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Background and Purpose: Recently pentoxifylline, a non-selective phosphodiesterase

inhibitor and adenosine receptor antagonist, has attracted much interest for the

treatment of the increased vascular resistance and endothelial dysfunction in pre-

eclampsia. We therefore investigated the placental transfer, vascular effects and

anti-inflammatory actions of pentoxifylline in healthy and pre-eclamptic human

placentas.

Experimental Approach: The placental transfer and metabolism of pentoxifylline

were studied using ex vivo placenta perfusion experiments. In wire myography experi-

ments with chorionic plate arteries, pentoxifyllines vasodilator properties were inves-

tigated, focusing on the cGMP and cAMP pathways and adenosine receptors. Its

effects on inflammatory factors were also studied in placental explants.

Key Results: Pentoxifylline transferred from the maternal to foetal circulation, reach-

ing identical concentrations. The placenta metabolized pentoxifylline into its active

metabolite lisofylline (M1), which was released into both circulations. In healthy pla-

centas, pentoxifylline potentiated cAMP- and cGMP-induced vasodilation, as well as

causing vasodilation by adenosine A1 antagonism and via NO synthase and PKG.

Pentoxifylline also reduced inflammatory factors secretion. In pre-eclamptic pla-

centas, we observed that its vasodilator capacity was preserved, however not via

NO-PKG but likely through adenosine signalling. Pentoxifylline neither potentiated

vasodilation through cAMP and cGMP, nor suppressed the release of inflammatory

factors from these placentas.

Conclusion and Implications: Pentoxifylline is transferred across and metabolized by

the placenta. Its beneficial effects on the NO pathway and inflammation are not

retained in pre-eclampsia, limiting its application in this disease, although it could be

Abbreviations: GLM-RM, general linear model – repeated measures; M1, (±)-lisofylline; M4, 1-(30-carboxypropyl)-3,7-dimethylxanthine; M5, 1-(40-carboxybutyl)-3,7-dimethylxanthine.
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useful for other placenta-related disorders. Future studies might focus on selective

A1 receptor antagonists as a new treatment for pre-eclampsia.

K E YWORD S

inflammation, nitric oxide, pentoxifylline, phosphodiesterase, placenta, pre-eclampsia,
vasodilation

1 | INTRODUCTION

Pre-eclampsia is a serious placenta-related pregnancy disorder, affect-

ing approximately 5–8% of all pregnancies, for which there is cur-

rently no effective treatment (Steegers et al., 2010). Pre-eclampsia is

characterized by hypertension with an onset after 20 weeks of gesta-

tion, accompanied by proteinuria and potentially other evidence of

maternal organ damage (e.g. elevated liver enzymes and pulmonary or

cerebral oedema) and/or foetal growth restriction (American College

of Obstetricians and Gynecologists Task Force on Hypertension in

Pregnancy, 2013). Pre-eclampsia has not only been associated with an

increased risk of maternal and foetal complications during pregnancy

but can also lead to health problems later in life for both mother and

child (Bellamy et al., 2007; Goldenberg et al., 2008; Steegers

et al., 2010). Early-onset pre-eclampsia occurs when the symptoms

present before the 34th week of gestation (van der Merwe

et al., 2010). The pathophysiological mechanism involved in pre-

eclampsia is believed to involve impaired placentation in early preg-

nancy, leading to an increased vascular resistance, generalized endo-

thelial dysfunction and endovascular inflammation. Yet, pre-eclampsia

can only be cured by termination of pregnancy to deliver the placenta

and, with it, an often-preterm infant.

The methylxanthine-derivative pentoxifylline has potential as a ther-

apeutic option for the treatment of pre-eclampsia (Azimi et al., 2015).

Pentoxifylline has already been registered for intermittent claudication

as it induces vasodilation and is known to have anti-inflammatory prop-

erties, scavenge oxygen radicals, improve endothelial function, increase

erythrocyte flexibility and inhibit platelet aggregation (Bhat &

Madyastha, 2001; Salhiyyah et al., 2015). In a clinical study, pentoxifyl-

line was given to pregnant women with imminent preterm labour to

improve disturbances in the foetal–placental blood perfusion that fre-

quently cause obstetricians to induce preterm delivery. In this study, Lau-

terbach et al. (2012) showed that pentoxifylline increased the cerebro-

placental pulsatility ratio—a measure for perinatal outcome (Gramellini

et al., 1992)—by decreasing placental resistance in utero (Lauterbach

et al., 2012). It also improved neonatal clinical outcome in the first

4 weeks of life (Lauterbach et al., 2012). In an experimental model for

pre-eclampsia in pregnant ewes, pentoxifylline significantly alleviated

and delayed the onset of symptoms (Tálosi et al., 2001). Furthermore,

pentoxifylline showed promising results as an anti-inflammatory agent in

preterm born infants with sepsis or necrotizing enterocolitis (Lauterbach

et al., 1999; Salman et al., 2019; Shabaan et al., 2015).

The mechanisms behind the effects of pentoxifylline are not

completely understood. As a non-selective phosphodiesterase (PDE)

inhibitor, pentoxifylline increases the intracellular concentrations

of cAMP generated by adenylyl cyclase (Speer et al., 2017). Pentoxi-

fylline can additionally inhibit adenosine signalling through interac-

tion with adenosine receptors. These receptors consist of four

subtypes:- A1, A2A, A2B and A3, which are coupled to adenylyl

cyclase-inhibitory Gi-proteins (A1/A3 receptor) or adenylyl cyclase-

stimulatory Gs-proteins (A2A/A2B receptor) (Fredholm et al., 2001),

and as such also regulate cAMP. A2 receptor stimulation relaxes

human coronary arteries in an endothelium-independent manner by

upregulating cAMP, while A1 receptor stimulation exerts the oppo-

site effects (Sato et al., 2005). Pentoxifylline has a higher selectivity

for the A1 versus the A2 receptor (Schwabe et al., 1985) and would

thus be expected to induce vasodilation by blocking the effects of

endogenous adenosine signalling via its A1 receptors. Simulta-

neously, the protective effects of pentoxifylline in pulmonary inflam-

mation were A2A receptor-dependent (Konrad et al., 2013). The

in vivo effects of pentoxifylline have also been attributed to its

metabolites, as biotransformation yields the formation of the

metabolites M1–M7. While pentoxifylline rapidly disappears from

the circulation, M1 (also known as lisofylline) and M5 (1-(40-carboxy-

butyl)-3,7-dimethylxanthine) remain present over a longer period

What is already known

• The non-selective PDE inhibitor and adenosine receptor

antagonist pentoxifylline improves foetal flow distribu-

tion in human.

What does this study add

• Pentoxifylline crosses the placenta, while its NO-medi-

ated vasodilator and anti-inflammatory effects are absent

in pre-eclampsia.

