Mixed Noble-Gas Compounds of Krypton(II) and Xenon(VI); $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF}) \mathrm{AsF}_{6}\right]$ and $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF})_{2} \mathrm{AsF}_{6}\right]$

Matic Lozinšek,* Hélène P. A. Mercier,* and Gary J. Schrobilgen*
Dedicated to Professor Boris Žemva on the occasion of his 80th birthday

Abstract

The coordination chemistry of KrF_{2} has been limited in contrast with that of XeF_{2}, which exhibits a far richer coordination chemistry with main-group and transition-metal cations. In the present work, reactions of $\left[\mathrm{XeF}_{5}\right]\left[A s F_{6}\right]$ with KrF_{2} in anhydrous HF solvent afforded $\left[F_{5} \mathrm{Xe}(\mathrm{FKrF}) \mathrm{AsF} \mathrm{F}_{6}\right]$ and $\left[F_{5} \mathrm{Xe}(F \mathrm{FrF})_{2} \mathrm{AsF}_{6}\right]$, the first mixed krypton/xenon compounds. X-ray crystal structures and Raman spectra show the KrF_{2} ligands and $\left[A s F_{6}\right]^{-}$anions are F-coordinated to the xenon atoms of the $\left[\mathrm{XeF}_{5}\right]^{+}$cations. Quantum-chemical calculations are consistent with essentially noncovalent li-gand-xenon bonds that may be described in terms of σ-hole bonding. These complexes significantly extend the $\mathrm{XeF}_{2}-\mathrm{KrF}_{2}$ analogy and the limited chemistry of krypton by introducing a new class of coordination compound in which KrF_{2} functions as a ligand that coordinates to xenon(VI). The HF solvates, $\left[F_{5} \mathrm{Xe}(F H) A s F_{6}\right]$ and $\left[F_{5} \mathrm{Xe}(F H) S b F_{6}\right]$, are also characterized in this study and they provide rare examples of HF coordinated to xenon(VI).

Introduction

Krypton reactivity was discovered ${ }^{[1]}$ soon after the landmark synthesis of the first true noble-gas compound, $\mathrm{Xe}\left[\mathrm{PtF}_{6}\right] .{ }^{[2]}$ Although the precise formulation of $\mathrm{Xe}\left[\mathrm{PtF}_{6}\right]$ remains unproven, it is likely a salt or a mixture of $[\mathrm{XeF}]^{+}$ salts. ${ }^{[3,4]}$ Although the discoveries of xenon and krypton chemical reactivities occurred nearly 60 years ago and within a year of one another, their chemistries never became entwined to form a single compound that contains both chemically bound noble gases. In contrast with xenon, which

[^0]exhibits formal oxidation states in its isolated compounds of 0 , $+1 / 2,+2,+4,+6$, and +8 , krypton only exhibits the +2 oxidation state and a far more limited chemistry. The only binary krypton fluoride that can be synthesized in macroscopic and synthetically useful amounts is KrF_{2}, ${ }^{[5-7]}$ from which all other krypton compounds have been derived. ${ }^{[5-12]}$

Prior studies have explored the ligating properties of KrF_{2} and have provided several KrF_{2} adducts that were structurally characterized by low-temperature (LT) single-crystal X-ray diffraction (SCXRD) and Raman spectroscopy. The latter include complexes with a main-group Br^{V} oxyfluoride cation, $\left[\mathrm{F}_{2} \mathrm{OBr}(\mathrm{FKrF})_{2} \mathrm{AsF}_{6}\right]$, ${ }^{[8]}$ a neutral covalent transition-metal $\mathrm{Hg}^{\text {II }}$ compound, $\mathrm{Hg}\left(\mathrm{OTeF}_{5}\right)_{2} \cdot 1.5 \mathrm{KrF}_{2},{ }^{[9]}$ a transition-metal cation, $\mathrm{Hg}^{2+},\left[\mathrm{Hg}(\mathrm{FKrF})_{8}\right]\left[\mathrm{AsF}_{6}\right]_{2}{ }^{[11]}$ and a main-group metal cation, $\mathrm{Mg}^{2+},\left[\mathrm{Mg}(\mathrm{FKrF})_{4}\left(\mathrm{AsF}_{6}\right)_{2}\right] \cdot{ }^{[10]}$ Most recently, the KrF_{2} adducts of the weak fluoride-ion acceptor, CrOF_{4}, have been reported and structurally characterized for $\mathrm{KrF}_{2} \cdot n \mathrm{CrOF}_{4}(n=$ 1, 2). ${ }^{[12]}$ The xenon analogues, $\left[\mathrm{F}_{2} \mathrm{OBr}(\mathrm{FXeF})_{2} \mathrm{AsF}_{6}\right],{ }^{[13]} \mathrm{Hg}$ $\left(\mathrm{OTeF}_{5}\right)_{2} \cdot 1.5 \mathrm{XeF}_{2},{ }^{[9]} \mathrm{XeF}_{2} \cdot n \mathrm{CrOF}_{4}(n=1,2),{ }^{[12]}$ and $[\mathrm{Mg}-$ $\left(\mathrm{FXeF}_{4}\right)_{4}\left(\mathrm{AsF}_{6}\right)_{2}{ }^{[14]}$ have also been synthesized and structurally characterized by SCXRD and Raman spectroscopy. The linear, centrosymmetric $\left(D_{\infty h}\right) \mathrm{NgF}_{2}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe})$ molecules ${ }^{[15]}$ distort upon coordination to a fluoride-ion acceptor (A) to form a $\mathrm{Ng}-\mathrm{F}_{\mathrm{b}}--$ - b bridge in which the $\mathrm{Ng}-\mathrm{F}_{\mathrm{b}}$ bond is elongated and the terminal $\mathrm{Ng}-\mathrm{F}_{\mathrm{t}}$ bond is contracted relative to free NgF_{2}. The extent to which distortion and polarization of the NgF_{2} ligand occurs, and thus the extent to which the positive charge on Ng is enhanced, depends on the Lewis acidity of the fluoride-ion acceptor. ${ }^{[5,6,16]}$ Interactions with the strongly Lewis acidic pnictogen pentafluorides, PnF_{5}, result in the formation of strongly ion-paired $[\mathrm{NgF}]\left[\mathrm{PnF}_{6}\right]^{[6,15]}$ salts in which the $[\mathrm{NgF}]^{+}$cations and $\left[\mathrm{PnF}_{6}\right]^{-}$anions interact by means of $\mathrm{Ng}---\mathrm{F}_{\mathrm{b}}-\mathrm{Pn}$ bridges. The electrophilicities of $[\mathrm{NgF}]^{+}$ and coordinated NgF_{2} ligands relative to free NgF_{2} are manifested by marked increases in their oxidative fluorinating abilities. ${ }^{[5]}$ In the case of KrF_{2}, the number of suitable Lewis acids that can coordinate to KrF_{2} and withstand its extraordinary oxidative fluorinating strength is very limited.

Two criteria must therefore be met for the formation of a mixed xenon/krypton adduct: (1) The fluorobasicity of KrF_{2} must closely balance the Lewis acidity of the xenon substrate, i.e., a Lewis acid that is too weak will be unable to coordinate KrF_{2}, whereas a Lewis acid that is too strong will abstract F^{-} to form a more electrophilic and strongly oxidizing $[\mathrm{KrF}]^{+}$ salt. (2) The fluoride-ion acceptor must be sufficiently resistant to attack by the potent oxidative fluorinator, KrF_{2}. The Lewis acidic $\left[\mathrm{XeF}_{5}\right]^{+}$cation meets these criteria by virtue of its net positive charge and the high formal oxidation state of xenon $(+6)$.

The coordination behavior of the $\left[\mathrm{XeF}_{5}\right]^{+}$cation in its salts is well documented for $\mathrm{Xe}---\mathrm{F}_{\mathrm{b}}$ interactions between the $\left[\mathrm{XeF}_{5}\right]^{+}$cations and their counteranions. ${ }^{[17]}$ Examples in which $\left[\mathrm{XeF}_{5}\right]^{+}$is coordinated to a XeF_{2} ligand are known, for $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FXeF}) \mathrm{XeF}_{5}\left(\mathrm{AsF}_{6}\right)_{2}\right]$, $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FXeF}) \mathrm{AsF}_{6}\right]$, and $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FXeF})_{2} \mathrm{AsF}_{6}\right],{ }^{[18,19]}$ which were characterized by SCXRD and Raman spectroscopy, and [$\mathrm{F}_{5} \mathrm{Xe}$ (FXeF) RuF_{6},,${ }^{[20]}$ which was characterized by Raman spectroscopy. In contrast, the cocrystal, $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{SbF}_{6}\right] \cdot \mathrm{XeOF}_{4}{ }^{[21]}$ exhibits no interactions between $\left[\mathrm{XeF}_{5}\right]^{+}$and XeOF_{4}, in accordance with the low relative fluorobasicity of XeOF_{4}.

