consumer itself consumes several different

resources. In this case, we may we want to investigate the

dynamics of a particular consumer, when the influence of the rest

of the food web is characterized in terms of time varying inputs of

resource quantity R(t) and quality QR(t) variables into the equations

describing dynamic changes in the consumer quantity X(t) and

quality QX(t) variables.

To keep our formulation general, we consider quality to be an

index rather than a material measure. For example, if quality

relates to optimum storage levels (we mention optimum rather

than maximum since it may be that an excess of storage tissue can

reduce quality, as is the case of obesity in humans) then it is not the

biomass of the storage tissue itself that is the quality variable,

because this storage biomass would be included the total biomass

quantity variable, but some deviation of storage from the optimum

level. Once quality is an index then, without loss of generality, we

can constrain it to vary between 0 and 1 and calibrate it so that the

growth rate in the abundance of a particular population is

maximized when quality is 1 and minimized (i.e. largest negative

rate) when quality is 0.

As in [15], we formulate our equations in terms of the

logarithmically transformed variables

x(t)~lnX (t)[
1

X

dX

dt
:

dx

dt
(forX=0) and q(t) ~ ln Qx(t)

which implies x(t) ranges over (2‘,‘) and q(t)#0 for all t$0.

Q-Q Consumer-Resource Dynamics
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In formulating our metaphysiological growth Eq. 5 for a

population X consuming a resource R without any consideration

for the quality of the resource or consumer, we introduced a

conversion parameter k, a basal metabolism parameter m, a per-

capita feeding rate f(R,X)R, a decay rate h that includes extrinsic

losses from senescence and disease, as well as an extraction rate e
on our consumer population X. Clearly the quality of both the

resource and consumer populations will affect these rates in one

way or another.

Perhaps the most obvious effects are that the conversion rate

k.0 should be partitioned into a proportion uM[0,1] that is

allocated to increasing abundance and a proportion (1-u) that is

allocated to improving the average quality independent of effects

on abundance, and also that the decay rate h.0 should be a

decreasing function of the consumer quality variable q(t). Effects on

feeding rates and basal metabolism are likely to be smaller and

more complicated (e.g. through size-scaling of metabolic rates).

Effects of quality on extraction rate could be large but the

direction of the influence (elevating versus depressing quality)

could go either way. For example, herbivores may preferentially

select relatively high-quality herbage while predators may favor

relatively low-quality prey in cases where diminished quality of

prey increases their vulnerability because they are weak or sickly.

Thus in our formulation, we focus only on the first two effects,

leaving the more subtle effects for future consideration.

In formulating the model we assume that under equilibrium

conditions an optimal allocation set point v exists and that as the

optimal allocation u*(t) deviates around v the allocation process

loses some conversion efficiency. This assumption implies that

we need to replace k with an appropriate function such as

k sech w: u(t){vÞð Þð Þ, where we remind ourselves that the

hyperbolic secant function sech(y) has a maximum value of 1 at

y = 0 and drops off symmetrically on either side of 0. Thus w in the

expression k sech w: u(t){vÞð Þð Þ is a scaling factor that controls

how rapidly the optimal conversion efficiency k drops off with size

of the deviations u(t)-v.

In terms of our second major effect—that is, the decay rate h is

a decreasing function of transformed quality q(t)—we simply posit

the simplest possible relationship h~aq(t) for a senescence rate

scaling parameter a$0, where we note that h#0 because q(t)#0

for all t$0. This relationship implies that all individuals are dead

by the time their quality index Q(t) has plummeted to 0, which

happens as q(t)R-‘. The constant a$0 itself can be estimated once

we decide how to measure the quality of the population in

question or can be fitted based on rates of death in starvation

studies, such as the hydra experiments of Lawrence Slobokin (as

reported in [19]). In this latter case the quality of hydra relates to

its energy content and the presence of symbiotic autotrophic algae

able to provide additional energy over time. In the case of plant

parts being consumed as a resource, for example, quality may be

measured in terms of the amount of indigestible fiber or tannin

contents in leaves that are mounting a defense response to

herbivory (e.g. as in larch budmoth feeding on Engandine Valley

larch: see [49]). In this case, quality Q can be scaled so that 1

corresponds to the minimum and 0 to the maximum possible levels

of such defensive compounds and structures in consumed plant

parts.

Assuming the consumer population is itself not exploited by

other populations, then from Eqs. 5 and 10, with the function

I(x,u,v) defined below, the consumer’s quantitative dynamic

equation is

dx

dt
~ u(t) I (x,u,v) { m zaq ð11Þ

where from Eq. 6 it follows after setting r = R/b (assuming R

constant) and k = Kc that

I(x,u,v)~sech w(u{v)ð Þ kdpk

pkzkzeyx
ð12Þ

In deriving the companion equation for the quality variable q(t),

we assume that the rate of increase in quality is proportional to the

converted resource intake rate I(x,u,v). This proportionality,

however, is influenced by the three factors: a general rate constant

a.0, a factor -q(t) that ensures q(t),0 cannot rise beyond 0 but

rather approaches 0 asymptotically (the maximum value q can take

is 0, which corresponds to Q = 1), and a factor 1-u(t) representing

the proportion of resources allocated to increasing quality rather

than abundance. Thus the overall rate of increase in quality,

before accounting for changes in quality due to removal of

individuals through the processes of extraction and senescence, is

a(-q)(1-u)I(x,u,v). The rate of change of q(t) is also influenced by the

Table 1. Variables and selected functions and symbols used
in models.

Symbol Description

Units or
transformation
(Eqs.#)

Range of
values

t independent
variable

months or
arbitrary time

[0,‘)

X(t) consumer pop.
abundance

biomass
(density) (5,19)

[0,‘)

R(t) resource pop.
abundance

varies (7,17) [0,‘)

QX(t) avg. quality of
consumers

varies (20) [0,1]

QR(t) avg. quality of
resources

varies (18) [0,1]

x(t) log population
abundance

x(t) = ln X(t) (11) (2‘,‘)

q(t) log population
quality

q(t) = ln Q(t) (13) (2‘,0]

f(R,X) extraction function R per (X6R6t) (6) [0,d]

g(R,X) per-capita
growth rate

g(R,X) =
kf(R,X)R – m (4)

[–m,kd–m]

eR~f R,Xð ÞX consumer
extraction rate

R per (R6t) (9) [0,‘)

I(x,u,v), I(R) total growth rate converted R
per (R6t) (12, 17)

[0,kd]

~hhX (t) extrinsic decay rate 1/time (8) [0,‘)

u(t) extraction
allocation prop.

0##,1 (11–13) 0.5 (0–1)

u* = v* optimal singular
allocation

0##,1 (15) 0.5 (0–1)

J(u,v) optimization
criterion

biomass (14) [0,‘)

�XX ,sð Þ mean and standard
deviation of X(t)

biomass (density) [0,‘)

k(QR)~lQR
1=(1zcR ) conversion efficiency # (12) (0,1)

r = R/b const. resource
background

varies (6, 12), [0,‘)

doi:10.1371/journal.pone.0014539.t001
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two biomass loss process: intrinsic losses due to metabolism at the

rate m and extrinsic losses to senescence and disease at the rate

h = -aq. If we assume that metabolism preferentially draws upon

higher-than-average quality biomass (because these contain the

greatest concentration of energy or nutrients per unit biomass)

with an associated bias c.0 per unit metabolism loss rate m, or that

senescence preferentially removes lower-than-average quality

individuals or ramets from the population with an associated bias

rate b.0 per unit senescence rate h = 2aq, then the simplest

model that accounts for this is

dq

dt
~{aq 1{u(t)ð ÞI(x,u,v){cm{baq ð13Þ

Note that since q(t),0, the term -baq (t) is positive and hence causes

quality to increase, unlike the term -cm which causes quality to decrease.

Eqs. 11–13 may look like they defy Einstein’s dictum for

simplicity, but they really are simple given that they include the

bare minimum needed to account for the processes of: 1.) resource

extraction with resource density and intraspecific-density effects,

2.) evolutionarily adapted optimal resource quality-dependent

conversion of resource biomass into population biomass, 3.) the

consumer’s basal metabolism, 4.) consumer population quality-

dependent decay from senescence and disease-related deaths (note

that the process of predation on the consumer population has not

yet been included in this formulation), 5.) the effects of consumer

quality itself on its own population growth and decay processes,

and 6.) allocation of extracted resources by the consumer to

increasing its abundance versus elevating its quality.

With all these processes are included, the population model

represented by Eqs. 11–13 has only 11 parameters, several of

which in well-studied systems including microcosms [50] can be

independently estimated (e.g. m, d, m, and m), with the rest

estimated by fitting solution trajectories to population level data.

Optimal Resource Allocation to Abundance versus
Quality

The method of ‘Adaptive Dynamics’ has been developed to

assess the equilibrium value (evolutionarily stable strategy) of

continuous traits in populations evolving under natural selection

that are homogeneous across individuals apart from the values of

the traits under selection [51,52]. These methods, however, are

based on maximizing the per-capita growth rate
1

x

dx

dt
(cf. Eq. 11).