What is the clinical significance

• The placental effects of pentoxifylline may be useful for

pregnancy disorders other than pre-eclampsia.
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and hence have a potentially more significant effect in vivo

(Beermann et al., 1985; Smith et al., 1986).

The anti-inflammatory properties of pentoxifylline are of particular

interest in pre-eclamptic patients, whom display increased plasma levels

of pro-inflammatory cytokines, including IL-6, IFN-γ and TNF-α
(Jonsson et al., 2006; Szarka et al., 2010), and suppressed production of

IL-5 and the anti-inflammatory cytokine IL�10 (Azizieh et al., 2005;

Szarka et al., 2010). This inflammatory response may originate from the

pre-eclamptic placenta (Munno et al., 1999) and could subsequently

contribute to placental dysfunction, endothelial damage and ischaemic-

reperfusion injury (Hunt et al., 1989; Nawroth & Stern, 1986; Raghupa-

thy & Raghupathy, 2013; Stark, 1993). Speer et al. (2017) observed that

pentoxifylline reduced LPS-induced inflammation in an ex vivo placental

explant model, often used to study pre-eclampsia. However, we

recently showed a decreased expression of many immune-related

genes, as well as lower numbers of regulatory and anti-inflammatory

M2-like macrophages and mast cells in placentas from women with

early-onset pre-eclampsia (Broekhuizen et al., 2021), while the inflam-

matory M1-like macrophages were unaltered. This challenges the view

of increased inflammation in pre-eclamptic placentas.

In summary, pentoxifylline may improve placental function in pre-

eclampsia through a multitude of mechanisms. Yet, before considering

treatment of pregnant women, it is important to study its placental

passage and metabolism, and to discern the vascular and anti-

inflammatory effects of pentoxifylline in the human placenta. Obvi-

ously, it is also essential to investigate whether any protective effects

in healthy placentas, if occurring, are retained in pre-eclampsia. For

instance, the PDE5A inhibitor sildenafil was unable to improve pla-

cental function in pre-eclampsia, despite promising results in healthy

placentas (Hitzerd et al., 2019).

The aim of this study was to evaluate the placental transfer of

pentoxifylline to estimate foetal exposure and its metabolism by the

placenta using ex vivo dual-sided cotyledon perfusion of human pla-

centas (named ex vivo placenta perfusion in short). Additionally, we

investigated the vascular and anti-inflammatory effects of pentoxifyl-

line in the placentas of women with uncomplicated pregnancies and

women with pre-eclampsia.

2 | METHODS

2.1 | Patient tissue collection

Placentas of women with uncomplicated singleton pregnancies who

underwent a planned caesarean section or who suffered from early-

onset pre-eclampsia (diagnosis <34th week of gestation) were col-

lected immediately after delivery at the Erasmus MC University Medi-

cal Center, Rotterdam, the Netherlands, from April 2019 until June

2022. The study was exempted from approval by the local institu-

tional Medical Ethics Committee according to the Dutch medical

Research with Human Subjects Law (MEC-2016-418 and MEC-

2017-418) and all patients gave written consent for the use of their

placenta and data prior to the experiments.

2.2 | Ex vivo dual-sided cotyledon perfusion

To study the placental transfer of pentoxifylline, ex vivo dual-sided

cotyledon perfusion was performed as described by Hitzerd et al.

(2019). In short, after collection of the placenta, the amnion was

removed and the foetal chorionic plate artery and corresponding vein

of an intact cotyledon were cannulated and perfused with Krebs–

Henseleit buffer (in mmol�L�1: NaCl 118, KCl 4.7, CaCl2 2.5, MgSO4

1.2, KH2PO4 1.2, NaHCO3 25 and glucose 8.3; pH 7.4) supplemented

with heparin 2500 IU�L�1 and oxygenated with 95% O2–5% CO2. The

cotyledon was placed into the perfusion chamber and the foetal flow

was gradually increased up to 6 ml�min�1. The maternal circulation

was re-established by inserting four blunt cannulas into the intervil-

lous space with a flow rate of 12 ml�min�1. After approximately

30 min perfusion, to wash out any remaining blood, the circulations

were closed and replaced by fresh Krebs–Henseleit medium with the

addition of bovine serum albumin (29 g�L�1 maternal and 34 g�L�1

foetal). At t = 0, pentoxifylline (10 mg�L�1) was added to the maternal

circulation and samples were taken from both circulations at eight set

time points over a period of 3 h and immediately stored at �80�C. To

prove good overlap between the maternal and foetal circulations,

antipyrine (100 mg�L�1) was also added to the maternal buffer and a

foetal/maternal ratio >0.75 was considered sufficient. To control for

capillary leakage, 40-kDa fluorescein isothiocyanate (FITC)-dextran

(Sigma-Aldrich, 36 mg�L�1) was added to the foetal circulation and its

maternal/foetal ratio should have not exceeded 0.03. The concentra-

tions of antipyrine and fluorescein isothiocyanate-dextran were deter-

mined as described previously (Hitzerd et al., 2019).

Pentoxifylline concentrations were quantified by means of a

chromatography-mass spectrometry method in a volume of 50 μl. The

method was validated with pentoxifylline-d6 as internal standard

according to the EMA validation protocol (Guideline Bioanalytical

method validation www.ema.europa.eu). The analysis was performed

on a Water TSQ micro system in an ISO certified laboratory. The anal-

ysis was characterized by a lower limit of quantification of 0.2 μg�L�1,

an upper limit of quantification of 50 μg�L�1, a linearity of 0.2–

50 μg�L�1 and a R2 > 0.99.

2.3 | Wire-myography experiments with porcine
coronary arteries

Twelve porcine hearts were collected from the slaughterhouse to per-

form an initial screening of pathways that may be involved in the vaso-

dilator effects of pentoxifylline. Coronary arteries were dissected from

the porcine hearts and stored overnight in Krebs–Henseleit buffer aer-

ated with 95% O2–5% CO2 at 4�C. Vessel segments of 4-mm length

were suspended on stainless steel hooks in 15 ml-organ baths, filled

with Krebs–Henseleit buffer at 37 �C and aerated with 95% O2–5%

CO2. After a period of equilibration and stretched to a stable force of

about 15 mN, vessel segments were exposed to 30 mmol�L�1 KCl

twice. Subsequently, maximum contractile responses were determined

using 100 mmol�L�1 KCl. After washout of the KCl, segments were
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pre-incubated for 30 min in the absence or presence of an inhibitor and

subsequently pre-constricted using thromboxane A2 (TP) receptor

agonist U46619 (1 μmol�L�1). Segments that were pre-incubated with

SQ22536 (100 μmol�L�1) or Nω-nitro-L-arginine methyl ester

hydrochloride (L-NAME, 100 μmol�L�1) were used to construct

concentration–response curves to pentoxifylline (1 nmol�L�1–300

μmol�L�1. While segments that were pre-incubated with pentoxifylline

(100 μmol�L�1) were exposed to sodium nitroprusside (SNP,

1 nmol�L�1–100 μmol�L�1) or forskolin (1 nmol�L�1–30 μmol�L�1).