Results and Discussion

Syntheses

In the present work, the Lewis acidity of the $\left[\mathrm{XeF}_{5}\right]^{+}$ cation and the fluorobasic character of KrF_{2} have been exploited for the syntheses of the first mixed noble-gas ($\mathrm{Kr} /$ Xe) compounds that are isolable in macroscopic quantities. The products obtained from the LT reactions of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{AsF}_{6}\right]$ and KrF_{2} in anhydrous HF (aHF) solvent and subsequent crystallizations at LT depended on the initial $\mathrm{KrF}_{2}:\left[\mathrm{XeF}_{5}\right]-$ $\left[\mathrm{AsF}_{6}\right]$ molar ratio. The complex, $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF}) \mathrm{AsF}_{6}\right]$ (1), was obtained by use of a 1.5:1 molar ratio of reactants, whereas a stoichiometric excess of KrF_{2} (3.5:1 or 2.1:1) resulted in $\left[F_{5} \mathrm{Xe}(\mathrm{FKrF})_{2} \mathrm{AsF}_{6}\right]$ (2). In an attempt to prepare the KrF_{2} analogue of $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FXeF}) \mathrm{XeF}_{5}\left(\mathrm{AsF}_{6}\right)_{2}\right],{ }^{[19]}$ a 1:1.9 molar ratio of reactants was used, which resulted in crystallization of 1 and $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FH}) \mathrm{AsF}_{6}\right]$ (3). Compound $\mathbf{3}$ was also isolated from an aHF solution of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{AsF}_{6}\right]$ upon removal of HF at LT. The synthesis of the antimony analogue $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FH}) \mathrm{SbF}_{6}\right.$] (4) is described in the Supporting Information. The syntheses of $\mathbf{1 - 3}$ are in accordance with the proposed Equilibria (1)-(4), which are supported by LT SCXRD structure determinations of the adduct-cation salts, $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF}) \mathrm{AsF}_{6}\right]$ and $\left[\mathrm{F}_{5} \mathrm{Xe}\right.$ $\left.(\mathrm{FKrF})_{2} \mathrm{AsF}_{6}\right]$, and the intermediate solvate, $\left[\mathrm{F}_{5} \mathrm{Xe}\right.$ (FH) AsF_{6}], as well as by LT Raman spectroscopy. Vibrational frequency assignments were aided by calculated frequencies and intensities obtained from DFT calculations (vide infra). It is apparent that HF also behaves as a weak ligand towards $\left[\mathrm{XeF}_{5}\right]^{+}$in an HF solution and that KrF_{2}, a somewhat less fluorobasic ligand than $\mathrm{XeF}_{2},{ }^{[22]}$ is sufficiently fluorobasic to displace HF to form $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF}) \mathrm{AsF}_{6}\right]$ [Eq. (3)].

$$
\begin{align*}
& {\left[\mathrm{XeF}_{5}\right]\left[\mathrm{AsF}_{6}\right]+\mathrm{HF} \rightleftharpoons\left[\mathrm{~F}_{5} \mathrm{Xe}(\mathrm{FH}) \mathrm{AsF}_{6}\right]} \tag{1}\\
& {\left[\mathrm{XeF}_{5}\right]\left[\mathrm{AsF}_{6}\right]+\mathrm{KrF}_{2} \rightleftharpoons\left[\mathrm{~F}_{5} \mathrm{Xe}(\mathrm{FKrF}) \mathrm{AsF}_{6}\right]} \tag{2}\\
& \text { and } / \text { or }\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FH}) \mathrm{AsF}_{6}\right]+\mathrm{KrF}_{2} \rightleftharpoons\left[\mathrm{~F}_{5} \mathrm{Xe}(\mathrm{FKrF}) \mathrm{AsF}_{6}\right]+\mathrm{HF} \tag{3}
\end{align*}
$$

$\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF}) \mathrm{AsF}_{6}\right]+\mathrm{KrF}_{2} \rightleftharpoons\left[\mathrm{~F}_{5} \mathrm{Xe}(\mathrm{FKrF})_{2} \mathrm{AsF}_{6}\right]$

X-ray Crystallography

Details of X-ray data collection and crystallographic information pertaining to $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF}) \mathrm{AsF}_{6}\right]$ (1), $\left[\mathrm{F}_{5} \mathrm{Xe}-\right.$ $\left.(\mathrm{FKrF})_{2} \mathrm{AsF}_{6}\right](\mathbf{2}),\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FH}) \mathrm{AsF}_{6}\right]$ (3), and $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FH}) \mathrm{SbF}_{6}\right]$ (4) are summarized in Table 1.

Table 1: Summary of X -ray crystal data and refinement results for $\left[F_{5} \mathrm{Xe}(\mathrm{FKrF}) \mathrm{AsF}_{6}\right]$ (1), $\left[\mathrm{F}_{5} \mathrm{Xe}\left(\mathrm{FKrF}_{2} \mathrm{AsF}_{6}\right]\right.$ (2), $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FH}) \mathrm{AsF}_{6}\right]$ (3), and [$\left.\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FH}) \mathrm{SbF}_{6}\right]$ (4).

Compound	1	2	3	4
Space group	$P 2_{1} / n$	$P 2_{1} / \mathrm{c}$	P2/c	P2 ${ }_{1} / \mathrm{c}$
$a[\hat{\text { a }}]$	9.03170(10)	9.3142(5)	12.2989(4)	6.3279(2)
$b[A ̊]$	$9.7065(2)$	8.0482(4)	6.4853 (2)	15.2663 (4)
$c[A]$	12.1261 (2)	16.1545(8)	10.6717(3)	8.8234(2)
$\beta\left[{ }^{\circ}\right]$	106.8920(10)	95.942(3)	106.317(2)	92.6730(10)
$V\left[\AA^{3}\right]$	1017.18(3)	1204.48(11)	816.91 (4)	851.45(4)
Z	4	4	4	4
$M_{\text {W }}\left[\mathrm{g} \mathrm{mol}^{-1}\right]$	537.02	658.82	435.23	482.06
$D_{\text {calcd }}\left[\mathrm{g} \mathrm{cm}^{-3}\right]$	3.507	3.633	3.539	3.761
$T\left[{ }^{\circ} \mathrm{C}\right]$	-173	-173	-173	-173
$\mu\left[\mathrm{mm}^{-1}\right]$	11.101	13.062	8.411	7.319
$R_{1}{ }^{[a]}$	0.0288	0.0306	0.0228	0.0195
$w R_{2}^{[b]}$	0.0561	0.0568	0.0452	0.0415

[a] $R_{1}=\Sigma \| F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| / \Sigma\left|F_{\mathrm{o}}\right|$. $[\mathrm{b}] w R_{2}=\left[\Sigma\left(w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right) / \Sigma\left(w\left(F_{\mathrm{o}}^{2}\right)^{2}\right)\right]^{1 / 2}$.
$\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF}) \mathrm{AsF}_{6}\right]$ (1) and $\left[\mathrm{F}_{5} \mathrm{Xe}\left(\mathrm{FKrF}_{2} \mathrm{AsF}_{6}\right]\right.$ (2). The $\left[\mathrm{XeF}_{5}\right]^{+}$cations are coordinated to four F atoms to give xenon coordination numbers, $\mathrm{CN}_{\mathrm{Xe}}=5+4$: one secondary bond from a KrF_{2} ligand and three from three $\left[\mathrm{AsF}_{6}\right]^{-}$anions in [$\left.\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF}) \mathrm{AsF}_{6}\right]$ (1) (Figure 1a; Supporting Information, Figures S1 and S2), whereas in the case of $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF})_{2} \mathrm{AsF}_{6}\right]$ (2), two secondary bonds are from two KrF_{2} ligands and two are from two $\left[\mathrm{AsF}_{6}\right]^{-}$anions (Figure 1b; Figures S3 and S4). The coordination spheres of the $\left[\mathrm{XeF}_{5}\right]^{+}$cations in $\mathbf{1}$ and $\mathbf{2}$ are similar to their known xenon analogues, $\left[\mathrm{F}_{5} \mathrm{Xe}\right.$ (FXeF) AsF_{6},,${ }^{[19]}$ and $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FXeF})_{2} \mathrm{AsF}_{6}\right] \cdot{ }^{[19]}$ In the latter cases, the longer Xe--- F_{As} secondary bonds (1:1, 2.59, 3.03, and $3.15 \AA ; 1: 2,2.95$ and $3.57 \AA$) are shorter than or equal to the sum of the Xe and F van der Waals radii $\left(3.63,{ }^{[23]} 3.52^{[24]}\right.$ \AA A). Although the crystal structure of $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF}) \mathrm{AsF}_{6}\right]$ is isotypic with its xenon analogue, $\left[\mathrm{F}_{5} \mathrm{Xe}\left(\mathrm{FKrF}_{2} \mathrm{AsF}_{6}\right]\right.$ is not.