In our case, since quality q is a feedback that influences the per-

capita growth rate, and resource allocation is a strategy that affects

both the abundance and quality variables x and q, with the

dynamics of q itself dependent on the value of x, the method of

Adaptive Dynamics cannot be applied directly: a numerical

solution is first required that integrates the equations in x and q (i.e.

Eqs. 11 and 12) to be able to evaluate how they impact each

other’s rates of change. Alternatively an invasion exponent method

needs to be applied that accounts for quality-dependent variation

in vital rates using evolutionary entropy concepts [53].

Also, as developed more fully below, the most applicable cases

arise when the system is subject to seasonal drivers and the optimal

strategy involves switching between allocating resources to quality

or quantity at different times in the seasonal cycle. In this case,

although it may be theoretically possible to switch between u = 0

and u = 1, physiology will constrain u to switch between umin.0

and umax,1, where the values of umin and umax are species

dependent. Since in this case no equilibrium solution exists, the

evolutionarily selected solution will be one that maximizes growth

rate integrated over a seasonal cycle or even a full population cycle

if oscillating solutions have periods longer than a single season.

Additionally, in relatively small populations (i.e. populations

containing only hundreds to thousands of individuals), both

demographic and correlated environmental stochasticity play an

important role in determining rates of extinction. In stochastic

systems long-run growth rates are lower than average rates, with

the bias increasing with the level of environmental variation [54].

Finally, regarding the question of extinction rates, metapopulation

structure becomes important, since small local demes experience

extinction at much higher rates than spatially homogeneous

populations. In this case the process of Wilsonian deme selection

[55] may play an important role in the evolution of an allocation

function u(t)M[umin, umax] in individuals that greatly reduces the risk

of extinction of the population over time. The importance of

interdemic, however, may be reduced by that fact that the

individuals most likely to survive extreme events threatening local

population extirpation are those that have allocated sufficient

resources towards improving their quality, since these are the

individuals that become the founders of population recovery. This

issue is complex and will need further investigation.

Assuming some dependence of evolved resource allocation

strategies on selection at the deme level, metapopulation processes

(average size of demes, movement rates among demes) and

resource allocation constraints umin and umax are species dependent.

Thus a general understanding of what resource allocation

strategies we should expect to see in extant populations, without

getting into intricate species specific aspects, can be obtained in the

context of a selection of canonical studies. Here we lay out a series

of such studies starting with a general optimization framework that

provides insight into resource allocation strategies that minimize

the probability of local population extirpation under constant

environmental conditions. Since we are analyzing the problem in a

deterministic framework where extinctions only happen in

declining populations, and we know that probabilities of extinction

on specified time intervals are inversely related to population size,

we consider what strategies maximize the population size.

Formally, this question can be mathematically cast in an

optimization framework by looking for allocation strategies

u(t)M[umin, umax] for all t$0 that come close to maximizing the

value of the integral 1
T

ÐT
0

xdt. We note that this integral becomes

infinitely small (i.e. unbounded below) for any population that goes

extinct at some time te,T, because as t R te, X R 0 which implies

x = ln X R 2‘. This is precisely the property we want under

demic selection where we are interested in solutions that place an

infinite penalty in allowing population extinction to occur. Thus a

first level of understanding can be obtained by solving the

following optimization problem:

max
u(t),v½o,1�

J u(t),vð Þ~ lim
T??

1

T

ðT

0

x(t)dt

2
4

3
5 ð14Þ

subject to the dynamical Eqs. 11–13.

Fortunately this problem is simple enough to be solved

analytically using Pontryagin’s necessary conditions [56]. Specif-

ically, in Appendix S1, we show necessary conditions for u*(t) and

v* to maximize J, as defined in Eq. 14, are involve driving the

population to an equilibrium solution at which the optimal values

are u*(t) = v* for all t.t*, where

v�+~
am a(bzc){amð Þ+(abzam

ffiffiffiffiffiffiffiffiffiffi
acam
p

4aac{(ab{am)2
ð15Þ
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provided umin#v*#umax. We can use Eq. 15 to assess how v*

depends on the various model parameters, although we still need

to establish whether v*+ or v*2 is the solution that maximizes J in

Eq. 14. Since the conditions are necessary, but not sufficient, it is

possible that one of these two candidate solutions might actually

locally minimize J.

Interestingly, v* is independent of the resource extraction

parameters k, d, r, c, and k (i.e. K: recall k = Kc) and also of w and

T, although the latter follows from the fact that we are looking at

equilibrium solutions satisfying u = v. The remaining five param-

eters that Eq. 15 involves are: 1.) The per unit average quality

decay or senescence rate scaling parameter a.0; 2.) the per-capita

metabolic expenditure rate m.0 (from extraction by other species);

3.) the quality improvement factor due to higher-than-average

quality biased metabolism c.0; 4.) the quality degradation factor

due to lower-than-average quality biased senescence b$0; and 5.)

the consumer quality resource intake response rate a$0. Since we

do not know which root, if either, actually maximizes J in Eq. 14,

it makes no sense to explore the dependence of v* on these five

parameters in the absence of further information. For the set of

parameter values (Table 2) that we use as a baseline for the

analysis undertaken through numerical simulations presented in

later sections, Eq. 15 yields the values v*+ = 0.704124 and

v*2 = 0.295876. Our simulations indicate that u* = v*+ = 0.704

(Fig. 1) is indeed the value (to 3 dp in u*) that maximizes J under

equilibrium constraints. The fact that these solutions match

provides mutual co-verification that our analytical and simulation

results have been implemented correctly.

In reality population are never at equilibrium. First, we can

expect stochastic influences to continuously perturb population

size. Second, populations are influenced by seasonal, annual, and

multiyear oscillations in environmental conditions. Third, some

population processes are intrinsically oscillatory through delayed

feedbacks. We explore questions relating to these latter two aspects

in the rest of this paper, leaving an investigation of stochastic

aspects for future studies.

Quality and Oscillations
As reviewed by Turchin [8] investigations into the causes of

oscillations in biological population began with Charles Elton’s

work on fluctuations in the abundance of Norwegian lemming,

Canadian lynx, and British vole populations. The primary causes

are thought to derive from consumer-resource interactions [8]

driven, to some extent, by seasonal cycles; although Ginzburg and

collaborators have argued for the importance of maternal effects in

producing oscillations [9,15,57].

It is a well-known mathematical fact that first-order autonomous

differential equations cannot oscillate. In such equations oscilla-

tions require that explicit time delays [58] be incorporated or that

the equations be elaborated to either a first-order, nonlinear,

discrete-time formulation (i.e. a first-order nonlinear difference

equation—see [59] or [60]) or to a second-order system of

differential equations. Second order systems arise when modeling

consumer-resource interactions (see [8] and the references therein)

or through the incorporation of inertial terms into a Newtonian-

type formulation of population growth ([15,20]). In difference-

Table 2. Parameter values and simulation scenarios.

Param. Role (referring equations) Units* Baseline (& other values used)

r resource maximum growth rate (22) 1/mnth 0.5 (0.18–0.5))

a consumer quality response param. (14) 1/mnth 0.1 (0–10)

dr relative ampl. resource qual. oscillations (24) 0##,0.5 0 (0.4, 0.45)

ds relative amplitude resource quant. oscillations (23) 0###0.5 0 (0.4, 0.45)

d max. resource extraction rate (6) 1/mnth 5 (5.5, 7)

l max. resource conversion rate (21,6) 0###1 0.2

a min. consumer quality decay rate is a/d (11) # 0.1 (0.001)

m consumer metabolic maintenance rate (4,11) 1/mnth 0.05 (0.01)

b resource level at half max extraction rate (6) 1/mnth 30,000

c consumer density-dep. abruptness param. (6) #$1 2

K consumer density-dep. scaling param. (6) biomass 10,000

S0 resource quant. saturation level (23) biomass 106 (26105, 56106)

c = cR = cX metabolism higher-than-avg. qual. bias param. (13, 21) #.0 0.3 (0.6)

b senescence lower-than-avg. qual. bias param. (13) #.0 0.05

v max. allocation efficiency param. (12) 0##,1 0.5

w loss of efficiency when u(t)?v (12) #.0 0 (0–5)

Xswitch threshold switching control (25) biomass 0–30,000

umin lower value switching control (25) 0###1 0–0.5

umax lower value switching control (25) 0###1 0.5-1

R(0) initial quantity of resource biomass 26105 (56105)

X(0) initial quantity of consumer biomass 10,000 (100)

QX(0) initial quality of consumer 0###1 0.45 (0.05)

*mnth = time in months, biomass units are arbitrary,
# = number (either dimensionless or units may be complex to ensure biomass dynamic equations are in units of biomass/m).
doi:10.1371/journal.pone.0014539.t002
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equation formulations we need to take care not to artificially

induce oscillations of spurious period through an arbitrary choice

of step size. Rather, step size should be selected to reflect

generational processes, such as maternal effects, or seasonal

processes (e.g. [61]) to reflect annual cycles in temperature and

precipitation and the impacts these cycles have on the abundance

and quality of biological resources that drive the dynamics of

population exploiting these resources.