Changes in tissue contractile force were recorded with a Harvard iso-

metric transducer (South Natick, MA, USA).

2.4 | Wire-myography experiments with human
chorionic plate arteries

Second-order branches of chorionic plate arteries were dissected

from placental tissue, cleaned from surrounding tissue and stored in

Krebs–Henseleit buffer aerated with 95% O2–5% CO2 at 4�C over-

night. The following day, the vessels were cut into 2 mm segments

(in length) and mounted in 6-ml organ baths (Danish Myograph

Technology, Aarhus, Denmark), filled with Krebs–Henseleit buffer

and aerated with 95% O2–5% CO2. After warming the organ baths

to 37 �C, the tension was normalized to 90% of the estimated diam-

eter at 38 mmHg effective transmural pressure (5.1 kPa) to mimic

the physiological circumstances of placental vessels. The average

diameter of the arteries after normalization was 2.74 ± 0.08 mm

(total number of artery segments = 497, number of patients = 67).

When the segments reached a stable baseline pressure, the maxi-

mum contractile responses to 100 mmol�L�1 KCl were determined.

After washout of KCl, segments were pre-incubated in the absence

or presence of one of the following inhibitors for at least 30 min:

adenylyl cyclase inhibitor SQ22536 (100 μmol�L�1), nitric oxide

synthase (NOS)-inhibitor L-NAME, 100 μmol�L�1, protein kinase G

(PKG)-inhibitor Rp-8-Br-PET-cGMPS (Rp-8-BrcGMPS; 3 μmol�L�1),

protein kinase A (PKA)-inhibitor Rp-cAMPS (10 μmol�L�1), A1

receptor antagonist 8-cyclopentyl�1,3-dipropylxanthine (DPCPX;

10 μmol�L�1), A2A receptor antagonist ZM 241385 (3 μmol�L�1) and

A2B receptor antagonist MRS1706 (10 μmol�L�1), either alone or in

combination. Antagonists were chosen using the British Journal of

Pharmacology Guide to Receptors and Channels and previous stud-

ies (Alexander et al., 2011; Gabriëls et al., 2000; Hasan et al., 2000;

Xi et al., 2009). All vessel segments were pre-constricted with the

thromboxane A2 agonist U46619 to �80% of the maximum KCl

constriction (10–30 nmol�L�1 U46619), to construct relaxant

concentration–response curves for pentoxifylline (1 nmol�L�1–300

μmol�L�1) and M1 (1 nmol�L�1–100 μmol�L�1). Concentration–

response curves for the nitric oxide (NO) donor SNP (1 nmol�L�1–

100 μmol�L�1) and the adenylyl cyclase activator forskolin

(1 nmol�L�1–30 μmol�L�1) were constructed in the presence or

absence of pentoxifylline (10 or 100 μmol�L�1). Other

concentration–response curves that were investigated without incu-

bators included pentoxifylline metabolites M4 (1-(30-carboxypropyl)-

3,7-dimethylxanthine) and M5 (1 nmol�L�1–100 μmol�L�1) and

soluble guanylyl cyclase activator BAY 60-2770 (0.1 nmol�L�1–10

μmol�L�1). Endothelial denudation was performed by carefully rub-

bing a few hairs from cotton buds along the inside of the arterial

segment.

2.5 | Placental explant experiments

Immediately after collection of the placenta, three full thickness slices

of about 0.5 cm wide were dissected from areas without visible

infarction, calcification, haematoma, or damage and stored on ice. The

placental tissue was thoroughly rinsed with cold PBS. After removal

of the chorionic and basal plates, central villous tissue was cut into

2 � 2 mm explants. Three explants from the three different slices

were combined into a 12-well plate with 2 ml DMEM/F12 medium

(Lonza) supplemented with 10% FBS, 1.95 g�L�1 NaHCO3 and

100 mg�L�1 Primocin (InvivoGen). The placental explants were left to

equilibrate for 3 h at 37�C 8% O2–5% CO2. Thereafter, the villous

explants were transferred to new wells with or without 100 mg�L�1

(=359 μmol�L�1) pentoxifylline. After 24 h, the culture medium was

collected and stored at �80�C until further analysis. The placental

explants were dried in a SpeedVac vacuum concentrator at 45�C

(SPD2010, Thermo Fisher Scientific) to determine the dry weight.

Experiments were performed in technical duplicates to ensure the reli-

ability of single values.

The secretion of 24 different cytokines, chemokines, growth fac-

tors and immune regulatory molecules into the explant culture

medium was measured using premixed multiplex Luminex magnetic

bead assays (R&D Systems, Abingdon, United Kingdom). This analysis

included C-C motif chemokine ligand 2 (CCL2/MCP�1), C-X3-C

motif chemokine ligand 1 (CX3CL1/fractalkine), C-X-C motif

chemokine ligand 8 (CXCL8/IL-8), CXCL10/IP�10, endoglin,

granulocyte colony-stimulating factor (G-CSF), granulocyte-

macrophage colony-stimulating factor (GM-CSF), macrophage

colony-stimulating factor (M-CSF), IFN-γ, IL-6, IL�1β, IL�1ra, IL-2,

IL-4, IL-5, IL�10, IL�12-p70, IL�16, IL�18, placental growth factor

(PIGF), TNF-α, vascular endothelial growth factor (VEGF), VEGFC

and VEGFR�1. Samples were measured at two-fold dilution according

to the manufacturer's standard protocol. Measurements were con-

ducted on a Luminex MAGPIX machine and data were analysed using

Bio-Plex Manager MP software. The medium concentrations of the

measured factors were normalized to the dry weight of the placental

explants in each well.

2.6 | Materials

Pentoxifylline (Trental®) was acquired from the hospital pharmacy of

Erasmus MC, Rotterdam, the Netherlands. M1 and MRS1706 were

acquired from Cayman Chemical Company (Michigan, USA), M4 and

M5 from Chemodex (Nottinghamshire, UK) and BAY 60-2770 from

Bayer (Leverkusen, Germany). All other compounds were from Sigma-
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Aldrich (Schnelldorf, Germany). Details of the compounds and used

concentrations can be found in Table S1.

2.7 | Data and statistical analysis

The declared group sizes (n) are the number of independent values,

and the statistical analysis was done using these independent values.