The trajectories of the four Xe---F secondary bonds in $\mathbf{1}$ and $\mathbf{2}$ avoid the $\mathrm{Xe}-\mathrm{F}_{\mathrm{eq}}$ bond pair and valence electron lone pair (VELP) domains of the square-pyramidal $\left[\mathrm{XeF}_{5}\right]^{+}$cation, where the lone pair lies on the pseudo C_{4}-axis and is trans to the F_{ax} atom of $\left[\mathrm{XeF}_{5}\right]^{+}$. The $\left[\mathrm{AsF}_{6}\right]^{-}$anions of $\mathbf{1}$ are mercoordinated to three different $\left[\mathrm{XeF}_{5}\right]^{+}$cations by means of asymmetric secondary $\mathrm{Xe}---\mathrm{F}_{\mathrm{As}}$ bonds, where the cis-Xe--F_{As} bond is notably shorter $(2.5944(10) \AA$) than the trans-Xe- - $-\mathrm{F}_{\mathrm{As}}$ bonds (2.9147(10), 3.0572(11) \AA). The three Xe--F_{As} secondary bonds result in the layered structure depicted in Figure S 1 b . The $\left[\mathrm{AsF}_{6}\right]^{-}$anions of $\mathbf{2}$ are asymmetrically transcoordinated to two $\left[\mathrm{XeF}_{5}\right]^{+}$cations ($\mathrm{Xe}--\mathrm{F}_{\mathrm{As}}$, 2.812(2), $3.124(2) \AA$), which form chains that run parallel to the b-axis of the unit cell (Figures S3b and S4). The KrF_{2} ligands coordinate to $\left[\mathrm{XeF}_{5}\right]^{+}$by means of secondary $\mathrm{Xe}---\mathrm{F}_{\mathrm{b}}$ bonds that are shorter ((1) 2.5139(9) Á; (2) 2.550(2), 2.576(2) Å) than the secondary $\mathrm{Xe}---\mathrm{F}_{\mathrm{As}}$ bonds of the coordinated [AsF $\left.{ }_{6}\right]^{-}$anions (Table 2; Supporting Information, Tables S1 and S 2). The $\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}$ and $\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}$ bond asymmetry is somewhat more pronounced in $\mathbf{1}(1.8393(12), 1.9367(9) \AA$) than in 2 (1.845(2), 1.927(2) \AA and $1.851(2), 1.917(2) \AA)$, which is attributed to stronger and shorter Xe-- $-\mathrm{F}_{\mathrm{b}}$ interactions in $\mathbf{1}$ than in $\mathbf{2}$. Similar $\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}$ and $\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}$ bond length asymmetries

Figure 1. The X -ray crystal structure of a) $\left[\mathrm{F}_{5} \mathrm{Xe}\left(\mathrm{FKrF}^{2}\right) \mathrm{AsF}_{6}\right]$ (1) and b) $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF})_{2} \mathrm{AsF}_{6}\right]$ (2) where the coordination environments of the Xe atom are expanded to include symmetry-generated atoms (symmetry codes: (1) (i) $1 / 2-x, y-1 / 2, \frac{1}{2}-z$; (ii) $1-x, 1-y, 1-z$; (2) (i) $x, y+1$, z). Thermal ellipsoids are drawn at the 50% probability level.

Table 2: Selected experimental bond lengths for $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF}) \mathrm{AsF}_{6}\right]$ (1) and $\left[F_{5} \mathrm{Xe}(\mathrm{FKrF})_{2} \mathrm{AsF}_{6}\right]$ (2); and calculated ${ }^{[a]}$ bond lengths and Wiberg bond indices (WBI) for $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF})\left(\mathrm{AsF}_{6}\right)_{3}\right]^{2-}\left(\mathbf{1}^{\prime}\right)$ and $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF})_{2^{-}}\right.$ $\left.\left(\mathrm{AsF}_{6}\right)_{2}\right]^{-}\left(\mathbf{2}^{\prime}\right)$.

	1 Bond leng	$\begin{array}{r} \mathbf{1}^{\prime} \\ \text { ns }[\AA] \end{array}$	$\begin{gathered} \mathbf{1}^{\prime} \\ \text { WBI } \end{gathered}$	2 Bond leng	$\begin{array}{r} \mathbf{2}^{\prime} \\ \text { is }[A] \end{array}$	$\begin{gathered} \mathbf{2}^{\prime} \\ \mathrm{WBI} \end{gathered}$
$\mathrm{Xe}-\mathrm{F}_{\text {ax }}$	1.8067(11)	1.919	0.550	1.813(2)	1.911	0.566
$\mathrm{Xe}-\mathrm{F}_{\text {eq }}$	1.8394(12)	1.910	0.596	1.8371 (14)	1.912	0.595
	1.8404(12)	1.910	0.595	$1.8418(14)$	1.903	0.607
	1.8455(13)	1.909	0.601	1.8449 (14)	1.909	0.598
	1.8462(12)	1.910	0.600	1.8482(14)	1.925	0.597
Xe--- F_{b}	2.5139(9)	2.500	0.102	2.550(2)	2.784	0.037
				2.576(2)	2.626	0.069
$\mathrm{Xe}-\mathrm{-F}_{\text {As }}$	2.5944(10)	2.468	0.098	2.812(2)	2.480	0.096
	$2.9147(10)$	2.802	0.031	$3.124(2)$	2.563	0.068
	3.0572(11)	2.828	0.028			
$\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}$	1.8393 (12)	1.860	0.610	1.845 (2)	1.862	0.603
				1.851 (2)	1.874	0.576
$\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}$	1.9367 (9)	1.939	0.450	$1.917(2)$	1.909	0.502
				1.927 (2)	1.930	0.464