An interest in population fluctuations naturally leads to the

question of the extent to which quantity-quality dynamics in-of-

themselves induce oscillations in populations and what the

periodicity of such oscillations would be. Since we know that

seasonality can induce oscillations, as can consumer-resource

interactions, we can only answer this question by separating out

these various causes by considering the inherent ability of our

quantity-quality formulation to induce oscillations in the absence

of seasonal drivers and the coupling of populations to their

resources at a lower trophic levels or their consumers at higher

trophic levels. Thus we address the question in the specific context

of oscillations in Eqs. 11–13 as a function of different parameter

values, noting that the value of r, which we recall is given by

r = R/b (cf. Eq. 6 and 12), represents the underlying, but constant

in this case, resource level that the population extracts for growth

in the abundance measure x and average quality measure q.

Furthermore, since this analysis necessarily assumes that all

parameters are constant (i.e. seasonal drivers and other time-

varying drivers are absent—such models are said to be

autonomous), we assume u(t) is constant and, without loss of

generality, select u = vM(0,1). Further we note that the points 0 and

1 are not included in this range since u = 0 implies q(t)R2‘ and

u = 1 implies x(t)R 2‘ as tR‘. In short, our focus is on the

existence and stability of a finite equilibrium solution x̂x,q̂qð Þ to Eq.

11–13 for constant u.

In Appendix S2, we demonstrate that our Q-Q formulation

does not produce oscillations when the background resources are

fixed. This may seem a surprising result in light of the existence of

well-described maternal effects leading to oscillations. However, in

real populations background resources are never constant, unless

very carefully controlled experimental approaches are taken to

ensure such constancy. Thus, for example, colonies growing in

Petri dishes or populations growing in well-mixed containers draw

down resources if the resources are not replenished through a

constant resource input, such as in the experiment of [62]. The

fact that our Q-Q model does not produce oscillations for

populations embedded in a constant environmental (i.e. resource)

background suggests that in real systems sustained oscillations arise

either from through consumer-resource couplings, of which the

Lotka-Volterra predation model [2,6] is the best known theoretical

example, or through oscillatory forcing by underlying environ-

mental drivers. In practice, of course, we typically see a complex

combination of several consumer-resource interactions mutually

intertwined through generalist feeding patterns and coupled with

environmental forcing at several different frequencies (diurnal,

lunar, seasonal, solar and earth’s orbit and spin-inclination cycles).

It is worth reinforcing here that discrete-time equations cannot

properly account for the effects that fluctuating environmental

drivers have on demographic and ecological process if the cycles

have periods less than size of the time step underpinning the

equations. This statement applies equally if the quality of

individuals is incorporated and that quality again exhibits changes

in values over time scales smaller than the time step used to

formulate the equation (e.g. if quality varies over seasons and the

step size is annual, or if the quality varies across years and the step

size is generational for organisms that live many years).

Differential equation formulations, by virtue of their continuity

in time, avoid the pitfall arising from an inappropriate choice of

model iteration step size, when addressing questions relating to the

biological interpretation of characteristic oscillation frequencies

associated with the model; although it behooves the analyst to

ensure that the algorithms used to simulate the equations are

numerically well-behaved (i.e. converge to the real solution as the

simulation step-size decreases). In our simulations below, we first

investigate how consumer abundance is impacted by the value of

the allocation proportion parameter u(t) when assumed constant

and set to v so that extraction function expressed in Eq. 12 is now

independent of u and v and reduces to

I(x)~
kdpk

pkzkzeyx
ð16Þ

We then consider how this resource extraction allocation

function, switching between growth in consumer abundance

(u(t) = 0) and elevation of quality (u(t) = 1), can stabilize population

fluctuations, including if the switching is incomplete: i.e. u(t)

switches between umin and umax, where 0vuminvumaxv1.

Consumer-Resource Interactions
To obtain new insights into factors influencing the period and

amplitude of oscillating populations, we begin by extending the

metaphysiological consumer-resource model, represented by Eqs.

7, to our Q-Q framework modeled by Eqs. 11–13. After that we

explore the oscillatory behavior of a simplified version of this four-

dimensional model under the assumption of seasonal drivers

underlying resource abundance and quality.

In our metaphysiological Q-Q framework, denoting the actual

(i.e. not logarithmic) abundance of the resource by R and that of

the consumer by X, and their untransformed quality indices by QR

and QX respectively, the interactions are described by the four

equations (Table 1)

1

R

dr

dt
~urI(R){f (R,X )XzaRlnQR ð17Þ

Figure 1. Consumer equilibrium abundance X̂X (scale 1 = 30,000
biomass units) is plotted for the baseline set of parameters
(Table 2) as function of u (the proportion of extracted
resources extracted that are invested in increasing abundance
versus the proportion 1-u invested in increasing consumer
quality QX). Nonzero equilibrium abundance values only occur for
u$0.11, and a maximum equilibrium abundance of 28,638 biomass
units occurs at u = 0.704.
doi:10.1371/journal.pone.0014539.g001
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1

QR

dQR

dt
~{aRlnQR(1{uR)IR(R)

{cRf (R,X )X{bRaRlnQR

ð18Þ

1

X

dX

dt
~uX kX (QR)f (R,X )R{mX zaX lnQX ð19Þ

1

QX

dQX

dt
~{aX lnQX (1{uX )kX (QR)f (R,X )R{

cX mX {bX aX lnQX

ð20Þ

where I(R) expressed in Eq. 16 is the resource population’s per-

capita extraction rate (R is a photon or nutrient flux if the resource

is a plant or is a plant population if the resource is a herbivore),

f(X,R) expressed in Eq. 6 is the consumer population’s per-capita

per-unit resource feeding-rate function, and mX is the rate at which

exploiters expend biomass to meet metabolic needs.

In our formulation of Eqs. 11–13, we mentioned that the

conversion rate k.0 should be a decreasing function of resource

quality QR in the case of herbivory since, for example, lower

quality plants are those that are either defended by chemical

compounds that the consumer needs to detoxify or through

inclusion of indigestible fiber in leaves and other grazed parts of

the plant. A relatively simple function that accounts for the bias

that extracted resources will have a higher-than-average quality

than the resource population itself, and is dependent on the

senescence rate bias parameter cR.0, is

k(QR)~lQ
1=(1zcR)

R ð21Þ

where 0,l,1. To verify that this form has the desired properties

we note that: i.) for any cR.0 the resource quality has at its

theoretical (i.e. not realized in practice) maximum k(1) = l when

QR = 1 and its theoretical minimum k(0) = 0 when QR = 0; ii.) the

function is linear in QR for cR = 0 (i.e. when there is no bias in the

senescence rate as function of quality) and iii.) the function is

increasingly super-linear in cR—i.e. lQ
1=(1zcR)

R wlQ
1=(1zcR)

R for

any 0,QR,1 whenever c1.c2—so that the quality extracted is

increasingly higher than average with increasing c.

Seasonal Drivers
As a first step to understanding the dynamics of a consumer

exploiting a resource that varies seasonally in both abundance and

quality, we simplify Eqs. 17 and 18 as follows. First, we assume the

resource grows logistically, driven by a seasonally varying carrying

capacity S(t)—i.e. in Eq. 17 we make the substitution

uRI(R){f (R,X )zaRlnQR

:r 1{
R

S(t)

� �
[

dR

dt
~rR 1{

R

S(t)

� � ð22Þ

where, assuming the units of time are months, we set

S tð Þ~S0 0:5zdS sin 2pt=12ð Þð Þ: ð23Þ

This latter form implies that the parameter 0#dR,0.5 determines

the amplitude of S(t).0 around its average value S0. Second, we

remove Eq. 18 for the quality of the resource and replace it with

the periodic input function

QR tð Þ~0:5zdR sin 2pt=12ð Þ, ð24Þ

where 0#dR#0.5 ensures that 0#QX#1, and has an average value

of 0.5.

In this case Eqs. 17–20 reduce to a system of three equations

containing the following time constants, characterizing five key

processes that influence the period and amplitude of oscillations

when they emerge as a result of the consumer-resource interaction

process:

1. A maximum resource per-capita growth rate r: this rate occurs

at densities R(t) well below the carrying capacity S(t), with a

concomitant per-capita decline rate of negative r that occurs at

double the carrying capacity density (this can arise if the

carrying capacity S(t) drops considerably through its seasonal

cycle).

2. A maximum resource extraction rate d: this rate is reduced by

the resource quality variable QR(t), which we expect to average

around 0.5 in our simulations, and is also reduced by a

normalized functional response to resource and consumer

densities F = f(R,X)R/d, which satisfies 0#F,1 (F is 1 when

resources are large and consumers are not too large, and close

to 0 when resources are low or consumer-to-resource density

ratio is relatively large).