Analyses were conducted and images were produced in Graphpad

Prism 8 or R 4.1 using the ggplot2 package (R Core Team, 2021;

Wickham, 2016). The number of three successful ex vivo dual-sided

cotyledon perfusion experiments was based on previous experience

and as well literature from comparable experiments (Hitzerd

et al., 2019).

For the wire myography experiments, concentration–response

curves were statistically analysed with a repeated measures

ANOVA in SPSS Statistics 25; general linear model–repeated mea-

sures (GLM-RM), sphericity was assumed. Vascular relaxation was

expressed as a percentage of the contractile response to U46619.

Log10-transformed values at which the half-maximal response

(pEC50) occurred were individually estimated for pentoxifylline using

sigmoid curve fitting software in GraphPad Prism 8 (n = 26 healthy,

n = 18 for pre-eclampsia). The effects of the antagonists on base-

line tension were analysed with one-sample Student's t tests versus

0, while their effects on contractions to 10 nmol�L�1 U46619 were

evaluated using paired two-samples Student's t tests; both were

corrected for multiple testing using the Benjamini–Hochberg proce-

dure (R 4.1). The effects of antagonists on concentration–response

curves were statistically analysed in a two-way repeated measures

ANOVA for healthy and pre-eclamptic experiments separately

(SPSS Statistics 25; GLM-RM, sphericity assumed). Only if F in

ANOVA achieved P < 0.05, post hoc analyses were performed in a

two-way repeated measures ANOVA for each individual antagonist

against the condition without antagonist (control). The differences

between the pregnancy conditions (e.g. healthy and pre-eclampsia)

were statistically tested using a one-way repeated measures

ANOVA with the pregnancy condition as between-subjects factor

(SPSS Statistics 25; GLM-RM, sphericity assumed). A power analysis

using the standard deviation from previous work (Hitzerd

et al., 2019), an α level of 0.05 and a statistical power of 80%,

revealed a minimum sample size of six per group for the wire myo-

graphy experiments.

For the placenta explant experiments, the sample size of seven

placental explant experiments per group was based on previous litera-

ture (Speer et al., 2017). The effect of pentoxifylline on the release of

cytokines from placental explants was compared with its own paired

control experiment (100%) with a one-sample Student's t test with

Benjamini–Hochberg correction. The baseline secretions from pre-

eclamptic explants were statistically tested versus healthy explants

using a Kruskal–Wallis test.

The data and statistical analysis comply with the recommenda-

tions of the British Journal of Pharmacology on experimental design

and analysis (Curtis et al., 2018). Data were presented as mean ± SE

or as median (range) unless described otherwise and a P value < 0.05

was considered statistically significant.

2.8 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to corre-

sponding entries in the IUPHAR/BPS Guide to PHARMACOLOGY

http://www.guidetopharmacology.org and are permanently archived

in the Concise Guide to PHARMACOLOGY 2021/22 (Alexander,

Christopoulos, et al., 2021; Alexander, Fabbro, Kelly, Mathie, Peters,

Veale, Armstrong, Faccenda, Harding, Pawson, Southan, Davies,

Beuve, et al., 2021; Alexander, Fabbro, Kelly, Mathie, Peters, Veale,

Armstrong, Faccenda, Harding, Pawson, Southan, Davies, Boison,

et al., 2021).

3 | RESULTS

3.1 | Pentoxifylline transfers to the foetal
circulation

The transplacental transfer of pentoxifylline was studied in eight

ex vivo placenta perfusion experiments, of which three experiments

passed all quality control measurements displaying an adequate over-

lap (foetal/maternal antipyrine ratio: 0.99 ± 0.01) and absence of cap-

illary leakage between the maternal and foetal circulations (maternal/

foetal 40-kDa fluorescein isothiocyanate-dextran ratio: 0.0053

± 0.0008). The success rate of 38% was similar to previous research

(Mathiesen et al., 2010). The clinical characteristics of the mothers

and their offspring, as well as the placental characteristics, are shown

in Table 1. The addition of 10 mg�L�1 pentoxifylline to the maternal

circulation resulted in rapid transfer of pentoxifylline from the mater-

nal to the foetal circulation, reaching equal concentrations in both cir-

culations after approximately 90 min (Figure 1a,b). The total

pentoxifylline concentration in both circulations decreased to 5.8

± 0.7 μg�L�1 after 3 h of perfusion. However, the decrease in total

pentoxifylline concentration was accompanied by a subsequent

increase in the concentration of its metabolite M1 to 1.4 ± 0.5 μg�L�1

after 3 h of perfusion (Figure 1c). M4 and M5 were undetectable in

the circulations at any time point. These data show that pentoxifylline

can rapidly transfer to the foetal circulation through the placenta,

which metabolizes pentoxifylline into M1.

3.2 | Pentoxifylline induces vasodilation in
placental arteries through A1 receptors, NO and PKG

Wire myography experiments were conducted to study the vasodila-

tor properties of pentoxifylline. Table 2 provides the clinical charac-

teristics of this study population. Pentoxifylline exerted vasodilation

in healthy chorionic plate arteries with an Emax of 76 ± 3% of

U46619 pre-constriction and a pEC50 of �4.3 ± 0.1. Pre-incubation of
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the vessel segments with the NOS inhibitor L-NAME alone or in combi-

nation with the adenylyl cyclase inhibitor SQ22536 caused a rightward

shift of the concentration–response curves in both human chorionic

plate arteries (Figure 2a) and porcine coronary arteries (Figure S1A). We

additionally showed that the effect of L-NAME was endothelium-

dependent, as endothelial denudation attenuated vasodilation to pen-

toxifylline and L-NAME had no effect in denuded arteries (Figure S2).

SQ22536 had no effect by itself, showing that pentoxifylline-induced

vasodilation involved NO but not cAMP. Since pentoxifylline potentially

also modulates adenosine signalling, we subsequently investigated its

interaction with adenosine receptors. Pre-incubation of vessel seg-

ments with the A1 receptor antagonist DPCPX attenuated

pentoxifylline-induced vasodilation, while it was not altered by inhibi-

tors of the A2A receptor, ZM 241385 or the A2B receptor, MRS1706

(Figure 2b). To investigate whether pentoxifylline-induced vasodilation

involved specific protein kinases, experiments were also performed in

the presence of the PKG inhibitor Rp-8-Br-PET-cGMPS and the PKA

inhibitor Rp-cAMPS. Pre-incubation with Rp-8-Br-PET-cGMPS alone or

in combination with Rp-cAMPS inhibited pentoxifylline-induced vasodi-

lation, while Rp-cAMPS alone had no effect (Figure 2c).

The vasodilator capacities of the pentoxifylline metabolites M1,

M4 and M5 were studied in a next set of experiments. M1 induced

vasodilation to a similar extent as pentoxifylline, while M4 and M5 did

not induce vasodilation in healthy chorionic plate arteries (Figure S3).