[a] APFD/aVDZ(-PP) (Kr, Xe, As)/aVDZ(F).
are observed in the crystal structures of $\left[\mathrm{FO}_{2} \mathrm{Br}(\mathrm{FKrF})_{2} \mathrm{AsF}_{6}\right]$ (1.840(5) and $1.847(4) \AA, \quad 1.943(4)$ and $1.933(4) \AA),{ }^{[8]}$ $\left[\mathrm{Mg}(\mathrm{FKrF})_{4}\left(\mathrm{AsF}_{6}\right)_{2}\right] \quad(1.817(2)-1.821(2) \AA$, $1.965(1)-$ $1.979(1) \AA),{ }^{[10]} \quad\left[\mathrm{Hg}(\mathrm{FKrF})_{8}\right]^{2+} \quad(1.822(1)-1.852(1) \AA$, $1.933(1)-1.957(1) \AA),{ }^{[11]}$ and $\mathrm{KrF}_{2} \cdot \mathrm{CrOF}_{4} \quad(1.8489(9)$ and $1.9279(9) \AA) .{ }^{[12]}$ Regardless of their $\mathrm{Kr}-\mathrm{F}$ bond asymmetries, the average $\mathrm{Kr}-\mathrm{F}_{\mathrm{t} / \mathrm{b}}$ bond lengths ((1) 1.888(2) \AA; (2) 1.886(2) and $1.884(2) \AA$) are comparable to the $\mathrm{Kr}-\mathrm{F}$ bond lengths of $\alpha-\mathrm{KrF}_{2}(1.894(5) \AA)^{[15]}$ and symmetrically bridged KrF_{2} in $\mathrm{KrF}_{2} \cdot 2 \mathrm{CrOF} 4(1.8881(6) \AA) .{ }^{[12]}$ The $\mathrm{F}-\mathrm{Kr}-\mathrm{F}$ bond angles are essentially linear ((1) 178.49(6) ${ }^{\circ}$; (2) 178.47(8) and $\left.179.40(7)^{\circ}\right)$, whereas the $\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}--\mathrm{Xe}$ angles are bent ((1) $133.24(5)^{\circ}$; (2) 137.40(8) and $\left.141.80(7)^{\circ}\right)$, as observed in all other KrF_{2} adducts. ${ }^{[8-12]}$ The $\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}--\mathrm{Xe}$ angles of $\mathbf{1}$ and $\mathbf{2}$ are similar to the $\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}--\mathrm{Br}$ angles of $\left[\mathrm{FO}_{2} \mathrm{Br}(\mathrm{FKrF})_{2} \mathrm{AsF}_{6}\right.$] (132.1(2) and $\left.139.9(2)^{\circ}\right)^{[8]}$ and are intermediate with respect to the range of $\mathrm{Kr}-\mathrm{F}_{\mathrm{b}^{-}--\mathrm{Mg}}$ angles observed for $\left[\mathrm{Mg}(\mathrm{FKrF})_{4^{-}}\right.$ $\left.\left(\mathrm{AsF}_{6}\right)_{2}\right]\left(121.84(7)-144.43(8)^{\circ}\right) .{ }^{[10]}$
$\left[\boldsymbol{F}_{5} \boldsymbol{X e}(\boldsymbol{F H}) \boldsymbol{A s}_{\boldsymbol{F}}\right]$ (3). The asymmetric unit in the crystal structure of $\mathbf{3}$ is comprised of two $\left[\mathrm{XeF}_{5}\right]^{+}$cations located on special positions, and an $\left[\mathrm{AsF}_{6}\right]^{-}$anion and an HF molecule located on general positions (Figure 2; Figures S 5 and S 6). The $\mathrm{Xe}^{\mathrm{VI}}$ atoms have $\mathrm{CN}_{\mathrm{Xe}}=5+4$, where one $\left[\mathrm{XeF}_{5}\right]^{+}$cation has four $\mathrm{Xe}--\mathrm{F}_{\mathrm{As}}$ secondary bonds originating from the coordination of two pairs of symmetry-related $\left[\mathrm{AsF}_{6}\right]^{-}$anions (2.647(2), 3.058(2) \AA) whereas the other $\left[\mathrm{XeF}_{5}\right]^{+}$cation interacts with two symmetry-related $\left[\mathrm{AsF}_{6}\right]^{-}$anions through two secondary $\mathrm{Xe}---\mathrm{F}_{\mathrm{As}}$ bonds $(2.930(2) \AA$) and with two symmetry-related HF ligands through two short secondary Xe- - F_{H} bonds (2.656(2) \AA) (Table S3). Each HF molecule is also H -bonded to two neighboring $\left[\mathrm{AsF}_{6}\right]^{-}$anions with $\mathrm{F}_{\mathrm{H}} \cdots \mathrm{F}_{\mathrm{As}}$ distances of $2.545(2) \AA$, where the $\mathrm{As}-\mathrm{F}$ bond of the H-bonded F ligand $(1.746(2) \AA)$ is the second longest As-F bond of the $\left[\mathrm{AsF}_{6}\right]^{-}$anion. Each $\left[\mathrm{AsF}_{6}\right]^{-}$anion also coordinates to three $\left[\mathrm{XeF}_{5}\right]^{+}$cations in a mer-arrangement where the $\mathrm{As}-\mathrm{F}$ bonds of the interacting fluorine atoms are slightly elongated $(1.719(2), 1.727(2), 1.749(2) \AA$) with respect to the two non-interacting axial As-F bonds (1.701(2), $1.705(2) \AA$). The secondary $\mathrm{Xe}--\mathrm{F}_{\mathrm{As}}$ and $\mathrm{Xe}--\mathrm{F}_{\mathrm{H}}$ bonds

Figure 2. The crystal structure of $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FH}) \mathrm{AsF}_{6}\right]$ (3). The coordination environment of Xe 1 is expanded to include symmetry-generated atoms (symmetry codes: (i) $-x, y, 1 / 2-z$). Thermal ellipsoids are drawn at the 50% probability level; hydrogen atoms are shown as spheres of arbitrary radius. The coordination environment of Xe 2 is shown in Figure S5a.
result in corrugated layers that are parallel to the $a c$-plane and are stacked along the b-axis of the unit cell.

The Xe--- F_{H} secondary bonds of $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FH}) \mathrm{PnF}_{6}\right]$ (As, $2.656(2) \AA ; \mathrm{Sb}, 2.6501(10) \AA$) are similar, but are significantly greater than those of $\left[\mathrm{F}_{3} \mathrm{Xe}(\mathrm{FH}) \mathrm{Sb}_{2} \mathrm{~F}_{11}\right](2.462(2) \AA)^{[25]}$ and $\left[\mathrm{FXe}(\mathrm{FH}) \mathrm{Sb}_{2} \mathrm{~F}_{11}\right](2.359(4) \AA),{ }^{[26]}$ in accordance with the lower Lewis acidity of $\left[\mathrm{XeF}_{5}\right]^{+}$relative to $\left[\mathrm{XeF}_{3}\right]^{+}$and $[\mathrm{XeF}]^{+} .{ }^{[10,13,19]}$

A brief description of the crystal structure of the nonisotypic antimony analogue (4) is provided in the Supporting Information along with associated X-ray data (Figures S7 and S8, Table S3). The LT Raman spectrum of $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FH}) \mathrm{AsF}_{6}\right]$ (3) was also acquired (Figure S9, Table S4).

Raman Spectroscopy

The LT solid-state Raman spectra of $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF}) \mathrm{AsF}_{6}\right]$ (1) and $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF})_{2} \mathrm{AsF}_{6}\right]$ (2) are depicted in Figure 3. Vibrational assignments for $\mathbf{1}$ were initially made by comparison with the calculated frequencies and assignments of gasphase $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF}) \mathrm{AsF}_{6}\right]$ ($\mathbf{1}^{\prime \prime}$) (Table S5). Although this model accounts for the majority of experimental frequencies and intensities, several differences occur for modes that

Figure 3. The Raman spectra of a) $\left[\mathrm{F}_{5} \mathrm{Xe}\left(\mathrm{FKrF}_{\mathrm{F}}\right) \mathrm{AsF}_{6}\right]$ (1) and b) $\left[\mathrm{F}_{5} \mathrm{Xe}\right.$ $\left.(\mathrm{FKrF})_{2} \mathrm{AsF}_{6}\right]$ (2) recorded at -144 and $-161^{\circ} \mathrm{C}$, respectively, using $1064-\mathrm{nm}$ excitation. The spectrum of (2) also shows bands due to (1), which are indicated by bullets (•) (Table S6, footnote c). Symbols denote FEP sample tube bands (*) and an instrumental artifact (\dagger).
mainly involve $\left[\mathrm{AsF}_{6}\right]^{-}$anion displacements. This is expected because the coordination sphere of $\left[\mathrm{XeF}_{5}\right]^{+}$in the gas-phase $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF}) \mathrm{AsF}_{6}\right]$ model $\left(\mathbf{1}^{\prime \prime}, \mathrm{CN}_{\mathrm{Xe}}=5+3\right.$; Figure S10) differs from that of the solid-state structure $\mathbf{1}\left(\mathrm{CN}_{\mathrm{Xe}}=5+4\right)$. An alternative gas-phase model, $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF})\left(\mathrm{AsF}_{6}\right)_{3}\right]^{2-}\left(\mathbf{1}^{\prime}\right.$, $\mathrm{CN}_{\mathrm{Xe}}=5+4$, Figure 4 a), addresses these differences and better reproduces the xenon coordination environment of $\left[\mathrm{XeF}_{5}\right]^{+}$by coordination of two additional $\left[\mathrm{AsF}_{6}\right]^{-}$anions to the $\left[\mathrm{XeF}_{5}\right]^{+}$cation. The gas-phase $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF})_{2}\left(\mathrm{AsF}_{6}\right)_{2}\right]^{-}$ model ($\mathbf{2}^{\prime}$, Figure 4b), which well reproduces the coordination environment of the $\left[\mathrm{XeF}_{5}\right]^{+}$cation in $\mathbf{2}$, was used to aid in the assignment of the Raman spectrum of $\mathbf{2}$. The vibrational assignments of $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{AsF}_{6}\right]^{-}$in $\mathbf{1}$ and $\mathbf{2}$ were also aided by comparisons with those of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{AsF}_{6}\right],{ }^{[27]}\left[\mathrm{XeF}_{5}\right]\left[\mathrm{BF}_{4}\right],{ }^{[28]}$ $\left[\mathrm{XeF}_{5}\right]\left[f a c-\mathrm{OsO}_{3} \mathrm{~F}_{3}\right],{ }^{[29]} \quad\left[\mathrm{XeF}_{5}\right]\left[\mu-\mathrm{F}\left(\mathrm{OsO}_{3} \mathrm{~F}_{2}\right)_{2}\right]{ }^{[29]} \quad\left[\mathrm{XeF}_{5}\right]_{2}-$ $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right],{ }^{[30]} \quad\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4},{ }^{[30]} \quad\left[\mathrm{XeF}_{5}\right]$ $\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right](\mathrm{M}=\mathrm{Mo}, \mathrm{W}),{ }^{[17]}\left[\mathrm{F}_{2} \mathrm{OBr}(\mathrm{FKrF})_{2} \mathrm{AsF}_{6}\right]{ }^{[8]}$ and $[\mathrm{Mg}-$ $\left.(\mathrm{FKrF})_{4}\left(\mathrm{AsF}_{6}\right)_{2}\right] \cdot{ }^{[10]}$ The experimental and calculated frequencies, their detailed assignments, and mode descriptions for $\mathbf{1}$ and $\mathbf{2}$ are provided in Tables S5 and S6, respectively. The vibrational frequencies and intensities of the gas-phase KrF_{2} molecule were also calculated (Table S7) in order to estimate the degree to which the calculated frequencies of coordinated KrF_{2} are over- or underestimated in $\mathbf{1}^{\prime}, \mathbf{1}^{\prime \prime}$, and $\mathbf{2}^{\prime}$. The experimental vibrational frequencies and their trends are well reproduced by the calculated frequencies, with the exception of their $v(\mathrm{Kr}-\mathrm{F})$ stretching frequencies, which are overestimated.