3. A maximum consumer rate of increase ld: (cf. Eq. 21) this rate

is l times the resource extraction rate and so is also modified by

the current value of F.

4. A maximum consumer rate of decay (m = m-aln QX): although

this rate may typically be in the range [m,m+10a] (note: ln

QX,0), it can rise without bound if consumer quality

plummets. In doing so, it will then rapidly drive the population

to 0 as individuals become starved of resources.

5. A consumer quality response rate a: this rate scales the response

of the consumer quality variable to changes in the resource

extraction rate, but is moderated by how close the quality

variable is to 1 with the rate of approach to 1 declining linearly

with distance from 1. It also scales the rate of increase in quality

due to preferential removal of low quality individuals during

the decay process, with a scaling constant b determining the

extent to which decay acts differentially on low quality

individuals. Also together with a second scaling constant c,

the parameter a determines the maximum rate at which quality

declines when at its maximum value of QX = 1.

In our analysis we select a baseline set of population parameter

values (Table 2) and then explore the impact of introducing

seasonal drivers (by making parameters dS and dR in Eqs. 23 and

24 non-zero), changing the response-time constants of the resource

(contrasting values of the parameter r) and consumer quality

(contrasting values of the parameter a) equations, as well as

perturbing the maximum value of the resource extraction rate

(contrasting values of the parameter d). Most importantly,

however, we also explore the effects of different investment rates

u in the relative proportion of resources that are allocated to

increasing population abundance versus elevating the average

quality of the population under the simplifying assumption that

u(t) = v, where as discussed earlier (cf. Eq. 12) v is assumed to be the

most physiologically efficient value of u over the long term. In a

final simulation, we explore aspects of allowing u(t) to respond to

seasonal changes in population abundance.

Our analysis is conducted through numerical simulations used

to explore contrasting values in the above rate parameters on

consumer-resource dynamics in the context of population

oscillations and possible population collapse, as well as the extent

to which the period of oscillation is intrinsic to the system or

influenced by seasonality in the resource carrying capacity S(t) and
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resource quality QR(t). For generality and simplicity, we will not

specify the units of biomass other than to assume the units of X(t)

and R(t) are in the same units, noting that the parameters K and S0

scale the equilibrium levels of the consumer and resource

populations respectively in these same units. All rate parameters

are in units of inverse months (1/mnth) so that if a rate parameter

has a value of 0.5, then after 1 month it will have caused the

population to increase to approximately e0.5 = 1.65 (165%) or

decrease to approximately e20.5 = 0.61 (61%). Conversely, if an

individual consumes 5% of its body weight per day, which is 150%

of its body weight per month, then the per-capita instantaneous

rate of resource consumption is ln(1.5) = 0.41. The doubling

(parameters associated with increases) or halving (parameters

associated with decreases) time of any of our variables under the

influence of a parameter p is calculated using the equation t = ln2/

p, which is a convenient way to characterize the response time of a

rate parameter.

Numerical simulation of Eqs. 19–24, using the baseline set of

parameter values, reveal that in a constant resource environment

(i.e. dR = 0.0 and dS = 0.0) population abundance equilibrates for

all constant values of the extraction rate allocation proportion u

within the range [0,1] (Fig. 1; a typical trajectory is given in

Fig. 2A). The equilibrium values X̂Xu so obtained, however, are

only non-zero (in effect exceed the cutoff threshold of 1) for

u.0.11, achieving a maximum value of X̂Xu~28,638 at u = 0.704.

As we previously mentioned, this is the value obtained by

substituting the model parameter values in the expression given

by Eq. 15, even though this equation was derived for the two-

dimensional system modeled by Eqs. 11–13, while the values in

Fig. 1 are derived from numerically simulating the long-term

behavior of the higher dimensional model represented by Eqs. 19–

24. The reason for the equivalence is that the optimal investment

proportion given by Eq. 15 does not depend on parameters in the

extraction function Eq. 12, so that in the absence of seasonal

drivers in Eq. 22–24 (i.e. dR = 0.0 and dS = 0.0) the equilibrium

consumer abundance levels in both systems, though different

because the resource levels supporting the consumers in the two

models are different, will be maximized by the same value v*+

whenever the remaining parameters a, b, c, a and m are the same

in both models. Again we stress, because the issue of verification is

so central to the confidence we can place in our numerical results,

that the agreement of values computed in two completely

independent ways provides mutual co-verification for the math-

ematical correctness of our analytical expressions and for the

computer code used to generate our numerical results.

The approach of both the resource and consumer solutions to

equilibrium values (Fig. 2A), used to produce Fig. 1, is lost once

environmental forcing is included in the resource equations. We

now consider the impact of seasonal forcing on the abundance of

the consumer and its feedback on the oscillating resources. First we

consider the case when only the quality of the resource oscillates

over a 9-fold range of values (Fig. 2B. dR = 0.45, dS = 0.0). In this

case the behavior is rather regular with the seasonal forcing of

resource quality producing relatively small oscillations on the

abundance of the consumer that then feedback to produce even

smaller oscillations on the abundance of the resource. When the

resource abundance itself is made to oscillate over a 9-fold range

around its baseline value while resource quality is kept at its

baseline value, then the abundance of the consumer begins to

show strong oscillations that are amplified through feedback with a

significant drop in the average consumer and resource values over

the 25-year (300-month) simulation interval (Fig. 2C. dR = 0.0,

dS = 0.45). The frequency of these oscillations is approximately 1/5

per year (implying a period of 5 years). If a 9-fold resource quality

oscillation is now imposed on top of the 9-fold resource abundance

oscillations, the 1/5 frequency and large amplitude of the

consumer oscillations dominate, but now with a small amplitude

wave of frequency 1—i.e. the annual frequency of the resource

quality oscillations—imprinted upon it (Fig. 2D dR = 0.45,

dS = 0.45).

The size of the oscillations, the shape of the transients, and even

the frequency of the dominant oscillations appearing in Fig. 2 are

rather sensitive to the different relative values of the time constants

associated with the five key processes listed above (Fig. 2E–F). For

example, in the absence of seasonal forcing when the maximum

extraction rate d is increased from 5 to 5.5, the equilibrium is lost

and a cycle of period 8-years emerges (Fig. 2E, d = 5.5, dR = 0.0,

dS = 0.0). Interestingly, if seasonal forcing is now reintroduced

(Fig. 2F, d = 5.5, dR = 0.45, dS = 0.45) the period 8 oscillations are

lost and the period 5 oscillations return, indicating how the

emergent oscillations have periods that are nonlinearly dependent

on underlying population process rates and seasonal drivers.

Periods and Relative Rates
By changing the relative values of the different rate constants

listed above, all kinds of behavior can be induced in the

abundance of consumers, from extinction, through the existence

of a positive stable equilibrium, to stable oscillations with a range

of periods. As observed, though, by Murdoch et al. [63] and

elucidated by Ginzburg and Colyvan [15], consumers specializing

on a single resource are unlikely to oscillate with periods less than

6, unless driven by seasonal drivers, in which case the oscillations

may collapse to period 1, the period of the seasonal cycle. Our

model exhibits this same behavior (Table 3), as we vary the

resource response rate parameter r and the consumer quality

response rate parameter a, with the remaining parameters at their

Figure 2. Consumer abundance X(t) (black: scale 1 = 40,000
biomass units) and resource abundance R(t) (red: scale
1 = 500,000 units) are plotted over 300 months for the set of
baseline parameters listed in Table 1 for the cases of periodic
environmental forcing: A. no forcing (dR = 0.0, dS = 0.0); B. resource
quality forcing (dR = 0.45, dS = 0.0); C. resource abundance forcing S(t)
(dR = 0.0, dS = 0.45); D. resource quality and abundance forcing
(dR = 0.45, dS = 0.45); E. parameters as in A. except d has been increased
from 5 to 5.5; F. parameters as in E. except seasonal forcing (dR = 0.45,
dS = 0.45) has been added.
doi:10.1371/journal.pone.0014539.g002
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baseline values (Table 2) in both constant (dR = 0.0, dS = 0.0) and

seasonally forced (dR = 0.45, dS = 0.45) backgrounds. In the

constant background, the consumer-resource interaction supports

a stable equilibrium (Fig. 2A) for the baseline parameters, but as

the resource response rate decreases (Table 3A, Case 1) from

r = 0.5 in steps of 0.01, oscillations set in at r = 0.48 with the rather

long period of approximately 18 years. This drops to a minimum

period of around 8 years for r around 0.40 to 0.35 and starts to

increase up to a period of approximately 12 years at r = 0.21. For

r#2.0 the consumer population goes extinct. If seasonal forcing is

added (Table 3A, Case 2) then the period is smallest at just under 5

years for the fastest resource response rate considered (r = 0.5)

rising to around 11 years at r = 0.19, but going extinct for r#0.18.