Pre-incubation of chorionic plate arteries with the PKG inhibitor Rp-

8-Br-PET-cGMPS tended to cause a rightward shift of the M1

concentration-response curve, although this was not statistically sig-

nificant. L-NAME and SQ22536 had no statistically significant effects

on M1-induced vasodilation (Figure 2d).

3.3 | Pentoxifylline potentiates vasodilation to
SNP and forskolin

Pre-incubation of healthy chorionic plate arteries with 100 μmol�L�1

pentoxifylline resulted in a significant leftward shift of the

concentration–response curves of the NO donor SNP and the adenylyl

cyclase activator forskolin (Figure 2e,f). These effects were only evident

at a concentration of 100 μmol�L�1 pentoxifylline, but not at

10 μmol�L�1. The same tendencies were observed in porcine coronary

arteries (Figure S1B,C). These data suggest that in addition to a direct

vasodilator effect of pentoxifylline, its PDE inhibitor capacity improved

vasodilation through the NO and adenylyl cyclase pathways.

3.4 | Pentoxifylline-induced vasodilation is
preserved in pre-eclamptic arteries

Although pentoxifylline dilated pre-eclamptic chorionic plate arteries

to the same extent (Emax 80 ± 4%, pEC50 -4.3 ± 0.1) as arteries from

healthy placentas, contrastingly, neither L-NAME nor Rp-8-Br-PET-

cGMPS blocked this response in pre-eclamptic arteries (Figures 3a,b

and 4a). Like in arteries from healthy placentas, SQ22536 did not alter

F IGURE 1 Pentoxifylline transfers completely from the maternal to the foetal circulation. Results from three ex vivo placenta perfusion
experiments with 10 mg�L�1 pentoxifylline (PTX) in the maternal circulation at the start of the experiment (t = 0). (a) Absolute concentrations of
pentoxifylline detected in the maternal and foetal circulations. (b) The foetal to maternal (F/M) pentoxifylline ratio. (c) Absolute concentrations of
pentoxifylline metabolite M1 detected in the maternal and foetal circulations. Data are depicted as mean ± SE % relaxation of U46619 pre-
constriction.

TABLE 1 Clinical data of the three individual perfusion
experiments

1 2 3

Maternal age (years) 23 43 36

Parity (n) 2 2 2

Ethnicity Caucasian Caucasian Hispanic

Body mass index (kg�m�2) 29.4 23.0 30.3

Highest diastolic (mmHg) 80 70 80

Highest systolic blood

pressure (mmHg)

136 110 134

Highest mean arterial

pressure (mmHg)

90 83 98

Mode of delivery CS CS CS

Gestational age (weeks+days) 38+5 39+3 39+3

Foetal sex Male Female Male

Foetal birth weight (g) 2910 3370 3550

Foetal birth centile 12 51 54

Placental weight (g) 490 525 545

Abbreviation: CS, caesarean section.
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the effect of pentoxifylline in pre-eclamptic arteries (Figure 3a). The

effects of DPCPX and endothelial denudation were studied in four

pre-eclamptic placentas due to limited availability of such tissue and

the preliminary data are shown in Figure S4. In two placentas, endo-

thelial denudation was successful and attenuated vasodilation by pen-

toxifylline. In three out of four experiments, DPCPX inhibited

pentoxifylline-induced vasodilation as well. Furthermore, pentoxifyl-

line no longer potentiated the vasodilation induced by SNP or forsko-

lin (Figure 3c,d). Responses to SNP, forskolin and the soluble guanylyl

cyclase activator BAY 60-2770 were however unaltered in pre-

eclamptic versus healthy arteries (Figure 4b–d), implying that the gua-

nylyl and adenylyl cyclase pathways are still fully functional.

3.5 | L-NAME affects baseline tension in healthy
arteries only

Incubation with L-NAME, alone or in combination with SQ22536, ele-

vated the baseline tension in healthy, but not pre-eclamptic arteries

(Figure S5A). None of the other antagonists affected baseline tension.

TABLE 2 Clinical data of wire myography and placental explant experiments

Wire myography Explants

Healthy (n= 47) Pre-eclampsia (n = 20) Healthy (n = 7) Pre-eclampsia (n = 7)

Maternal age (years) 33 (30–35) 31 (29–34) 33 (27–38) 31 (29–40)

Parity *

0 14 (29.8%) 3 (15.0%) 2 (28.6%) 5 (71.4%)

1 10 (21.3%) 12 (60.0%) 5 (71.4%) 1 (14.3%)

>1 23 (48.9%) 5 (25.0%) 0 (0.0%) 1 (14.3%)

Ethnicity

Caucasian 31 (67.4%) 15 (83.3%) 4 (57.1%) 5 (71.4%)

Other 15 (32.6%) 3 (16.7%) 3 (42.9%) 2 (28.6%)

Missing (n) 1 2 0 0

Body mass index (kg�m�2) 23.2 (21.1–28.8) 26.8 (24.8–31.2) 23.6 (19.4–30.1) 30.1 (24.8–35) *

Missing (n) 1 4 0 0

Highest diastolic blood pressure (mmHg) 77 (71–80) 108 (100–111)* 83 (75–90) 109 (98–135)*

Highest systolic blood pressure (mmHg) 125 (120–136) 160 (155–173)* 129 (121–138) 186 (140–220)*

Highest mean arterial pressure (mmHg) 93 (88–99) 124 (120–136)* 98 (90–106) 136 (113–163)*

Urinary protein/creatinine ratio (mmol�mg�1) NM 164 (39–482) NM 68 (29–813)

Missing (n) 1 0

Mode of delivery

Primary caesarean section 47 (100.0%) 19 (95.0%) 6 (85.7%) 5 (71.4%)

Secondary caesarean section 0 (0.0%) 1 (5.0%) 0 (0.0%) 0 (0.0%)

Vaginally 0 (0.0%) 0 (0.0%) 0 (0.0%) 2 (14.3%)

Gestational age (weeks+days) 39+0 (39+0–39+1) 30+2 (28+1–31+4)* 39+0 (38+4–39+2) 31+0 (28+3–34+0)*

Sex

Female 19 (40.4%) 12 (60.0%) 4 (57.1%) 3 (42.9%)

Male 28 (59.6%) 8 (40.0%) 3 (42.9%) 4 (57.1%)

Foetal birth weight (g) 3470 (3335–3720) 1128 (1011–1441)* 3320 (2590–3820) 1125 (485–3175)*

Foetal birth centile *

<3rd 0 (0.0%) 10 (50.0%) 0 (0.0%) 3 (42.9%)

3rd–10th 3 (6.4%) 6 (30.0%) 2 (28.6%) 1 (14.3%)

≥10th 44 (93.6%) 4 (20.0%) 5 (71.4%) 3 (42.9%)

Placental weight (g) 654 (561–734) 276 (247–354)* 510 (444–565) 268 (152–478)*

Missing (n) 9 1 1 1

Note: Numerical variables are shown as median and statistically tested by Kruskal–Wallis test. Categorical variables are shown as number of cases (%) and

statistically tested by chi-square test.

