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Abstract: Metallic waste classification benefits the environment, resource reuse and industrial
economy. This paper provides a fast, non-contact and convenient method based on eddy current
to classify metals. The characteristic phase to characterize different conductivity is introduced and
extracted from mutual inductance in the form of amplitude and phase. This characteristic phase could
offer great separation for non-tilting metals. Although it is hard to classify tilting metals by only using
the characteristic phase, we propose the technique of phase compensation utilizing photoelectric
sensors to obtain the rectified phase corresponding to the non-tilting situation. Finally, we construct a
classification algorithm involving phase compensation. By conducting a test, a 95% classification rate
is achieved.

Keywords: non-magnetic metal; tilting; conductivity classification; eddy current sensors;
photoelectric sensors; characteristic phase

1. Introduction

Eddy currents induced by time-varying magnetic fields have been widely applied to
nondestructive defect detection, imaging, identification of metals and so forth [1–3]. To produce
the eddy current, an alternating current excites a coil which generates the time-varying magnetic field
by Ampère’s law [4]. According to Faraday’s law, an electric field around a closed loop is activated, and
that drives electrons in metals to move, forming the eddy current [5]. There are several advantages of
using eddy currents that greatly attract researchers: non-contact, non-destructive and flexible detection
depth for inspection [6–8].

An eddy current is usually utilized to sort out metal from waste. For instance, magnetic deflecting
force has been used to separate non-ferrous metals from electronic scrap [9,10]. The effects of particle
size, particle shape and conductivity were also discussed. Nevertheless, the high-force eddy current
separator in this paper had no ability to separate metals from each other. Aluminum is separated from
a lithium-iron phosphate mixture by an eddy current in [11], which actually is far from the separation
between different metals. Recently, eddy-current-based impedance spectroscopy was used to achieve
fast classification of non-magnetic metals [12]. The authors introduced a method in which the real
component of the secondary magnetic field with respect to the excitation magnetic field at 64 KHz and
the imaginary component at 16 KHz were functioning as the x-axis and y-axis in a Cartesian coordinate
system to give the best fitting function for each metal, by which, overall, 94.4% accuracy was realized.
However, the discussion of tilting of metal samples (rotating along an axis in a Cartesian coordinate
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system) has not been involved, and merely copper, aluminum and brass have been classified, which are
a fraction of metals used in industry.

In this paper, the characteristic phase of mutual inductance for a dynamic metallic sample is
found. This characteristic phase offers satisfactory classification of five different samples under 40 KHz
excitation frequency. Afterwards, a follow-up experiment on tilting metals is conducted. Although it
is hard to classify tilting samples by only using characteristic phases, with the help of fitting a linear
function of characteristic phase and tilting angle, we are able to utilize phase compensation to obtain
rectified phase to achieve classification. The phase compensation is supported by using photoelectric
sensors to obtain the voltage which is approximately proportional to the tilting angle. We finally
construct a classification algorithm through which our test shows a 95% classification rate.

2. Theoretical Foundation

Dodd and Deeds [13] in 1968 gave the analytical solution of the model wherein a single coil is
above a conductor, and calculated the induced voltage. Yin [14] further proposed the closed-form
solution (1) to the mutual inductance between two coils [15].

∆L(ω) = K
∫ ∞

0

P2(α)

α6 A(α)φ(α) dα (1)

where

φ(α) =
(α1 + µα)(α1 − µα)− (α1 + µα)(α1 − µα)e2α1c

−(α1 − µα)(α1 − µα) + (α1 + µα)(α1 + µα)e2α1c (2)

α1 =
√

α2 + jωσµ0 (3)

K =
πµ0N2

(l1 − l2)2(r1 − r2)2 (4)

P(α) =
∫ αr2

αr1

xJ1(x)dx (5)

A(α) = (e−αl1 − e−αl2)2 (6)

where α is the spatial frequency, ω is the excitation angular frequency, σ is the conductivity, µ0 is
the vacuum permeability, c is the thickness of the sample, N is the number of turns of the coil,
l2 − l1 is the height of the eddy current sensor, r1 is the radius of ferrite, r2 is the radius of the eddy
current sensor and J1 is the bessel function of the first kind. As is shown in (1) and (3), the mutual
inductance is the function of the conductivity, which is a component of the imaginary part. Thus,
we conduct experiments trying to extract the phase information from mutual inductance to classify
different conductivities.