The question of how the periods of oscillations arising from

consumer-resource interactions are influenced by various rate

constants in the model can certainly be addressed using current

Lotka-Volterra-like and other first-order species model paradigms,

including discrete-time paradigms; e.g. as discussed by Murdoch

et al. [7]. However, the question of how the average quality of a

population will impact such oscillations cannot even be asked

using these approaches, but requires a Q-Q paradigm of the type

formulated here. We addressed this question using Eqs. 19–24

(Table 3B). Our analysis indicates that when the quality response

rate to resource intake is 0, the population goes extinct because

quality asymptotically approaches 0. For non-zero quality

response rates a.0, relatively small (i.e. slow) response times have

little effect and abundance oscillates with its seasonal drivers—i.e.

the period is 1. As the quality variable comes into play with

increasing responses times a, so the period begins to increase. For

the case r = 0.5 (Table 3B, Case 1) the period jumps from 1 to 4.3

at a = 0.06 and then increase steadily to cap out at around 8 years.

For the case r = 0.3 (Table 3B, Case 2) the period jumps from 1 to

5.6 at a = 0.03 and then steadily increases to cap out at around 10

years, though unlike the case r = 0.5 the consumer goes extinct for

a$0.77 (not shown).

Allocation Switching and Stabilization
The fact that quality has an influence on the period of

oscillations that arise from consumer-resource interactions raises

the question of the extent to which individuals can dampen or alter

the period of consumer-resource oscillations by manipulating the

proportion of resources over time that they allocate to growth in

abundance versus elevating the average quality in the population.

The most extreme version of this type of manipulation is to switch

back and forth between u(t) = 0 (all extracted resources allocated to

elevating the average quality of individuals in the population) and

u(t) = 1 (all extracted resources allocated to increasing population

abundance). In the context of maximizing J defined in Eq. 14,

solutions that switch between lower and upper bounds are called

‘‘bang-bang’’ and are known to be optimal when the problem is

linear in the ‘‘control’’ function u(t), though so-called singular

control components, where u(t) = v and v is a constant that lies

between 0 and 1, also play a role in the optimal solution over a

central segment of the interval [0,T] [56].

For systems that are not fully described by the equations used to

model their dynamics (in our case Eqs 17–20 are only an

approximate description of the processes driving change in the

variables of interest) and for systems that are subject to stochastic

perturbations, an ‘‘open-loop solution’’ to a formulated determin-

istic maximization problem, as in encapsulated in our Eq. 14, is

moot. More appropriate are ‘‘feedback or adaptive solutions’’ that

self-correct when the model strays from reality: such solutions posit

explicit explanations of how organisms have evolved to respond to

change that is not completely predictable [64]. Thus rather than

solve for the optimal solution that corresponds to our specific set of

baseline parameters (which themselves are of no special signifi-

cance), we explore how feedback rules based on the state of the

variables perform in stabilizing population fluctuations. As

recently hypothesized and demonstrated by Ginzburg et al. (in

review) in the context of discrete time models, populations appear

to have evolved to avoid the large fluctuations, because

populations are most vulnerable to extinction every time they

pass through a trough of a large amplitude oscillation.

The first feedback rule we investigate, motivated by the

structure of optimal solutions to Eq. 14, is to select a critical

abundance level Xswitch and define:

u~umin whenever X tð ÞƒXswitch else u~umax: ð25Þ

If Xswitch is too large then control is always at its maximum value;

as in the case of the baseline values, except d = 7, under seasonal

forcing (dR = 0.45, dS = 0.45) with umin = 0 and umin = 1 and

Xswitch.29,300 (Fig. 3A). As Xswitch is reduced for the baseline

Table 3. Period of consumer-resource oscillations for
selected values of the resource response rate r (A.) and the
consumer quality response rate a (B.), with the remaining
parameters at their baseline values (Table 2) except as noted.

Parameter Case 1 Case 2

A.: r No seasonality
dR = 0 and dS = 0

Seasonal Forcing
dR = 0.45 and dS = 0.45

0.5* Equilibrium Period ,4.8

0.49 Equilibrium Period ,4.9

0.48 Period ,18 Period ,4.9

0.47 Period ,11 Period ,5.0

0.45 Period ,9 Period ,5.1

0.40 Period ,8 Period ,5.7

0.35 Period ,8 Period ,6.2

0.30 Period ,9 Period ,7.2

0.25 Period ,10 Period ,8.3

0.21 Period ,12 Period ,10

0.20 Extinction Period ,10

0.19 Extinction Period ,11

0.18 Extinction Extinction

B.: a Baseline response r = 0.5
dR = 0.45 and dS = 0.45

Rapid response r = 0.3
dR = 0.45 and dS = 0.45

0.00 Extinction Extinction

0.02 Period 1 Period 1

0.03 Period 1 Period ,5.6

0.05 Period 1 Period ,6.3

0.06 Period ,4.3 Period ,6.7

0.08 Period ,4.7 Period ,6.9

0.10 Period ,5.0 Period ,7.1

0.15 Period ,5.1 Period ,7.9

0.25 Period ,5.4 Period ,8.7

0.50 Period ,6.0 Period ,9.5

1.00 Period ,6.8 Extinction

10.0 Period ,7.2 Extinction

*solution is illustrated in Fig. 2A.
doi:10.1371/journal.pone.0014539.t003
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set of parameters, control increasingly clips the peaks of the

oscillations (Figs. 3B and 3C), thereby reducing the troughs until

the consumer population becomes relatively steady around

Xswitch = 4,000 (Fig. 3D). The control, however, chatters on-and-

off at relatively high frequencies for most of the year, but this can

be reduced to chattering for only part of the year if the allocation

switching is not complete, but set to umin = 0.1 and umin = 0.9

(Fig. 3E). If the allocation range is further reduced to to umin = 0.3

and umax = 0.7 (Fig. 3F), then switching only occurs once to umax

and once to umin each year, but the oscillations in the consumer

population again become relatively large.

Graphs of the mean and standard deviation of fluctuations in

consumer population abundance over a 20-year interval (Fig. 4:

years 80–100 are selected from the simulations to avoid transients

peculiar to the initial conditions) are plotted over ranges of values

for the allocation parameter u (Figs. 4A–B), for the threshold

parameter Xswitch (Figs. 4C–D), and the loss of efficiency w in the

deviation of the allocation u from the optimal value v = 0.70

(rounded to 2 d.p.) (Figs. 4E–F). As the range Du = umax- umin

increases (cf. Eq. 25), the mean population level �XX remains

relatively constant while the standard deviation s steadily

decreases over most of the range (Figs. 4A–B), although small

regions do exhibit somewhat irregular behavior due to the highly

nonlinear nature of the model. Also in the case Xswitch = 4,000, a

favorable region does occur around Du = 0.35 where the

abundance is about 20% higher than for most other values of u

and the standard deviation takes a noticeable drop down to close

to zero for Du$0.35 showing the allocation switching rule Eq. 25 is

very effective at stabilizing the otherwise strongly oscillatory

consumer-resource interaction (cf. Fig. 3A versus 3D).

If Xswitch is too large though, e.g. Xswitch = 6,000, then

stabilization is only partial and the standard deviation s remains

relatively high over for Du at its most extreme (i.e. over the range

0.4 to 0.5). This is amply demonstrated in Figs. 4C–D where we

see that although �XX increases with Xswitch the standard deviation s
increases much faster once Xswitch gets beyond 4,900, at which

point allocation switching looses its ability to completely dampen

the oscillations (note, in Fig. 4C, that s is almost zero and then

takes a jump around Xswitch = 4,900). The graph in Fig. 4C.

indicates a clear advantage for the combination Xswitch = 4,900 and

Du$0.5 in maximizing the average abundance while completing

dampening the oscillations for the baseline set of parameters

(though with d = 7 rather than 5).

The graphs in which we vary the efficiency parameter w

(Figs. 4E–F) indicate that a switching allocation strategy remains

very effective even when there is a cost w.0 to deviating from the

physiologically optimal allocation point of v = 0.7 for our baseline

parameters (Fig. 1). The stabilization remains relatively insensitive

to w for the case of extreme switching (Fig. 4E Du = 0.5) (with

mean abundance decreasing only slightly and the standard

deviation in this abundance increasing only slightly) until w hits

a threshold at w = 3.4, beyond which the consumer population

collapses because it cannot bear the level of cost associated with

inefficiencies deviating from the physiologically optimal allocation

point v = 0.7. Some unexpected happens, however, for the case

Du = 0.3 (Fig. 4F). In this case consumer abundance is maximized,

with a corresponding relatively low associated standard deviation,

when the population efficiency parameter has the nonzero value

w = 2.46, implying, as we discuss further below, that some cost to

allocation switching is beneficial to the population as a whole.