Abbreviation: NM, not measured.

*P < 0.05 versus healthy.
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Constrictions to 10 nmol�L�1 U46619 were similar under all condi-

tions (Figure S5B).

3.6 | Pentoxifylline reduces cytokine secretion
from healthy but not pre-eclamptic placentas

Since pre-eclamptic placentas are often described to be inflammatory,

we compared the baseline secretions between the control and pre-

eclamptic explants. VEGF, VEGFC and IL-5 were below the detection

limit in most of the experiments and therefore exempted from further

analysis. Endoglin and VEGFR�1 concentrations were higher in the

medium of pre-eclamptic compared with healthy placentas, while the

other measured factors were unaltered (Table 3). Pentoxifylline

reduced the secretion of CX3CL1/fractalkine, IFN-γ, IL�1β, IL�12p70,

IL�1Rα, CXCL8/IL-8, CCL2/MCP�1 and TNF-α from healthy placental

explants (Figure 5a). In pre-eclamptic placental explants in contrast,

pentoxifylline only reduced the secretion of CCL2/MCP�1 (Figure 5b).

F IGURE 2 Pentoxifylline induces vasodilation and potentiates the NO and adenylyl cyclase pathways in healthy human chorionic plate
arteries. Concentration–response curves (CRC) from wire myography experiments depicted as percentage relaxation of pre-constriction by
U46619. Experiments with pentoxifylline (PTX) were performed in the absence or presence of (a) NOS inhibitor L-NAME, adenylyl cyclase
inhibitor SQ22536, or both (n = 8–10), (b) A1 receptor antagonist DPCPX, A2A receptor antagonist ZM241385, A2B receptor antagonist
MRS1706 (n = 6–7), or (c) PKG inhibitor Rp-8-Br-PET-cGMPS, PKA inhibitor Rp-cAMPS, or both (n= 6–13). (d) CRC of M1 (lisofylline) without
antagonists (n = 8) or with SQ22536 (n = 8), L-NAME (n = 8), or Rp-8-Br-PET-cGMPS (n = 4). Experiments were also performed with (e) SNP in
the absence (n = 9) or presence of 10 μmol�L�1 (n = 7) or 100 μmol�L�1 PTX (n= 6), and (f) forskolin in the absence (n = 8) or presence of
10 μmol�L�1 (n = 7) or 100 μmol�L�1 PTX (n = 7). Curves with antagonist were compared with curves without antagonist (control) using GLM-
RM and depicted as mean ± SE % relaxation of U46619 pre-constriction. *P < 0.05 versus control.

BROEKHUIZEN ET AL. 5081



4 | DISCUSSION

In a previous study, Lauterbach et al. (2012) showed that pentoxi-

fylline can improve the foetal flow distribution in utero and neona-

tal outcome in the first 4 weeks of life in women with imminent

preterm labour. In the present study, we investigated whether

pentoxifylline could be a therapeutic strategy for pre-eclampsia,

by studying its effects in healthy and pre-eclamptic placentas. Our

data display that pentoxifylline rapidly transfers from the maternal

to the foetal circulation, where it can reduce placental resistance

through interaction with the A1 receptor, the NO-cGMP-PKG

pathway and the cAMP pathway. This provides an explanation

for the improved cerebro-placental ratio in the human foetus

following maternal treatment in vivo (Lauterbach et al., 2012).

Additionally, pentoxifylline reduced the release of inflammatory

cytokines from the placenta. In pre-eclampsia, the direct vasodilator

capacity of pentoxifylline was unaltered, although its ability to

improve vasodilation through the NO-cGMP-PKG and cAMP

pathways and the anti-inflammatory effects of pentoxifylline were

not retained.

4.1 | Vascular effects of pentoxifylline

To the best of our knowledge, we are the first to show that pentoxi-

fylline can affect vascular function in human placental arteries.

Figure 6 provides a schematic illustration of the proposed mechanisms

of action of pentoxifylline in chorionic plate arteries. Pentoxifylline

enhanced the vasodilator effects of both SNP and forskolin in healthy

chorionic plate arteries, confirming that it is capable of non-selective

inhibiting PDE (Kabbesh et al., 2012; Kaputlu & Sadan, 1994; Sheridan

et al., 1997), thereby potentiating both the cGMP- and cAMP-

mediated responses. Enhancement of the cAMP-mediated response

seems specific for human placental tissue, as this was not observed in

our experiments with porcine tissue nor in rat and equine studies

(Berkenboom et al., 1991; Kabbesh et al., 2012; Kaputlu &

Sadan, 1994). Remarkably, the effects of pentoxifylline as an unselec-

tive PDE inhibitor were lost in pre-eclamptic arteries. This is reminis-

cent of what we observed with the selective PDE inhibitors sildenafil

and vinpocetine in pre-eclampsia (Hitzerd et al., 2019). Together with

the inability of L-NAME to inhibit the pentoxifylline-induced relaxa-

tion, this suggests a reduced importance of the NO pathway in pre-

F IGURE 3 In preeclamptic chorionic plate arteries, pentoxifylline induces vasodilation but does not potentiate vasodilation by NO or adenylyl
cyclase. Concentration–response curves (CRC) from wire myography experiments depicted as percentage relaxation of pre-constriction by
U46619. (a) CRC of pentoxifylline (PTX), in the absence (n = 11) or presence of L-NAME (n = 10), SQ22536 (n = 7), or both (n = 9), or (b) in the
absence (n = 6) or presence of Rp-8-Br-PET-cGMPS (n = 6). (c) CRC with SNP in the absence (n = 10) or presence of 10 μmol�L�1 (n = 4) or
100 μmol�L�1 PTX (n = 6). (d) CRC with forskolin in the absence (n = 11) or presence 10 μmol�L�1 (n = 5) or 100 μmol�L�1 PTX (n = 6). Curves
with antagonist were compared with curves without antagonist (control) using GLM-RM and depicted as mean ± SE % relaxation of U46619 pre-
constriction.
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eclampsia. The NO pathway involves the activation of soluble guany-