Figure 4. Calculated geometries [APFD/aVDZ(-PP) (Kr, Xe, As)/aVDZ(F)] for a) $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF})\left(\mathrm{AsF}_{6}\right)_{3}\right]^{2-}\left(\mathbf{1}^{\prime}\right)$ and b) $\left[\mathrm{F}_{5} \mathrm{Xe}\left(\mathrm{FKrF}_{2}\left(\mathrm{AsF}_{6}\right)_{2}\right]^{-}\left(\mathbf{2}^{\prime}\right)\right.$.
$\left[\boldsymbol{F}_{5} \boldsymbol{X e}(\boldsymbol{F K r F}) \boldsymbol{A s F}_{6}\right]$ (1). Loss of the center of symmetry upon coordination of a fluorine atom of KrF_{2} to Xe of $\left[\mathrm{XeF}_{5}\right]^{+}$ results in the appearance of two distinct stretching bands in the Raman spectrum that are assigned to $v\left(\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}\right)$ and $v\left(\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}\right)$. The calculated vibrational displacements of $\mathbf{1}$, show no significant intraligand coupling between the $\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}$ and $\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}$ stretching modes of coordinated KrF_{2} ligands (Table S5). This contrasts with the KrF_{2} ligands of $\mathrm{KrF}_{2} \cdot \mathrm{CrOF}_{4},{ }^{[12]}$ which exhibit intraligand coupling between the $v\left(\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}\right)$ and $v\left(\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}\right)$ modes.

The most intense band in the Raman spectrum of $\mathbf{1}$ at $454 \mathrm{~cm}^{-1}$ (calcd, $491 \mathrm{~cm}^{-1}$) is assigned to the $v\left(\mathrm{Kr}^{-}-\mathrm{F}_{\mathrm{b}}\right)$ stretching mode. As predicted, the $v\left(\mathrm{Kr}^{-} \mathrm{F}_{\mathrm{t}}\right)$ stretching band corresponding to the shorter $\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}$ bond occurs at higher frequency, $533 \mathrm{~cm}^{-1}$ (calcd, $585 \mathrm{~cm}^{-1}$). The experimental frequencies of $v\left(\mathrm{Kr}^{-} \mathrm{F}_{\mathrm{b}}\right)$ and $v\left(\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}\right)$ bracket that of free $\mathrm{KrF}_{2}\left(464 \mathrm{~cm}^{-1}\right)$, and are comparable to those of $\left[\mathrm{F}_{2} \mathrm{OBr}-\right.$ (FKrF$)_{2} \mathrm{AsF}_{6}$] (443/472 and $533 / 549 \mathrm{~cm}^{-1}$). ${ }^{[8]}$ The observed frequencies are in accordance with the experimental $\mathrm{Kr}-\mathrm{F}$ bond length trend (Tables 2 and S1), with a similar trend observed for $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FXeF}) \mathrm{AsF}_{6}\right]$ (433 and $559 \mathrm{~cm}^{-1}$). ${ }^{[19]}$

The degeneracy of the $v_{2}\left(\Pi_{u}\right)$ bending mode of free KrF_{2} is removed upon coordination, which results in Raman-active $\delta\left(\mathrm{F}_{\mathrm{t}} \mathrm{KrF}_{\mathrm{b}}\right)_{\text {i.p. }}$ and $\delta\left(\mathrm{F}_{\mathrm{t}} \mathrm{KrF}_{\mathrm{b}}\right)_{\text {o.o.p. }}$ modes that bend in-plane and out-of-plane with respect to the $\mathrm{XeF}_{\mathrm{b}} \mathrm{KrF}_{\mathrm{t}}$-plane. The calculated out-of-plane bend couples with the two $\rho_{\mathrm{w}}\left(\mathrm{F}_{\mathrm{eq}} \mathrm{XeF}_{\mathrm{eq}}\right)$ wagging modes of $\left[\mathrm{XeF}_{5}\right]^{+}$, whereas the in-plane bend is not coupled. Both bands are predicted to have low relative Raman intensities and were observed as weak bands at 294 and $255 \mathrm{~cm}^{-1}$ (calcd, 289 and $264 \mathrm{~cm}^{-1}$), respectively. Both bands are shifted to higher frequency relative to $v_{2}\left(\Pi_{u}\right)$ of free $\mathrm{KrF}_{2}\left(232.6 \mathrm{~cm}^{-1}\right),{ }^{[31]}$ but have frequencies that are comparable to the corresponding modes of $\left[\mathrm{F}_{2} \mathrm{OBr}(\mathrm{FKrF})_{2} \mathrm{AsF}_{6}\right](301$ and $\left.254 / 266 \mathrm{~cm}^{-1}\right){ }^{[8]}$ The bands assigned to the $\rho_{\mathrm{r}}\left(\mathrm{F}_{\mathrm{t}} \mathrm{KrF}_{\mathrm{b}}\right)$ rocking and $\rho_{\mathrm{t}}\left(\mathrm{F}_{\mathrm{t}} \mathrm{KrF}_{\mathrm{b}}\right)$ torsional modes are predicted at 152 and $136 \mathrm{~cm}^{-1}$ and were observed at 143 and $130 \mathrm{~cm}^{-1}$, respectively. Interestingly, and similar to the $\delta\left(\mathrm{F}_{\mathrm{t}} \mathrm{KrF}_{\mathrm{b}}\right)$ bending modes, the out-of-plane torsional mode, $\rho_{\mathrm{t}}\left(\mathrm{F}_{\mathrm{t}} \mathrm{KrF}_{\mathrm{b}}\right)$, also couples with the $\rho_{\mathrm{w}}\left(\mathrm{F}_{\mathrm{eq}} \mathrm{XeF}_{\mathrm{eq}}\right)$ wagging modes of the cation, whereas the in-plane rocking mode, $\rho_{\mathrm{r}}\left(\mathrm{F}_{\mathrm{t}} \mathrm{KrF}_{\mathrm{b}}\right)$, does not couple. The $\delta\left(\mathrm{XeF}_{\mathrm{b}} \mathrm{Kr}\right)$ and $\delta\left(\mathrm{XeF}_{\mathrm{bA}} \mathrm{As}\right)$ bends are predicted at very low frequencies, 60 and $71 / 74 \mathrm{~cm}^{-1}$, respectively, but could not be observed.
$\left[\boldsymbol{F}_{5} \boldsymbol{X e}(\boldsymbol{F K r F})_{2} \boldsymbol{A s} \boldsymbol{F}_{6}\right]$. Coordination of a second KrF_{2} ligand to $\left[\mathrm{XeF}_{5}\right]^{+}$results in additional splitting on the $\mathrm{Kr}-\mathrm{F}$ stretching bands of the KrF_{2} ligands that are due to intra- and interligand couplings. The bands at 543 and $564 / 567 \mathrm{~cm}^{-1}$ (calcd, $585,598 \mathrm{~cm}^{-1}$) are respectively assigned to modes that are predominantly coupled $v\left(\mathrm{Kr}^{-} \mathrm{F}_{\mathrm{t}}\right)$ stretching modes, $\left\{\left[v\left(\mathrm{Kr}_{1}-\mathrm{F}_{12}\right)-v\left(\mathrm{Kr}_{2}-\mathrm{F}_{14}\right)\right]-\left[v\left(\mathrm{Kr}_{1}-\mathrm{F}_{13}\right)-v\left(\mathrm{Kr}_{2}-\mathrm{F}_{15}\right)\right]_{\text {small }}\right\}$ and $\left\{\left[v\left(\mathrm{Kr}_{1}-\mathrm{F}_{12}\right)+v\left(\mathrm{Kr}_{2}-\mathrm{F}_{14}\right)\right]-\left[v\left(\mathrm{Kr}_{1}-\mathrm{F}_{13}\right) \quad+\right.\right.$ $\left.\left.v\left(\mathrm{Kr}_{2}-\mathrm{F}_{15}\right)\right]_{\text {small }}\right\}$ (Table S6). Similar couplings, which are exclusively interligand couplings, also occur in other KrF_{2} adducts that contain more than one NgF_{2} ligand. ${ }^{[8-11]}$ The bands at 466 and $472 / 474 \mathrm{~cm}^{-1}$ (calcd, $507,517 \mathrm{~cm}^{-1}$) are assigned to modes that are predominantly coupled $v\left(\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}\right)$ stretching modes, $\left[v\left(\mathrm{Kr}_{1}-\mathrm{F}_{13}\right)+v\left(\mathrm{Kr}_{1}-\mathrm{F}_{12}\right)_{\text {small }}\right]$ and $\left[v\left(\mathrm{Kr}_{2}-\mathrm{F}_{15}\right)+v\left(\mathrm{Kr}_{2}-\mathrm{F}_{14}\right)_{\text {small }}\right]$, respectively. Interestingly, and unlike adducts which contain more than one NgF_{2} ligand,
there are no interligand couplings among the $v\left(\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}\right)$ stretching modes. The room-temperature Raman spectrum of the xenon analogue, $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FXeF})_{2} \mathrm{AsF}_{6}\right]$, also displays split $v\left(\mathrm{Xe}^{-} \mathrm{F}_{\mathrm{b}}\right)\left(420 / 438,479 \mathrm{~cm}^{-1}\right)$ and $v\left(\mathrm{Xe}^{-} \mathrm{F}_{\mathrm{t}}\right)\left(542,550 \mathrm{~cm}^{-1}\right)$ bands which are likely due to vibrational mode coupling. ${ }^{[19]}$