3. Experimental Set-Up

The types of metals used in the experiments were copper, aluminum, zinc, tin and titanium. Metal
samples were all 1× 1× 1 cm3 cubes. We first conducted the experiment to classify non-tilting metals.
We used the eddy current sensors in [16]. The setup of the experiment is shown in Figure 1 wherein
the sample, rotating around x-axis, was moved along the y-axis under the eddy current sensors by a
motion controller. The coils of eddy current sensors (excitation coil and pick-up coil) and elements of
TCRT5000 photoelectric sensors (light emitting element and light receiving element) are located in the
x–z plane. Figure 2 shows components of the entire separation system, which are eddy current sensors,
a motion controller, an EM instrument in [17] and a computer. To acquire the mutual inductance,
we use the calibration method introduced in [17], which is given by
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∆L =
Vsample −Vair

jωI
= (Vsample −Vair)×

M
Vtrans f ormer

(7)

where Vsample is the induced voltage with a sample, Vair is the induced voltage in free space, Vtrans f ormer
is the induced voltage in the transformer, M is the mutual inductance of the transformer, I is the
excitation current and ω is the angular frequency of the excitation signal.

Figure 1. Setup model of the experiment.

Figure 2. Photo of the entire separation system.
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4. Non-Tilting Metal Classification

We rewrite the measurements, which are composed of a real part and an imaginary part of mutual
inductance, in the form of amplitude and phase.

Lr + i ∗ Li = |L|eip (8)

where Li is the imaginary part, Lr is the real part, |L| is the amplitude and p is the phase. To compare
different trajectories intuitively, we make the amplitude normalized. It is shown in Figure 3a that the
mutual inductance values obtained in the form of real parts and imaginary parts for different samples
have different trajectories, where the circle denotes the corresponding point of the characteristic
phase which is mentioned in the next section. In detail, the trajectory would rotate counter-clockwise
according to the magnitude of conductivity from copper to titanium. In other words, the smaller the
conductivity, the larger the characteristic phase. Trajectories in the form of amplitude and phase are
shown in Figure 3b for five metal samples. For instance, in fact, the left half of the mutual inductance
trajectory for copper in Figure 3a is mapped to the bottom half of the trajectory in Figure 3b and the
right half is mapped to the top half in Figure 3b. In Figure 3a, the route to get closer to the center
of eddy current sensors provides the left half of the mutual inductance trajectory and that to get
away from the center provides the right half. As is shown in Figure 3b, the trajectories are separated
from each other and the order from bottom to top exactly follows the magnitude of conductivities of
samples, as shown in Table 1. To characterize every different trajectory, we pay attention to the end
point, which stays distinguishable. Thus, we choose the end point as the characteristic phase.

Table 1. Conductivity (S/m) of metals.

Copper Aluminum Zinc Tin Titanium

5.96× 107 3.77× 107 1.69× 107 0.92× 107 0.24× 107
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Figure 3. Measured mutual inductances when the excitation frequency is 40 KHz and the lift-off is
5 mm. (a) Mutual inductance in the form of a real part and an imaginary part. (b) Mutual inductance
in the form of amplitude and phase. Trajectories are drawn, where black denotes copper, green denotes
aluminum, red denotes zinc, blue denotes tin and cyan denotes titanium. The characteristic phase for
each metal is marked by a circle with the same color as the corresponding trajectory.

5. Tilting Metal Classification

The general case in metal classification is that the surfaces of wastes, where eddy current exists,
are inclining—that is to say, not parallel to the sensors. The eddy current distribution in this situation
becomes more complex. We first check the feasibility of keeping using characteristic phases to classify
the oblique metals with the same set-up as shown in Figure 1. The mutual inductance trajectories for
tilting samples are plotted in Figure 4 with 40 KHz excitation frequency. The lift-off in this experiment
when the tilting angle is 0◦ is 5 mm, which is kept constant for subsequent tilting samples.
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As is shown in Figure 5, as the tilting angle increases, the characteristic phase decreases for
all the conductive samples. To explore whether the phase decrease was from angle or from lift-off,
we performed an experiment in which lift-off was variable for non-tilting samples. As is shown in
Figure 6, characteristic phase versus conductivity is plotted for lift-off varying from 2–7 mm.

Figure 4. Measured mutual inductances in the form of real part and imaginary part for tilting samples.
(a) Cu. (b) Al. (c) Zn. (d) Sn. (e) Ti. black line denotes 0◦, green line denotes 2.86◦, red line denotes
5.71◦, blue line denotes 8.53◦, cyan line denotes 11.31◦. Circles are the points corresponding to
characteristic phases.

One conclusion can be drawn from Figure 6, which is that the characteristic phase rises up
with lift-off. This conclusion matches up with the phase decrease when the angle is increasing,
which actually corresponds to the lift-off decrease. Tilting causes the decrease of lift-off, thereby
increasing the amplitude of receiving signal. This is why the lengths of trajectories in the same
sub-figures of Figures 4 and 7 are different. When the lift-off is larger or the tilting angle is smaller,
the length of the trajectory becomes shorter. The physical reason is that a smaller lift-off results in a
stronger eddy current because of the excitation electromagnetic field inversely proportional to r3 where
r is the distance between the sample and the excitation coil [18]. A larger eddy current would further
enhance the secondary magnetic field, eventually increasing the mutual inductance. The equation for
the relation between eddy current and secondary magnetic field is given by
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∮
B · dl = µ0

∫∫
J · dS (9)

where J is the eddy current density and B is the secondary magnetic field produced by the eddy
current. The relation between the secondary magnetic field and mutual inductance is given by

L =

∫∫
B

′ · dS
I0

(10)

where B
′

is the secondary magnetic field propagating to the pickup coil, I0 is the excitation current
and L is the mutual inductance.