Allocation Modes and Growth Patterns
Seasonal growth patterns in which organisms allocate resources

to different organ systems—e.g. vegetative structures roots and

tubers, or reproductive structures—are well known in plants and

animals [65,66]. The type of tissue laid down in these different

organ systems can be viewed as representing different intrinsic

quality levels with switches from one growth mode to another

subject to resource-demand versus extracted-supply related

physiological signals [18]. This sort of growth mode switch does

not necessarily require external seasonal signals, but may be linked

to signals generated intrinsically through stresses brought about by

crowding; with this phenomenon being evident across the

organismal spectrum including bacteria, protists, fungi, plants,

invertebrates and vertebrates.

Recently [27] presented their deconstruction of what they refer

to as a typical growth curve of lab-cultured microbial populations.

They identify five to six phases that include (cf. Fig. 1 in [27]): 1.)

Figure 3. The trajectories of consumer abundance X(t) (black: scale 1 = 30,000 units) and quality QX (red: scale 0–1), resource
abundance R (green: scale 1 = 600,000) units) and resource extraction allocation function u(t) (blue: scale 0–1) given by Eq. 25 are
plotted over years 80–100 (to avoid effects of initial conditions) of a simulation driven by strong season fluctuations in resource
carrying capacity and quality (dR = 0.45, dS = 0.45) for the baseline parameters, except here d = 7 and Xswitch varies in steps of 100, for
the following cases, with statistics for X(t) (min, max, mean, square-root of variance) calculated over years 80–100 in parenthesis: A.
umin = 0, umax = 1, Xswitch = 29,300 (Xmin = 410, Xmax = 29292, �XX = 5486, s = 7541); B. umin = 0, umax = 1, Xswitch = 15,000 (Xmin = 295, Xmax = 15054,
�XX = 5035, s = 4990); C. umin = 0, umax = 1, Xswitch = 7,000 (Xmin = 384, Xmax = 7049, �XX = 3881, s = 2520); D. umin = 0, umax = 1, Xswitch = 4,000 (Xmin = 3997,
Xmax = 4038, �XX = 4009, s = 11); E. umin = 0.1, umax = 0.9, Xswitch = 4,000 (Xmin = 3998, Xmax = 4578, �XX = 4225, s = 214); F. umin = 0.3, umax = 0.7,
Xswitch = 4,000 (Xmin = 614, Xmax = 9655, �XX = 4076, s = 2719).
doi:10.1371/journal.pone.0014539.g003
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an initial lag phase in which the culture takes a characteristic ‘‘lag

time’’ to begin growing; 2.) a stronger than exponential phase of

growth (which they call the logarithmic exponential or LogEx

phase); 3.) an exponential phase (which they call the regular

exponential or RegEx phase); 4.) an inhibition phase; 5.) a

stationary phase; and possibly 6.) a decay/decline phase. They

analyze several different classes of models that have been

developed to capture all these different phases and they conclude

that since ‘‘all the theoretical and numerical results presented for

delay growth models are contrary to the experimental evidence

regarding the conditions for the occurrence of a lag phase, we may

conclude that delay effects and the lag are two distinct biological

phenomena.’’ The implication of this is that the lag phenomenon

cannot simply be captured through the inclusion of time delays in

existing growth models but require an additional dimension to the

analysis, such the inclusion of a quality dimension.

These six phases can be captured easily through the allocation

switching logic provided by Eq. 25. In Fig. 5 we illustrate these

phases for the case umin = 0.07, umax = 0.85 and Xswitch = 1000.

Thus, if the quality and abundance are initially low at the start of a

microbial culturing experiment, the population focuses on

increasing its quality, thereby producing a lag phase in its growth

in abundance until the abundance variable crosses a threshold.

Rapid growth is then experienced (LogEx phase), followed by

steady growth (RegEx phase), followed by inhibition and then

stationarity as density dependence sets in. Note that we could have

fashioned the trajectory in Fig. 5 to closely resemble the growth

curve idealized in Fig. 1 of [27] by making the allocation switch

occur over a finite period of time rather than instantaneously,

thereby removing the sharp corner in the abundance trajectory at

the switch. The purpose of Fig. 5, however, is merely to

demonstrate how allocation switching, whether sharp or gradual,

can produce a variety of empirical growth patterns that have been

observed in nature or laboratory cultures. One can imagine even

more complex growth patterns if switching is based on thresholds

in both the quality and abundance rather than just the abundance

alone. Finally, due to a decline in quality over the stationary phase,

a sample from the population depicted in Fig. 5, if now moved to

another culture dish as was done in the experiments described in

[27], will exhibit the same pattern of growth because, in the new

dish, the initial conditions are now once again low quality and low

abundance.

Discussion

Theoretical population ecology during most of the 20th Century

has been developed around an abundance (i.e. quantity) variable

involving numbers of individuals, or number or biomass densities.

Additionally, populations have been structured into age, size or

life-history stage classes ([67,68,69]; also see [7,18,37,70]). This is

not to say that other subfields of ecology such as physiological and

ecosystem ecology have not used other currencies (energy, kinds of

molecules, nutrient classes) to discuss individual or community

level dynamic processes [71,72]. In consumer-resource or food

web abundance (biomass/numbers-density) dynamics, however,

the importance of a second-order description when trying to

explain the source of oscillations that are observed in such systems

has been largely neglected (to whit see [8]), with the exception

being the work of Ginzburg and collaborators [15,19] and some

efforts to include storage as an explicit process [32].

Figure 4. Consumer mean biomass density �XX (black: scale
1 = 6,000 units) and its standard deviation s (red: scale
1 = 6,000 units) averaged over a 1000 year period for the
allocation parameter u switching between umin = 0.5-Du
(X#Xswitch) and umin = 0.5+Du (X.Xswitch) with the conversion
deviation efficiency cost parameter w allowed to vary as
indicated. The rest of the parameters are baseline values (Table 2)
except that d = 7, dR = 0.45 and dS = 0.45, with values for Xswitch, Du, and
w: A. & B. Du ranging from 0 to 0.5 in steps of 0.001, v = 0.5; C. & D.
Xswitch ranging from 0 to 32000, in steps of 50; E. & F. w ranging from 0
to 5 in steps of 0.01 (cf. individual trajectories used to obtain the mean
and standard deviation for selected values of Du and Xswitch in Fig. 3,
but averaged here over 1000 years to minimize the impact of the initial
conditions).
doi:10.1371/journal.pone.0014539.g004

Figure 5. The trajectories of population (consumer) abundance
X(t) (black: scale 1 = 30,000 units; X(0) = 100) and quality QX

(red: scale 0–1; QX(0) = 0.05), and the resource extraction
allocation function u(t) (green: scale 0–1) satisfying Eq. 25,
with umin = 0.07, umax = 0.85 and Xswitch = 1000 are plotted over
600 units of time (no longer interpreted as months) under the
constant resource conditions R(t) = 500,000 (instead of Eqs. 17
and 22) and QR(t) = 0.5 for tM[0,500], for the remaining baseline
parameters as in Table 1 with the exceptions that here
a = 0.001, m = 0.01, c = 0.6, w = 1.
doi:10.1371/journal.pone.0014539.g005
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The case for including a second dimension as a necessary step to

adequately capturing eigen-frequencies associated with the mater-

nal effects that are characteristic of many consumer-resource

interactions (e.g. the 12-generation cycles in vole-lemming

interactions as described by Ichausti and Ginzburg [57]) has been

most elegantly presented by Ginzburg and Colyvan [15]. Maternal

effects may operate among large mammals whereby high-quality

mothers produce offspring that are larger at birth and hence have

enhanced survival prospects [17]. Shorter time scale inertial

processes related to within generation storage, or other within

generation structural (e.g. fiber content, body mass) or process-

related (e.g. immunology, hibernation) responses, are also likely to

play a role as populations, for example, adjust to a period of

starvation [73]. With the quality dimensions added to all the species

involved in consumer-resource interactions and other more

complex trophic cascades [21,22,74], it is possible to address

evolutionary questions relating to adaptive abundance-quality

dynamics as a mechanism for stabilizing population fluctuations,

whether induced purely by high growth rates (Fig. 2E) [33,60],

entrained by seasonal drivers (Fig. 2B), or an emergent nonlinear

combination of the two (Fig. 2F). Thus our focus is on the questions

of what the best allocations of extracted resources may be in

increasing the abundance versus the average quality of populations.

From the perspective of long-term population persistence using

an autonomous systems (i.e. systems with time-invariant descrip-

tions of how the variables change as a function of their own values)

optimization framework, we were able to elucidate how the long-

term, physiologically most efficient, allocation proportion v* (Eq.

14) depends on different population parameters. But we were

further able to show that adaptive allocation strategies that have

evolved to dampen oscillations may deviate from the most

efficient, with such deviations being beneficial to the population

(Fig. 4F). This counter-intuitive result, after a little thought,

actually makes sense. The reason for this has to do with the fact

that highly oscillatory behavior emerges in consumer-resource

systems when abundance growth rates pass a threshold (cf. Fig. 2A

versus 2E). Ginzburg, Burger and Damuth [75] have argued that

the ‘‘May oscillation threshold’’ is an upper bound for selection

acting to increase growth rates. In a consumer-resource resource

context, the destabilization of an interaction that emerges with

increases in the efficiency of consumption towards low resource

levels is known as the paradox of enrichment. The principle was

first graphically explicated by [76], and further investigated in

various contexts including that of longer food chains [74] and

increased efficiency in converting extracted resources [77]. The

simulation outcomes we depict in Figs. 4E and 4F suggest that a

physiologically related inefficiency can help mitigate this paradox.