Vibrational coupling between the KrF_{2} ligands results in two out-of-plane, $\delta\left(\mathrm{F}_{\mathrm{t}} \mathrm{KrF}_{\mathrm{b}}\right)_{\text {o.o.p. }}$ (calcd, $\left.246,247 \mathrm{~cm}^{-1}\right)$, and two in-plane, $\delta\left(\mathrm{F}_{\mathrm{t}} \mathrm{KrF}_{\mathrm{b}}\right)_{\text {i.p. }}$ (calcd, 275, $\left.280 \mathrm{~cm}^{-1}\right)$, bends which occur at 251 (o.o.p.) and 273/278 (i.p.) cm^{-1}. The bands at 145 and $110 \mathrm{~cm}^{-1}$, are assigned to the in-plane $\rho_{\mathrm{r}}\left(\mathrm{F}_{\mathrm{t}} \mathrm{KrF}_{\mathrm{b}}\right)$ rocking mode (calcd, $136 \mathrm{~cm}^{-1}$) and the out-of-plane $\rho_{\mathrm{t}}\left(\mathrm{F}_{\mathrm{t}} \mathrm{KrF}_{\mathrm{b}}\right)$ torsional mode (calcd, $119 \mathrm{~cm}^{-1}$), respectively.

Computational Results

The gas-phase geometries of $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF}) \mathrm{AsF}_{6}\right] \quad\left(\mathbf{1}^{\prime \prime}\right)$ (Figure S 10), the hypothetical model anions, $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF})\right.$ -$\left.\left(\mathrm{AsF}_{6}\right)_{3}\right]^{2-}\left(\mathbf{1}^{\prime}\right)$ and $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF})_{2}\left(\mathrm{AsF}_{6}\right)_{2}\right]^{-}$(2') (Figure 4; Figure S11), $\mathrm{KrF}_{2},\left[\mathrm{XeF}_{5}\right]^{+}$, and IF_{5} were optimized with all frequencies real at the APFD/aVDZ(-PP)(Xe, As, Kr$) /$ aVDZ(F) level of theory (Tables S1, S2, S5-S8). The crystallographic coordinates were used as the starting geometries for the geometry optimizations. A limitation of the gas-phase structural models used for $\mathbf{1}^{\prime}$ and $\mathbf{2}^{\prime}$ is the isolated nature of the ion-pairs, which contrast with the extended (layer and chain) structures observed in the crystal structures of $\mathbf{1}$ and $\mathbf{2}$. However, both models reproduce the coordination environment of xenon and therefore proved useful for the assignment of the Raman spectra and provided insights into the secondary bonding interactions among $\left[\mathrm{XeF}_{5}\right]^{+}$and coordinated KrF_{2} and $\left[\mathrm{AsF}_{6}\right]^{-}$.

Calculated Geometries

$\left[F_{5} \mathrm{Xe}(\mathrm{FKrF}) \mathrm{AsF}_{6}\right]\left(\mathbf{1}^{\prime \prime}\right)$ and $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF})\left(\mathrm{AsF}_{6}\right)_{3}\right]^{2-}\left(\mathbf{1}^{\prime}\right)$. The $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF}) \mathrm{AsF}_{6}\right]\left(\mathbf{1}^{\prime \prime}\right)$ ion-pair was initially calculated, but resulted in twisting of the $\left[\mathrm{AsF}_{6}\right]^{-}$anion such that it coordinated in a bidentate fashion through two cis-fluorine ligands to the Xe atom to give $\mathrm{CN}_{\mathrm{Xe}}=5+3$ (Figure S10). In contrast, the $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF})\left(\mathrm{AsF}_{6}\right)_{3}\right]^{2-}$ model ($\mathbf{1}^{\prime}$) reproduced the experimental Xe coordination sphere $\left(\mathrm{CN}_{\mathrm{Xe}}=5+4\right)$ and better reproduced the $\mathrm{Xe}---\mathrm{F}_{\mathrm{b}}$ interactions and their avoidance of the Xe VELP and $\mathrm{Xe}-\mathrm{F}_{\text {eq }}$ bond pair domains.

The calculated $\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}$ bond length ($1.860 \AA$) is shorter than the $\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}$ bond length ($1.939 \AA$), as observed in the crystal structure (1.8393(12) and $1.9367(9) \AA)$, and the average calculated $\mathrm{Kr}-\mathrm{F}$ bond length $(1.900 \AA)$ is very similar to the calculated $(1.889 \AA)$ and experimental $(1.894(5) \AA)^{[15]}$ bond lengths of free KrF_{2}. The calculated $\mathrm{F}_{\mathrm{t}}-\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}$ bond angle $\left(176.7^{\circ}\right)$ is in good agreement with the experimental value ($178.49(6)^{\circ}$), whereas the $\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}---\mathrm{Xe}$ bond angle $\left(121.2^{\circ}\right)$ is significantly smaller than the experimental value $\left(133.24(5)^{\circ}\right)$. The difference between the calculated and experimental $\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}---\mathrm{Xe}$ angles is likely due to crystal packing and the deformability of this angle $\left(\delta\left(\mathrm{XeF}_{\mathrm{b}} \mathrm{Kr}\right)\right.$, $60 \mathrm{~cm}^{-1}$).