Moreover, the characteristic phase range shown in Figure 5a (from the magenta diamond to the
black diamond) for samples with different conductivities always has a part which coincides with
others. This could become a problem where a tilting metallic sample may have the same characteristic
phase as that of another sample. This issue exists for copper, aluminum, zinc, and tin but not for
titanium. As is shown in Figure 5a, the smallest characteristic phase of titanium is larger than the
rest. The method by which we address this problem is by using phase compensation, which will be
comprehensively described in the next section.
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Figure 5. (a) Characteristic phase versus metals, where black diamond denotes 0◦, green diamond
denotes 2.86◦, red diamond denotes 5.71◦, blue diamond denotes 8.53◦ and magenta diamond denotes
11.31◦. (b) Characteristic phase versus angles where black diamond denotes copper, green diamond
denotes aluminum, red diamond denotes zinc, blue diamond denotes tin and magenta diamond
denotes titanium.
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Figure 6. (a) Characteristic phase versus conductivity for different lift-off values. (b) Characteristic
phase versus different lift-off values for different samples.
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Figure 7. Measured mutual inductances in the form of the real part and the imaginary part for tilting
samples with variable lift-off. (a) Cu. (b) Al. (c) Zn. (d) Sn. (e) Ti.

6. Algorithm and Test

To identify the tilting angle, we propose utilizing photoelectric sensors because metal acts like a
mirror for infrared rays which would be reflected back to the light-receiving element. When the metal
is tilting, parts of the receiving signal would be reflected to free space instead of the light receiving
element, which would decrease the irradiance on the phototransistor. However, the distance between
the sample and the light receiving element is reduced by increasing the tilting angle, which would
enhance the irradiance. Under small tilting angle, the net effect is the almost linearly increasing voltage
measured by a voltmeter, as shown in Figure 8a. The voltage results from the photocurrent through a
resistor connected to the phototransistor based on the amount of irradiance [19,20]. Therefore, so long
as we find the voltage, the angle becomes known. It is shown in Figure 8a that with an angle smaller
than 9◦, the voltage F1i(θ) could be taken as proportional to the angle, by which we are capable of
finding the tilting angle by measuring the voltage of the resistor connected to the phototransistor. The
method of least squares to obtain the fitting functions of voltage is given by

F1i(θ) = k1iθ + b1i (11)
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[k1i, b1i] = min
k1i ,b1i

‖F1i − Pi‖2
2 (12)

where F1i denotes different fitting linear function of voltage for different samples, k1i denotes the
slope and b1i denotes the y-intercept. As long as we find the tilting angle θ, we could post-process
this phase with a bias to approach the characteristic phase in the non-tilting situation. Then we
could achieve metal classification because the characteristic phases of different non-tilting samples are
always differentiable. For example, as shown in Figure 9 (the green line and black line are chosen from
Figure 8b, the sample2 under θ2 may have the same characteristic phase (p1) as the sample1 under
θ1. By resorting to the fitting functions of characteristic phase for the sample1 and sample2, we could
find the bias1 and bias2. By subtracting the two different bias from p1, the y-intercepts for two samples
are obtained. Since the y-intercept corresponds to the characteristic phase when the tilting angle is
0◦, we could always distinguish these y-intercepts as shown in Figure 8b. To find the fitting linear
functions in Figure 8b for five samples, we use the method of least squares.

F2i(θ) = k2iθ + b2i (13)

[k2i, b2i] = min
k2i ,b2i

‖F2i − Pi‖2
2 (14)

where F2i denotes different fitting linear functions of the characteristic phases of different samples,
k2i denotes the slope and b2i denotes the y-intercept. As long as we find the tilting angle θ, we could
assign a bias to the detected characteristic phase. Thus, the final classifiable angle range is from 0◦ to
9◦. After obtaining those fitting functions, the bias is given by

δi = F2i(θ)− F2i(0) (15)

where θ is the detected angle and F2i(0) is the reference phase. The drawback here is that there may
be several angles for one voltage, as shown in Figure 9. To resolve this issue, we need to form an
algorithm, which is, step by step, as shown in Figure 10:

(1) Obtain the raw data of mutual inductance ∆L from eddy current sensors and voltage v from
photoelectric sensors.