Other inefficiencies, or growth rate reducing strategies, such as

suboptimal foraging [78], functional heterogeneity in the resources

exploited [77], reciprocal phenotypic plasticity between prey and

predator species [77], and switching between production of resting

versus non-resting eggs [79], have been shown to play this same

role. In addition, various species interaction processes including

intraspecific competition among consumers [80] and disease [81]

stabilize consumer-resource interactions, which in our Q-Q

formulation has the added realism of being able to model how

these interactive process are impacted by the quality of each

population. Our Q-Q formulation also provides ways to

incorporate these connections: as we mentioned in developing

our quality model Eq. 13, the senescence rate can be elaborated to

include increased susceptibility to predation and disease of lower

quality individuals.

In our general 4-dimensional consumer-resource formulation

(i.e. Eqs. 17–20), as in all differential equation models of

population level processes, we have averaged-out the faster

behavioral and physiological processes that are relevant to diurnal

cycles, while focusing on processes relevant to a seasonal time

frame. We have also averaged-out fine scale ecological processes

such as birth pulses and extreme weather-related death rates and

replaced these with smooth seasonal and quality-related rates. In

doing so, a biomass currency is more flexible than a demographic

current because biomass growth and decay rates are more

continuous over time than changes in numerical abundance,

though no system is really continuous at sufficiently fine scales of

time: to not recognize this artifact, according to [15], is to fall

victim to the fallacy of ‘‘instantism’’. From a biomass versus

numbers point of view, though, births do not entail the production

of new biomass (to the contrary some biomass is lost during birth

through the shedding of auxiliary structures such as the placenta in

mammals), merely the separation of some fraction of maternal

biomass in the form of offspring, perhaps provisioned with

material resources in the egg or seed, or provided with these after

birth by mothers. Additionally, our Q-Q approach allows us to

explore seasonal effects on population dynamics that relate to issue

of growth as a function of population quality. It is no coincidence

that in many populations births tend to be concentrated during the

season when resources are high in quality ([39] Chapt. 7, [82]),

while most mortality (except among neonates) occurs during

adverse periods [83], so that these processes are potentially

influenced by different environmental factors. In our model death

rates go up as quality goes down (cf. [84]), where quality itself is

driven by seasonal factors; but a quality feedback is in place

because low quality individuals die or senesce at faster rates.

For purposes of transparency, we have kept the presentation of

our Q-Q formulation rather generic: its application to addressing

questions relating to specific systems requires closer attention to

the rates of the processes involved in such systems than can or

should be provided in a presentation of a general framework. Our

Q-Q formulation can also be brought to bear on a number of

interesting questions, such as the impacts of extreme seasonal

variation in environmental conditions on the stability of

interacting populations. Previous modeling has suggested that

strong seasonality can have a destabilizing effect by promoting

oscillations in abundance ([85,86]; but see [77]). Our Q-Q

approach illustrates how this need not be the case, depending

among others on the relative values of the time constants

associated with resource growth, resource extraction, and

responses in consumer quality. If extreme resource deprivation is

seasonally predictable, organisms can counteract it by either

carrying over stored reserves (body fat in animals, carbohydrate

reserves in plants) or by entering dormant stages (as eggs or pupae,

or in hibernation) through this period. Hence populations should

not be more variable in abundance in higher latitudes despite

wider seasonal variation in conditions than in lower latitudes with

less extreme winters. Indeed, annual variation in abundance may

be greater when seasonal variation is related primarily to rainfall,

the typical situation in tropical savannas and grasslands as well as

Mediterranean-type systems, and hence is less predictable than

when governed mainly by seasonal temperature oscillations [87].

In far northern latitudes, the effect of temperatures exceeding

thermal tolerance levels due to global warming may pose less of a

threat than that posed by more frequent occurrences of extreme

stochastic events, such as cyclones or thaw-freeze alternations

[88,89]. The draw-down in plant biomass and its quality that

occurs during the adverse season restricts the resource base from

which herbivore biomass density rises during the benign season,

and hence the peak seasonal biomass attained by the herbivores

([39]: Chapter 13). More extreme winters mean that there is lesser
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potential for herbivore populations to grow towards abundance

levels depressing vegetation production.

While classical models emphasize the propensity for coupled

herbivore-vegetation oscillations to be generated (e.g. [90]), such

irruptive dynamics may be less commonly manifested than implied

by these models [91]. Preferential consumption of higher-quality

vegetation components makes herbivores become more dependent

on resources of sufficiently low quality to dampen their growth

potential later in the dormant season, which also helps buffer them

against population extirpation during severe winters [92]. The

cyclic variation in abundance of hares, lynxes, voles and lemmings

in far northern environments that has fascinated population

ecologists is likewise not widely manifested among similar species

elsewhere in the world. The recent fading out of the vole and

lemming cycles in Scandinavia [93,94] presents a fundamental

challenge to conventional models that have tried to explain these

cycles as being primarily the result of a predator-prey interaction

with weasels, without taking into account how the changing effects

of winter snow conditions affect the quality as well as the quantity

of resources [95]. To incorporate this level of detail requires that

we use the full Q-Q formulation represented by Eqs. 17–20, rather

than the restricted formulation represented by Eqs. 19-24 (i.e.

include a dynamic equation for the variable QR). The depression of

resource quality as well as quantity has a further influence in

suppressing the irruptive potential of herbivore populations. As a

result, fluctuations in the abundance of generalist herbivores, such

as large ungulates, are likely to be more extreme in fertile

environments where more of the plant biomass is highly nutritious

than in regions under-laid by nutrient-deficient soils presenting

more extreme gradients in the nutritional value of this herbage

[77]. Our analysis indicates very clearly, however, that resource

extraction switching between increasing the abundance and

elevating the quality of consumers provides an extremely powerful

mechanism for promoting the stability of consumer-resource

interactions.

The overriding importance of variable food quality for

population dynamics has been emphasized by [96] for small

herbivores and by [97] for large herbivores. Selective grazing can

either reduce the effective value of the food resource by promoting

the spread of lower-quality plant species or parts, or enhance it by

cultivating young growth stages of the plants cropped (e.g. via

grazing lawns; [98]). For large carnivores, the effective quality of

their food resource depends on the proportion of prey populations

in the most vulnerable young or rather aged life history stages [99].

Predation is widely recognized to improve the health (i.e. the

effective quality) of prey populations by removing ageing, sick or

wounded animals, while the restriction on recruitment can lower

the likelihood of the resource base for herbivorous prey becoming

over-utilized [100]. For herbivorous insects, poor quality vegeta-

tion retards growth through larval stages, thereby increasing

vulnerability to mortality from numerous predators [101].

Our Q-Q formulation is easily extended to multi-consumer

multi-resource systems, as well as multi-trophic systems. The key

to formulating multi-consumer, multi-resource systems developed

in the previous sections is through the elaboration of the extraction

function given in Eq. 6 to multi-consumer-resource settings, as

described in [21,38]. The key to formulating tritrophic, oligotro-

phic, or other multi-level food webs comes through the fact that,

unlike Lotka-Volterra type equations that use logistic-like growth

functions to model resources in the absence of consumers and

exponential-like decay functions to model consumers in the

absence of resources, our Q-Q formulation is based on a

trophic-level-independent equations for both the population

quantity and quality variables (Eqs. 11–13). Thus, with appropri-

ate multispecies elaborations (e.g. see [38]) the approach is

appropriate for modeling food web interactions in general as they

apply to both marine [102,103] and terrestrial [104] food webs

and ecosystems. In the context of food webs, our Q-Q two-state

representation of each population facilitates the investigation of

the food web dynamics when the condition and health of

individuals in populations responds to fluctuations (generally

seasonal) in environmental inputs, and changes under the stress

of exploitation or diminishing food resources.

Conclusion
Since the metaphysiological approach provides a unified

framework for modeling population interactions at all trophic

levels [21,22], it is not surprising that it extends easily and natural

to a Q-Q framework, though inertia associated with the purely

abundance approaches is not that easily overcome (cf. [105]).

Building on the metaphysiological approach, our Q-Q formulation

provides the foundations for models that have the potential to

address a number of very broad research questions in ecology.

These include a natural way to link physiological and behavioral

levels of analysis that depend on quality to population level scales

of analyses that are concerned with abundance, while retaining

sufficient transparency or simplicity to be able to extract general

principles (e.g. in context of plant dispersal see [106]; in the

context of resource variability on foraging see [107]; in the context

of search and navigation see [108]). In particular, our Q-Q

formulation allows scaling to be done through the vehicle of

quality as measured by any state feature affecting intrinsic or

extrinsic rates of loss relative to resource extraction rates. Thus in

scaling up the state of individuals of various types and ages to get a

measure of the biomass density of a population in a particular

landscape or, more broadly, in a particular ecosystem or

subcomponents of that ecosystem, one can also assess the average

quality of those individuals and how quality changes with seasons,

population density and other relevant factors.