The calculated $\mathrm{Xe}---\mathrm{F}_{\mathrm{b} / \mathrm{As}}$ contact distances (2.500, 2.468, 2.802 , and $2.828 \AA$) are underestimated relative to their experimental values (2.5139(9), 2.5944(10), 2.9147(10), and 3.0572(11) $\AA)$, but reproduce the alternation of their long and short Xe---F secondary bonds in $\mathbf{1}$. The shorter calculated contact distances are accompanied by large $\mathrm{F}_{\mathrm{ax}}-\mathrm{Xe}---\mathrm{F}_{\mathrm{b} / \mathrm{As}}$ contact angles (142.1 and 141.1°) whereas long contact distances are accompanied by smaller $\mathrm{F}_{\mathrm{ax}}-\mathrm{Xe}---\mathrm{F}_{\mathrm{b} / \mathrm{As}}$ contact angles (128.9 and 128.5°), in very good agreement with the corresponding angles in $\mathbf{1}\left(143.54(6)\right.$ and $146.48(6)^{\circ} ; 129.90(6)$ and $\left.124.67(6)^{\circ}\right)$.
$\left[\boldsymbol{F}_{5} \boldsymbol{X e}(\boldsymbol{F K r F})_{2}\left(\boldsymbol{A s F}_{6}\right)_{2}\right]^{-}\left(\mathbf{2}^{\prime}\right)$. The calculated geometrical parameters of the KrF_{2} ligands reproduce the experimental values and trends in 2, i.e., the shorter $\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}$ bond (calcd, $1.862 \AA$; exptl, $1.845(2) \AA$) is accompanied by a longer $\mathrm{Kr}^{-} \mathrm{F}_{\mathrm{b}}$ bond (calcd, $1.930 \AA$; exptl, 1.927(2) \AA) for one KrF_{2} ligand, and a longer $\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}$ bond (calcd, $1.874 \AA$; exptl, 1.851(2) \AA) is accompanied by a shorter $\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}$ bond (calcd, $1.909 \AA$; exptl, 1.917(2) \AA) for the other KrF_{2} ligand. The near-linear $\mathrm{F}_{\mathrm{t}}-\mathrm{Kr}-$ F_{b} angles (178.47(8) and $\left.179.40(7)^{\circ}\right)$ of $\mathbf{2}$ are also reproduced (177.60 and 176.98°), but the Xe-- $-\mathrm{F}_{\mathrm{b}}-\mathrm{Kr}$ angles (137.40(8) and $141.80(7)^{\circ}$) are significantly underestimated (123.99 and 124.71°). The difference is likely attributable to the absence of a secondary $\mathrm{Xe}---\mathrm{F}_{\mathrm{As}}$ bond in $\mathbf{2}^{\prime}$ that is trans to the bridging As-F bond in 2. This results in bridging As-F (1.7285(14) and $1.7433(14) \AA)$ and $\mathrm{Xe}---\mathrm{F}_{\mathrm{As}}(2.812(2)$ and $3.124(2) \AA)$ bond lengths that are overestimated (1.834 and $1.847 \AA$) and underestimated (2.480 and $2.563 \AA$), respectively, and $\mathrm{F}_{\mathrm{ax}}-\mathrm{Xe}---\mathrm{F}_{\mathrm{As}}$ angles (126.57(6) and $\left.132.26(6)^{\circ}\right)$ that are overestimated (139.81 and 140.53°). The $\mathrm{Xe}---\mathrm{F}_{\mathrm{b}}$ bond lengths (2.550(2) and 2.576(2) \AA) are overestimated (2.784 and $2.626 \AA$) and the $\mathrm{F}_{\mathrm{ax}}-\mathrm{Xe}--\mathrm{F}_{\mathrm{b}}$ angles (139.59(7) and $\left.140.35(7)^{\circ}\right)$ are underestimated (128.26 and 130.55°). As observed in 2, there are two groups of alternating short and long calculated $\mathrm{Xe}---\mathrm{F}_{\mathrm{b} / \mathrm{As}}$ secondary bonds whose domains avoid the Xe VELP and $\mathrm{Xe}-\mathrm{F}_{\text {eq }}$ bond pair domains.

Natural Bond Orbital (NBO) Analyses

The NBO analyses for $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF})\left(\mathrm{AsF}_{6}\right)_{3}\right]^{2-}\left(\mathbf{1}^{\prime}\right)$ and $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF})_{2}\left(\mathrm{AsF}_{6}\right)_{2}\right]^{-}\left(\mathbf{2}^{\prime}\right)$ (Table S 9) show the total positive charges on the $\left[\mathrm{XeF}_{5}\right]^{+}$cations of $\mathbf{1}^{\prime}(0.776)$ and $\mathbf{2}^{\prime}(0.771)$ are notably less than the net positive charge of the uncoordinated $\left[\mathrm{XeF}_{5}\right]^{+}$cation, and are consistent with charge transfer from the KrF_{2} ligand ($\mathbf{1}^{\prime}, 0.092$ and $\left.\mathbf{2}^{\prime}, 0.092\right)$ and $\left[\mathrm{AsF}_{6}\right]^{-}\left(\mathbf{1}^{\prime},-2.871\right.$ and $\mathbf{2}^{\prime},-1.864$). Charge transfer mainly affects the F_{ax} atoms of $\mathbf{1}^{\prime}(-0.490)$ and $\mathbf{2}^{\prime}(-0.475)$, which are significantly more negative relative to F_{ax} of free $\left[\mathrm{XeF}_{5}\right]^{+}(-0.384)$. In contrast the average NPA charges of the $\mathrm{F}_{\text {eq }}$ atoms of $\mathbf{1}^{\prime}(-0.483)$ and $\mathbf{2}^{\prime}$ (-0.486) are much closer to the F_{eq} charges of free $\left[\mathrm{XeF}_{5}\right]^{+}$ (-0.447). The F_{b} and F_{t} charges of KrF_{2} in $\mathbf{1}^{\prime}\left(-0.513, \mathrm{~F}_{\mathrm{b}}\right.$ and $\left.-0.453, \mathrm{~F}_{\mathrm{t}}\right)$ and $\mathbf{2}^{\prime}\left(-0.526, \mathrm{~F}_{\mathrm{b}}\right.$ and $-0.456, \mathrm{~F}_{\mathrm{t}} ;-0.514, \mathrm{~F}_{\mathrm{b}}$ and $\left.-0.475, \mathrm{~F}_{\mathrm{t}}\right)$ bracket that of free $\mathrm{KrF}_{2}(-0.492)$. The charge distribution is consistent with an axially distorted KrF_{2} ligand in which partial removal of the bridging fluorine atom by the Lewis acidic $\left[\mathrm{XeF}_{5}\right]^{+}$cation results in more KrF^{+}character and correspondingly shorter $\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}$ and longer $\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}$ bonds (Tables S 1 and S 2). The $\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}$ and $\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}$ Wiberg bond
indices of $\mathbf{1}^{\prime}\left(\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}, 0.610\right.$ and $\left.\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}, 0.450\right)$ and $\mathbf{2}^{\prime}\left(\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}\right.$, 0.603 and $\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}, 0.464 ; \mathrm{Kr}-\mathrm{F}_{\mathrm{t}}, 0.576$ and $\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}, 0.502$) bracket those of $\mathrm{KrF}_{2}(0.551)$. The small $\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}$ bond indices of $\mathbf{1}^{\prime}(0.102)$ and $\mathbf{2}^{\prime}(0.069$ and 0.037$)$, and the low degree of charge transfer from KrF_{2} to $\left[\mathrm{XeF}_{5}\right]^{+}$are consistent with predominantly electrostatic secondary bonding interactions between the Xe and the F_{b} atom(s) of the KrF_{2} ligand(s) and the long experimental and calculated $\mathrm{Xe}---\mathrm{F}_{\mathrm{b}}$ bonds observed in $\mathbf{1}, \mathbf{2}, \mathbf{1}^{\prime}$, and $\mathbf{2}^{\prime}$ (Tables S1 and S2). The NBO analyses of [$\left.\mathrm{AsF}_{6}\right]^{-}$in $\mathbf{1}^{\prime}$ and $\mathbf{2}^{\prime}$ show that the larger Xe--- F_{As} bond indices of $\mathbf{1}^{\prime}(0.098)$ and $\mathbf{2}^{\prime}(0.096)$ correspond to smaller As-F bond indices of $\mathbf{1}^{\prime}$ (0.386) and $\mathbf{2}^{\prime}$ (0.382). This is in accordance with the shorter Xe--- F_{As} bonds (calcd, $\mathbf{1}^{\prime}: 2.468 \AA ; \mathbf{2}^{\prime}: 2.480 \AA$; exptl, 1: $2.5944(10) \AA ; 2: 2.812(2) \AA)$ and correspondingly longer As-F bridge bonds (calcd, $\mathbf{1}^{\prime}: 1.844 \AA ; \mathbf{2}^{\prime}: 1.847 \AA$ A; exptl, 1: $1.7559(10) \AA$; 2: $1.7433(14) \AA)$.

Electron Localization Function (ELF) Analyses

The Electron Localization Function analyses ${ }^{[32,33]}$ were carried out for $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF})\left(\mathrm{AsF}_{6}\right)_{3}\right]^{2-}, \quad\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF})_{2^{-}}\right.$ $\left.\left(\mathrm{AsF}_{6}\right)_{2}\right]^{-}, \mathrm{KrF}_{2},\left[\mathrm{XeF}_{5}\right]^{+}$, and isoelectronic IF_{5}. The abbreviations in the ensuing discussion denote electron localization function $(\eta(\mathrm{r}))$; core basin $(\mathrm{C}(\mathrm{Ng}), \mathrm{C}(\mathrm{As}))$; monosynaptic valence basins $(\mathrm{V}(\mathrm{F})$ and $\mathrm{V}(\mathrm{Ng}))$; and f, a localization domain that is bounded by the isosurface, $\eta(\mathrm{r})=f$. The ELF isosurface plots for the aforementioned species at $\eta(\mathrm{r})=0.55$ are depicted in Figure 5 and Figure S12.