lyl cyclase by NO, resulting in the formation of cGMP, which subse-

quently acts via PKG. Gao et al. (2016) showed a reduced expression

and activity of soluble guanylyl cyclase and a consequently lower

cGMP content in pre-eclamptic placenta vessels. In the current study

however, the responses to both the NO donor SNP and the soluble

guanylyl cyclase activator BAY 60-2770 were unaltered in pre-

eclampsia. This contrasts with previous studies (Kossenjans

et al., 2000; Ong et al., 2002). A unifying concept might be that the

NO-mediated response is only modestly attenuated. Despite not

matching the statistical significance that was reached in the two pre-

vious studies, the present study did display a tendency for a reduced

function of the NO pathway. A further possibility is that the endoge-

nous NO generation is diminished in pre-eclampsia, affecting the

capacity of pentoxifylline to up-regulate such NO generation. Our

observation that L-NAME elevated the baseline tension in healthy,

but not pre-eclamptic arteries supports this concept. Irrespective of

the outcome, the present data clearly show that PDE inhibition does

not improve vasodilation in early-onset pre-eclampsia. This argues

against placental PDE upregulation as a causal factor in pre-eclamp-

sia, in agreement with our previous work in which PDE1A and

PDE5A were not found to be differentially expressed in pre-

eclamptic placentas (Hitzerd et al., 2019). It rather points to a

reduced significance of placental PDE in this condition and thus

inhibition of PDE does not seem a logical choice to treat placental

dysfunction in pre-eclampsia, as shown previously with sildenafil

(Hitzerd et al., 2019). However, PDE inhibition might still be benefi-

cial to target the increased serum PDE activity in pre-eclampsia

(Pinheiro da Costa et al., 2006).

Animal work supports a range of mechanisms that might underlie

the vasodilator function of pentoxifylline (Berkenboom et al., 1991;

Crowell et al., 1990; Hansen, 1994; Hoeffner et al., 1989; Kabbesh

et al., 2012; Kaputlu & Sadan, 1994; Marukawa et al., 1994). Our

observation that pentoxifylline enhanced endogenous NO-cGMP-

PKG signalling, at least in healthy placentas, mimics similar findings in

rat mesenteric arteries (Hansen, 1994), rat aorta (Marukawa

et al., 1994) and equine digital veins (Kabbesh et al., 2012). Like in

equine digital veins, vasodilation by pentoxifylline was not affected by

inhibition of the cAMP pathway and thus did not depend on potentia-

tion of endogenous cAMP (Kabbesh et al., 2012), although pentoxifyl-

line did potentiate exogenous activation of the cAMP pathway with

forskolin, probably due to its PDE-inhibitory capacity.

We additionally confirmed that the metabolite M1, which was

converted from pentoxifylline in our ex vivo placenta perfusion experi-

ments, evokes vasodilation (Ruddock & Hirst, 2005) via a mechanism

that involves PKG but not cAMP. The metabolites M4 and M5 did not

have any vasodilator properties in placental vessels and were not

formed by the placenta ex vivo.

F IGURE 4 Comparisons of vasodilation responses between healthy and pre-eclamptic chorionic plate arteries. Concentration-response
curves (CRC) from wire myography experiments depicted as percentage relaxation of pre-constriction by U46619. (a) CRC of pentoxifylline (PTX,
healthy n = 26, pre-eclampsia n = 18). (b) CRC of soluble guanylyl cyclase activator BAY 60-2770 (healthy n = 8, pre-eclampsia n = 6). (c) CRC of
NO donor SNP (healthy n= 19, pre-eclampsia n= 13). (d) CRC of adenylyl cyclase activator forskolin (healthy n = 8, pre-eclampsia n = 11). Pre-
eclampsia curves were compared with healthy curves using GLM-RM and depicted as mean ± SE % relaxation of U46619 pre-constriction.
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Given the absence of pentoxifylline-induced NO-cGMP-PKG sig-

nalling in pre-eclamptic arteries, while its net relaxant effects

remained unaltered, alternative pathways must have contributed to

the observed relaxation in pre-eclampsia. Here, interaction of pentoxi-

fylline with adenosine receptors might come into play. Indeed, pen-

toxifylline was shown to antagonize the A1 receptor and thereby

block coronary vascular constriction (Sato et al., 2005). A2 receptor

antagonism would be expected to exert the opposite effect (Farmer

et al., 1988; Sato et al., 2005), but the affinity of pentoxifylline for A1

receptors is higher than that for A2 receptors (Schwabe et al., 1985).

Importantly, the concentrations required to block adenosine receptors

are around one order of magnitude higher than those needed to block

cAMP-degrading PDE (Ki: 180 ± 2 versus 37.7 ± 3.5 μmol�L�1)

(Miyamoto et al., 1993). Our data with A1, A2A and A2B receptor

antagonists support an effect via A1 receptors at pentoxifylline con-

centrations that are 10–20 times higher than those reported in

patients (Beermann et al., 1985; Lauterbach et al., 2012; Smith

et al., 1986). Although the inhibitory function of the A1 receptor has

been suggested to involve adenylyl cyclase (Sato et al., 2005), the lack

of effect of the adenylyl cyclase inhibitor SQ22536 towards

pentoxifylline-induced vasodilation argues against this concept.

Therefore, in chorionic plate arteries, A1 receptor effects might be

accomplished through other mechanisms including (1) elevation of

inositol 1,4,5-trisphosphate and intracellular calcium levels through

activation of phospholipase C-β, and (2) interaction with pertussis

toxin-sensitive G proteins and KATP channels, as well as Q-, P-,and N-

type Ca2+ channels (Borea et al., 2018) (Figure 6). A further alterna-

tive is that pentoxifylline does not antagonize the constrictor effects

of endogenous adenosine via A1 receptors, but instead directly

induces vasodilation via these receptors. Future studies should evalu-

ate these possibilities, as well as their potential alterations in pre-

eclampsia. Preliminary data support that the A1 receptor-dependent

effect of pentoxifylline can be observed in pre-eclamptic arteries

(Figure S4).

4.2 | Anti-inflammatory effects of pentoxifylline

The anti-inflammatory effects of pentoxifylline in healthy placental

explants were absent in pre-eclamptic placentas but might have

resulted from its conversion into M1 (van Furth et al., 1997; W�ojcik-

Pszczoła et al., 2016; Yang et al., 2005). In a mouse model of LPS-

induced pulmonary inflammation, the anti-inflammatory effects of

pentoxifylline were suggested to be A2A receptor-dependent (Konrad

et al., 2013). Yet, the vasodilator effects of pentoxifylline in the pre-

sent study involved A1 receptor antagonism and PDE inhibition. Only

the latter effect was absent in pre-eclampsia. A more likely explana-

tion of our observations is therefore that the anti-inflammatory

effects involve PDE inhibition. Importantly, our data differ from those

of Speer et al. (2017), who mimicked pre-eclamptic conditions by

exposing healthy placental explants to LPS. This illustrates that LPS-

induced inflammation does not fully resemble pre-eclampsia. The pre-

eclamptic placental explants in the present study did maintain their

in vivo phenotype, evidenced by increased endoglin and VEGFR�1

secretions, as expected based on elevated circulating levels of endo-

glin and soluble VEGFR�1 in women with pre-eclampsia (Levine

et al., 2006; Romero et al., 2008). The secretion of other measured

cytokines and angiogenic factors was not different between the two

conditions. It should be noted that this was based on the unadjusted

P values since our study was not powered to detect differences

between the baseline secretion of proteins from pre-eclamptic and

healthy explants. Nevertheless, our results indicate that the placenta

may not be the source of the elevated circulating cytokine and che-

mokine concentrations (including CCL2/MCP�1) in women with pre-

eclampsia (Ma et al., 2019; Szarka et al., 2010). This conclusion agrees

with our recent data that depict a suppressed rather than pro-

inflammatory placental immune system in early-onset pre-eclampsia

(Broekhuizen et al., 2021). It additionally implies that the pro-

inflammatory state in pre-eclampsia might originate in tissue other

than the placenta, for example it may reflect generalized endothelial

dysfunction. Whether pentoxifylline would act outside the placenta

cannot be concluded based on our results.