(2) Find the characteristic phase Φ and tilting angles through v for every possible sample; e.g., θT for
tin and θA for aluminum.

(3) Find the bias for every tilting angle by (15), e.g., δT for θT and δA for θA, and rectify the detected
characteristic phase to get Φk of different metals; e.g., Φ1 = Φ− δT for tin and Φ2 = Φ− δA for
aluminum.

(4) Calculate the errors |F2k(0)−Φk| and find the metal type corresponding to the smallest error.
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Figure 8. (a) Voltage versus angle where the black line denotes copper, the green line denotes
aluminum, red line the denotes zinc, the blue line denotes tin and the magenta line denotes titanium.
(b) Characteristic phase versus angles, where the black line denotes copper, the green line denotes
aluminum, the red line denotes zinc, the blue line denotes tin and the magenta line denotes titanium.

0 2 4 6 8

Angle (DEG)

1.4

1.45

1.5

1.55

1.6

C
h

ar
ac

te
ri

st
ic

 P
h

as
e 

(r
ad

) sample1

sample2

21

bias
2

bias
1

P
1

Figure 9. Schematic of the bias.

Figure 10. The flow diagram of the algorithm.

To test our classification algorithm, we did experiments twenty times to prepare the test data.
As is shown in Figure 11, the largest angle error is near 1.5◦ and the phase error is below 0.15 rad.
The phase error and angle error are given by
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∆p = min{|F2k(0)−Φk|} (16)

∆θ = |θ − θ
′ | (17)

where ∆p is the phase error, ∆θ is the angle error, θ is the actual angle and θ
′

is the angle calculated by
the classification algorithm. If the output result is not the actual type of the sample we use, we count it
as the wrong test; otherwise we count it as the right test. The classification rate is 95% but the angle
error still needs improvement. The data about the wrong test are given in Table 2, from which it is
obvious that the output result would be Al because the test error is smaller. However, the actual type of
the sample we use in this test is Sn. The reason is that the fitting functions F2i for Al and Sn introduce
different errors to the phase, as shown in Table 3. The train phase uses the data to obtain the fitting
linear functions for characteristic phase, and the fitting error is the difference between the train phase
and the fitting phase. The fitting error for Al is larger than that for Sn, which would affect the test error
badly if the input phase of Sn were to some degree smaller than the train phase of Sn.
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Figure 11. Test results (N is the order of testing) where red cross denotes the wrong test. (a) Phase error
versus N. (b) Angle error versus N.

Table 2. Data about the wrong test.

Input Voltage (V) Angle (DEG) Type Input Phase (rad) Fitting Phase (rad) Test Error (rad)

3.81 5.40 Sn 1.61 1.70 0.09

3.81 8.01 Al 1.61 1.55 0.06

Table 3. Analysis about the wrong test.

Input Phase (rad) Type Train Phase (rad) Fitting Phase (rad) Fitting Error (rad)

1.61 Sn 1.65 1.70 0.05

1.61 Al 1.48 1.55 0.07

7. Conclusions

This paper achieves classification for five types of metals by characteristic phases of mutual
inductance. This characteristic phase is obtained from the end point on the trajectory of mutual
inductance in the form of amplitude and phase. By exploring trivial situation with non-tilting samples,
we found that the characteristic phase is smaller for a sample with larger conductivity. Next, we turned
our attention into tilting samples and found that trajectories have different lengths for different
angles, and phase ranges of different samples intersect each other. By performing the experiment
with variable lift-off, we concluded that the different size of the trajectory is related to the change
of lift-off. To address the issue of phase overlap, we formed an algorithm to classify tilting metals.
In this algorithm, we resort to the method of least squares to obtain two sets of linear functions,
one of which is for the voltage measured by the voltmeter and the other is for the characteristic phase
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extracted from the mutual inductance. By inputting the voltage, we can find the tilting angle on
which the bias is based. After acquiring the bias and the characteristic phase, the technique of phase
compensation is applied. The last step is to compare the errors between the rectified phases and the
reference phases and then output the type of metal according to the minimum error. This algorithm
should be also applicable when more metals are included as long as they show similar linear relations
for the voltage and the characteristic phase when the tilting angle is the variable. This algorithm can
achieve classification under tilting angle not larger than 9◦. The test results show a 95% classification
rate. To improve the applied methodology, it will be possible to find another characteristic phase
on the mutual inductance trajectory that could further decrease the fitting error; however, that is
time-consuming. To make the classification intelligent, it is possible to resort to the machine learning
or deep leaning methods since numerous phases are obtained in the dynamic experiments, which
produce enough characteristics to train a classification model. In the future, we are interested in
involving other variables, such as non-flat surfaces or irregular shapes, in our research to make the
classification technique more generalized. Whether the characteristic phase and our algorithm are still
applicable to the different alloys of metals is also attractive.
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