In his recent monograph on population dynamics, Turchin [8]

asked a series of questions including ‘‘Why do organisms become

extremely abundant one year and then apparently disappear a

few years later?’’ He also states ‘‘… much progress toward [a

general theory of complex population dynamics] has been

made.’’ This may well be true in the context of theories confined

to describing each population using a single variable, but the

limitation of such theories in addressing questions that incorpo-

rate physiological notions of condition, stress, health, climate

change and so on are evident. The question Turchin poses goes

well beyond purely theoretical interest: it relates very much to

species conservation and the ecological factors needed to protect

species from extinction under current conditions of global

change. We believe that our Q-Q formulation for modeling

complex population dynamics provides a much more powerful

tool for addressing such questions than paradigms that currently

ignore interactions between the quantity and quality aspects of

consumers in relation to the quantity and quality of the resources

they exploit.

Methods

The model developed in this paper represents an extension of

the metaphysiological approach to population modeled, which is

presented in detail elsewhere [21,22,31,38]. Here for the sake of

completeness, a quick review of the basic metaphysiological

approachis presented using a notation (Table 1) modified to

provide greater clarity in developing our two-state Q-Q represen-

tation in a multispecies setting.
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One State Representation: Fixed Resource
Let X represent the biomass density of a population consuming

an underlying resource R. We formulate the rate at which a unit of

X extracts a unit of R in terms of an extraction function f(R,X).

Using this notation, the total harvest rate experienced by the

resource is f(R,X)X per unit resource. On the other hand, the total

resource extraction (i.e. feeding) rate is f(R,X)R per unit consumer.

The reason for distinguishing the flow of resources to consumers in

terms of a harvest rate versus an extraction rate from the resources

will become clear when we develop the model further in a two-

species consumer-resource setting.

The gross rate at which a consumer population accumulates

biomass per-unit consumer is then the per-unit consumer-biomass

feeding rate multiplied by a conversion coefficient k [21,31,109].

To get the net per-capita biomass growth rate g we need to

subtract the metabolic expenditure rate m (i.e. the rate at which

organisms dissipate biomass per unit biomass just to maintain

physiological processes) to obtain

g R,Xð Þ~kf R,Xð ÞR{m: ð4Þ

Since X is dynamic, and in a two-species consumer-resource

setting R is also dynamic, we take advantage of the notational

device of a tilde whenever we want to write a function of time-

varying variables purely in terms of time t itself: that is, we write

~gg(t)~g R(t),X (t)ð Þ. If we use h to represent a variable extrinsic

decay rate per unit X (mortality from senescence and disease) and e
to represent the extrinsic removal or harvest rate (from predation

or simply accidental deaths), then from Eqs. 2–4, dropping the

subscript i, we obtain the equation

dX

dt
~(kf (R,X )R{m{h{e)X : ð5Þ

In the absence of a dynamic relationship between consumers

and resource (e.g. if R is treated as some constant background level

as is implicitly done in writing down a logistic growth equation—

for details see [21,22,31]), f is assumed to decrease with increasing

X, thereby implying negative density dependence. A function f that

has the desirable response properties was first proposed by

Beddington, DeAngelis and colleagues [110,111], although the

function they proposed is equivalent to our f(R,X)R. With this in

mind, we adopt their function, though modifying it to include a

parameter c that controls the abruptness with which density-

dependence sets in [60]. In this case

f (R,X )~
d

Rzb 1z(X=K)yð Þ , ð6Þ

where d.0 is the maximum extraction rate, b.0 is the resource

level at which the maximum rate drops to half in the absence of

interference, and the parameters K.0 and c.1 respectively

determine the value of X around which density-dependence sets in

and the abruptness with which it sets in.

In previous formulations of Eq. 5 we assumed, as others also

have [21,31,33], that m is a constant and h is a function that is

inversely proportional to f(R,X). This latter assumption implies that

all individuals die as their food intake rate (averaged over the

period of time for which this formulation is regarded as applicable)

approaches 0. The inverse dependence of f on X in Eq. 6 and the

inverse dependence of h on f in the metaphysiological formulation

[21,31] is one way to make the net biomass growth rate g, defined

by Eq. 4, conform both to the phenomenological criteria of

bounded growth and to the empirical observation of accelerating

death from starvation (e.g. see description of hydra experiments in

[19] or [15]).

One State Metaphysiological Representation: Consumer-
Resource Dynamics

The obvious extension of Eq. 5 to two dimensions is to

incorporate the dynamic feedback between the consumer

population at abundance (typically biomass density) X and its

resource base at abundance (biomass or flux density, or

concentration as appropriate) R. If R itself is a functional group

of biological populations, such as vegetation in herbivore-

vegetation interactions or prey species in prey-predator interac-

tions, then its dynamics will also be governed by a basic

metaphysiological equation, but with extraction now explicitly

incorporated. In this case both R and X will satisfy an equation

with the structure of Eq. 5, except that for generality in the

equation for R we use a growth function ~gg(t), specified generally in

terms of time rather than the form given by Eq. 4, and in the

equation for X we have assumed the consumer itself be free

from extrinsic mortality losses (i.e. consumption, predation or

harvesting, but subject to senescence only). Thus equations take

the form:

dR

dt
~ ~ggR(t){ ~hhR(t){f (R,X )X

� �
R

dX

dt
~ kf (R,X )R{mR{ ~hhX (t)
� �

X

ð7Þ

where our notation makes transparent the way the extraction

function f(R,X) ties the consumer and resource equations together

[109].

In all our simulations below, we assume that f(R,X) has the form

given by Eq. 6. In previous formulations, quality was not

considered as a variable so the extrinsic decay rate ~hhX (t) (which

includes mortality from senescence, disease, and possibly condi-

tion-related predation) was assumed to be proportional to the

inverse of the per-capita feeding rate [21,30,31,112]: i.e. for a

constant a.0 that scales the senescence rate (when feeding or

extraction is at is maximum rate d then senescence is at is the

minimum rate a/d)

~hhx(t)~
a

f R(t),~hhxX (t)
� � ð8Þ

Although the resource growth and decay process ~ggR(t){~hhR(t)
can be modeled using a logistic growth formulation [21,31],

plant biomass growth is generally seasonally phased, with

individuals typically ceasing to grow during winter or the dry

season, and within-year changes in biomass largely decoupled

from inter-annual changes in the plant population components

(number of stems or meristems) that produce biomass. The

continuous nature of plant biomass extraction by herbivores,

however, is compatible with a differential equation expression of

this ongoing process, provided seasonal changes in growth are

properly taken into account in developing a suitable form for

~ggR(t){~hhR(t). Finally in reconciling Eq. 7 with the first order
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metaphysiological formulation represented by Eq. 5, we need

following identities

eR~f (R,X )X

gX ~kf (R,X )R{mX

eX ~0

ð9Þ

A controversial question that has been argued back and forth

for the past two decades is whether in consumer-resource

equations the extraction function f(R,X) should depend on both

R and X, or on R only. The question that caused much argument

was this: Is the functional response per unit consumer F = f6R as

proposed by [113] adequate in assuming dependence on R alone,

or should it depend more generally on both R and X, and more

specifically on the ratio R/X ([21,114]; for a review see [115])?

The arguments around this question relate to how we understand

the phenomenon of density dependence to emerge through

consumer-resource interactions and how this influenced by

averaging rates of different time scales [112]. Does it emerge

through interference competition [116,117], which affects feeding rates

(i.e. f is a function of R and X)? Or, does it emerge as a result of

exploitative competition, which is indirect since each individual has

fewer resources in the future because of greater current resource

extraction rates (i.e. f is a function of R only)? The argument,

however, is moot since both interference and exploitative

competition operate: only their relative importance is in question

and the relative weighting can be expected to vary among

populations and possibly between seasons. The short-term

processes leading to exploitative competition are often referred

to as scramble competition [118] while interference competition is also

referred to as contest competition (e.g. see [119]). In Eq. 6 the value of

c in the expression for the feeding function represents the degree to

which intraspecific competition is scramble versus contest. Note

that c = 0 is the case of pure scramble competition while it has

been argued [60] that contest competition requires c.1. The fact

that no competition concept falls with the range 0,c,1 and, as

argued elsewhere [60], c = 1 is itself problematic strongly suggests

that these two types of competition are not opposite ends of the

same spectrum, but are fundamentally different types of

competition processes that can both operate concurrently, though

on different time scales. Scramble competition operates at faster

time scales than contest competition, as in the case of territorial

animals competing for a resource pulse resulting either from

disease, an extreme environmental event (e.g. drought or cold

spell: see [120] or carcasses left by hunters or consumers [121]).
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