TABLE 3 Baseline secretion of cytokines and (anti)angiogenic
factors from pre-eclamptic and healthy placental explants

Healthy (n = 5–7)a Pre-eclampsia (n = 7)

Endoglin 261.4 (176.7, 337.1) 630.8 (359.2, 1268.7)*

VEGFR�1 972.6 (959.1, 1819.7) 3494.3 (2039.0, 4854.0)*

CCL2/

MCP�1

205.9 (203.7, 271.8) 97.0 (88.6, 201.3)

CXCL10/

IP�10

4.2 (4.1, 10.1) 9.3 (7.6, 20.0)

M-CSF 289.4 (163.5, 291.1) 161.1 (132.7, 196.5)

PIGF 2.3 (1.5, 3.0) 4.0 (2.6, 5.8)

G-CSF 27.3 (21.8, 43.0) 39.3 (25.3, 65.4)

IL-6 396.4 (267.4, 495.3) 276.7 (243.5, 456.4)

IL�1-beta 2.9 (1.9, 5.6) 3.8 (3.6, 5.7)

TNF-alpha 2.6 (1.4, 5.5) 3.6 (3.3, 5.0)

CX3CL1/

fractalkine

1090.7 (418.8, 2797.6) 1479.6 (1155.9, 2077.3)

GM-CSF 5.1 (3.0, 11.9) 7.2 (5.8, 9.9)

IFN-gamma 21.5 (6.6, 36.7) 26.8 (21.0, 39.2)

IL-4 64.8 (29.9, 104.3) 74.8 (59.6, 106.6)

IL�12-p70 77.7 (25.7, 134.6) 96.0 (80.8, 136.2)

IL�16 64.9 (53.2, 91.7) 75.6 (66.8, 94.7)

IL�18 19.1 (9.5, 33.3) 21.7 (19.5, 32.2)

IL�1ra 370.9 (257.3, 552.3) 408.4 (328.0, 556.7)

IL-2 30.9 (28.4, 51.2) 38.4 (30.6, 55.7)

CXCL8/IL-8 1953.3 (1791.4, 3182.4) 2311.5 (1803.5, 3636.3)

IL�10 3.6 (1.7, 7.9) 5.4 (4.0, 6.8)

Note: The concentrations are given in pg�ml�1�mg�1 dry tissue weight as

median (Q1, Q3). VEGF, VEGFC and IL-5 were undetectable.
an = 7 in healthy for endoglin and GSF, and n = 5 for all other variables

due to a technical error.

*P < 0.05 versus healthy using a Kruskal–Wallis test.
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Nevertheless, in the pre-eclamptic placenta, the potentiating

effects of pentoxifylline on the cGMP and cAMP pathway, as well

as the anti-inflammatory effects, have disappeared. At the same

time, its direct relaxant effects remained fully intact and since

these involved A1 receptors, future studies should focus on adeno-

sine receptor responsiveness in pre-eclampsia, in particular because

elevated maternal and foetal adenosine levels have been reported

in pre-eclampsia and related to placental insufficiency (Espinoza

et al., 2011; Takeuchi et al., 2001; Yoneyama et al., 1996;

Yoneyama et al., 2002).

In conclusion, we have shown that pentoxifylline exerts vasodila-

tor and anti-inflammatory effects in the human placenta, involving the

NO and cAMP pathways, as well as the A1 receptor. Not all these

effects are preserved in pre-eclampsia, questioning its application in

this disease. Yet, an obvious advantage of pentoxifylline as a novel

treatment is that it is already available for clinical use allowing quick

implementation. To the best of our knowledge, no teratogenic effects

have been observed in either animal or clinical studies. It is also

already safely used in preterm infants, suggesting less risks of treat-

ment during the third trimester of pregnancy. Pentoxifylline could

nevertheless provide an opportunity to treat other placenta-related

diseases such as foetal growth restriction or chorioamnionitis. Here it

should be noted that pentoxifylline is metabolized by the placenta and

does reach the foetus, so that a thorough pharmacokinetic study in

F IGURE 5 The effects of pentoxifylline on the release of proteins from placental explants. Placental explants from healthy (a, n = 5–7) and
pre-eclamptic (b, n = 7) women were incubated with or without 100 mg�L�1 (=359 μmol�L�1) pentoxifylline (PTX). The release of cytokines from
placental explants with pentoxifylline was normalized to the release of cytokines from its own paired control experiment and displayed as
percentage change versus control (mean ± SE). *P < 0.05 versus 100% in one-sample Student's t test with Benjamini–Hochberg correction.

F IGURE 6 Schematic illustration of
the potential effects of pentoxifylline
(PTX) in placental blood vessels.
Pentoxifylline can improve vasodilation of
healthy chorionic plate arteries by
enhancement of NOS-mediated NO
synthesis and/or inhibition of PDEs. It can
also inhibit vasoconstriction through
antagonism of the adenosine type
1 receptor (A1). A2A/A2B, adenosine type
2A/2B receptor; ATP, adenosine
triphosphate; (c)AMP, (cyclic) adenosine
monophosphate; (c)GMP, (cyclic)
guanosine monophosphate; GTP,
guanosine triphosphate; IP3, inositol
triphosphate; PGH2, prostaglandin H2;
PGI2, prostacyclin; PKG/PKA, protein
kinase G/A; PLC, phospholipase C
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pregnant women is required to define safe dosing regimens. Regard-

ing pre-eclampsia, our observation that pentoxifylline induces vasodi-

lation via blockade of the adenosine A1 receptor, combined with

evidence for elevated adenosine levels in this disorder (Espinoza

et al., 2011; Takeuchi et al., 2001; Yoneyama et al., 1996; Yoneyama

et al., 2002), raises the possibility that selective adenosine A1 receptor

antagonists might serve as new therapeutic tools.
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