The ELF analyses of $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF})\left(\mathrm{AsF}_{6}\right)_{3}\right]^{2-}$, $\left[\mathrm{F}_{5} \mathrm{Xe}-\right.$ $\left.(\mathrm{FKrF})_{2}\left(\mathrm{AsF}_{6}\right)_{2}\right]^{-}, \mathrm{KrF}_{2},\left[\mathrm{XeF}_{5}\right]^{+}$, and IF_{5} display only monosynaptic $\mathrm{Xe}, \mathrm{Kr}, \mathrm{As}, \mathrm{F}$, and I valence basins in accordance with the polar-covalent characters of their bonds. The toroidal shapes of the Kr valence basins result from the combination of the three valence electron lone-pair (VELP) domains of Kr , with the atomic core electron basin $(\mathrm{C}(\mathrm{Kr})$) lying at the center of the torus. The perturbations of the toroidal $\mathrm{V}(\mathrm{Kr})$ basin of $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF})\left(\mathrm{AsF}_{6}\right)_{3}\right]^{2-}$ and one of the toroidal $\mathrm{V}(\mathrm{Kr})$

Figure 5. ELF isosurface plots [APFD/aVDZ(-PP) (Kr, Xe, As)/aVDZ(F)], $\eta(r)=0.55$, for a) $\left[\mathrm{XeF}_{5}\right]^{+}$, b) $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF})\left(\mathrm{AsF}_{6}\right)_{3}\right]^{2-}$, and c) $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF})_{2^{-}}\right.$ $\left.\left(\mathrm{AsF}_{6}\right)_{2}\right]^{-}$. Color code: core basin (red); C(Ng), C(As); monosynaptic valence basin (blue); $V(F), V(N g)$.
basins of $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF})_{2}\left(\mathrm{AsF}_{6}\right)_{2}\right]^{-}$arise from accommodation of the $\mathrm{V}(\mathrm{Kr})$ basins to their immediate environments (Figure 5). In both instances, the krypton valence basin torus of one KrF_{2} ligand is flattened parallel to the KrF_{2} molecular axis because the ligand is sandwiched between the fluorine valence basins of neighboring $\left[\mathrm{AsF}_{6}\right]^{-}$ions (Figure 5). In contrast, the second KrF_{2} ligand of $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF})_{2}\left(\mathrm{AsF}_{6}\right)_{2}\right]^{-}$is less sterically congested which results in a $\mathrm{V}(\mathrm{Kr})$ basin that is essentially unperturbed, closely resembling the toroidal V(Kr) valence basin of free KrF_{2} (Figure S12). Small perturbations of the toroidal $\mathrm{V}(\mathrm{Ng})$ basins $(\mathrm{Ng}=\mathrm{Kr}$, Xe) of $\mathrm{NgF}_{2} \cdot \mathrm{CrOF}_{4}$ and $\mathrm{NgF}_{2} \cdot 2 \mathrm{CrOF}_{4}$ have also been noted and attributed to the asymmetries of their immediate environments. ${ }^{[12]}$

The valence basins, $\mathrm{V}(\mathrm{Xe})$ and $\mathrm{V}(\mathrm{I})$ of Xe and I in the isoelectronic $\left[\mathrm{XeF}_{5}\right]^{+}$cation and IF_{5}, correspond to stereoactive electron lone-pairs, where the $\left[\mathrm{XeF}_{5}\right]^{+} \operatorname{VELP}\left(2.14 \AA^{3}\right)$ is significantly contracted relative to that of $\mathrm{IF}_{5}\left(3.08 \AA^{3}\right)$, in accordance with the higher charge on Xe (3.17) of $\left[\mathrm{XeF}_{5}\right]^{+}$ relative to that of $\mathrm{I}(2.90)$ in IF_{5} (also see MEPS analyses).

Notable differences occur between the Xe VELP distributions of the adduct-cations, where the VELP volumes and shapes accommodate to the spaces provided by the neighboring $\mathrm{V}(\mathrm{F})$ basins of the KrF_{2} ligands and $\left[\mathrm{AsF}_{6}\right]^{-}$ions. The Xe VELPs of $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF})\left(\mathrm{AsF}_{6}\right)_{3}\right]^{2-}$ and $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF})_{2^{-}}\right.$ $\left.\left(\mathrm{AsF}_{6}\right)_{2}\right]^{-}$are sterically more congested in their ninecoordinate Xe environments, where the Xe VELPs are notably flattened and their volumes (0.44 and $0.46 \AA^{3}$, respectively) are significantly reduced with respect to those of $\left[\mathrm{XeF}_{5}\right]^{+}$and IF_{5} (vide supra). Similar steric influences on the $\mathrm{Xe}^{\mathrm{VI}}$ VELP volume have been noted for the series, XeF_{6} $\left(C_{3 v}\right), \mathrm{F}_{6} \mathrm{XeNCCH}_{3}$, and $\mathrm{F}_{6} \mathrm{Xe}\left(\mathrm{NCCH}_{3}\right)_{2} .{ }^{[34]}$

Molecular Electrostatic Potential Surface (MEPS) Analyses

The MEPS isosurfaces of $\left[\mathrm{XeF}_{5}\right]^{+}$and isoelectronic IF_{5} are depicted in Figure 6. Their isosurfaces have regions of high EP ($\mathrm{Xe}, 773 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and I, $228 \mathrm{~kJ} \mathrm{~mol}^{-1}$), which are located trans to their F_{ax} atoms. The xenon atom is significantly more electrophilic than the iodine atom, and the MEPS maxima of the fluorine ligand isosurfaces of $\left[\mathrm{XeF}_{5}\right]^{+}$are significantly more positive than those of IF_{5} which have small negative values, in accordance with their NPA charges (Table S9).

Examination of the top 5% of the positive EP ranges in $\left[\mathrm{XeF}_{5}\right]^{+}$and IF_{5} (Figure 6) allowed the visualization of four regions of higher EP on the xenon and iodine MEPS isosurfaces ($\mathrm{Xe}, 798 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\mathrm{I}, 236 \mathrm{~kJ} \mathrm{~mol}^{-1}$) that are located at the intersections of the F_{eq} isosurfaces. Similar regions have been reported for IF_{5} and $\mathrm{XeF}_{4}{ }^{[35]}$ These regions are symmetrically disposed with respect to the xenon and iodine VELPs, which are trans to F_{ax} atoms of $\left[\mathrm{XeF}_{5}\right]^{+}$and IF_{5}. The experimental and calculated trajectories of the secondary $\mathrm{Xe}---\mathrm{F}_{\mathrm{b}}$ and $\mathrm{Xe}---\mathrm{F}_{\mathrm{As}}$ bonds in $\mathbf{1}$ (Figure S1), $\mathbf{2}$ (Figure S3), $\mathbf{1}^{\prime}$ and $\mathbf{2}^{\prime}$ (Figure S 11) are staggered with respect to the F_{eq} atoms of $\left[\mathrm{XeF}_{5}\right]^{+}$and avoid the xenon VELP, in accordance with the calculated positions of the four EP maxima on xenon. The crystal structure of $\mathrm{XeF}_{2} \cdot \mathrm{IF}_{5}$ exhibits similar features, i.e., four

Figure 6. The molecular electrostatic potential surface (MEPS) contours calculated at the 0.001 e-bohr ${ }^{-3}$ isosurfaces of $\left[\mathrm{XeF}_{5}\right]^{+}$and IF_{5} and the top 5% of the positive electrostatic potential range (bottom left). The extrema of selected electrostatic potentials are indicated by arrows. The optimized geometries and MEPS were calculated at the APFD/aVDZ(-PP) (Xe, I)/aVDZ(F) level of theory.

I- - $-\mathrm{F}_{\mathrm{b}}$ secondary bonds whose trajectories are staggered with respect to the $\mathrm{I}-\mathrm{F}_{\mathrm{eq}}$ bond domains of IF_{5} and avoid the VELP domain of iodine. ${ }^{\left[{ }^{[9}\right]}$ The electrostatic nature of the secondary Xe-- $-\mathrm{F}_{\mathrm{b}}$ bonds is also supported by the Wiberg bond indices obtained for $\mathbf{1}^{\prime}$ and $\mathbf{2}^{\prime}$ (Table S9), and may be ascribed to σ hole bonding. The MEPS of $\mathrm{XeO}_{3}\left(C_{3 v}\right)$ also show discrete regions of higher EP on the xenon MEPS isosurface, which were visualized by examination of the top 20% of the xenon MEPS isosurface. ${ }^{[37]}$ In contrast with $\left[\mathrm{XeF}_{5}\right]^{+}$and IF_{5}, three regions of higher EP of XeO_{3} are located trans to the highly electronegative oxygen atoms of the primary $\mathrm{Xe}-\mathrm{O}$ bonds, a characteristic of σ-hole bonding, ${ }^{[38]}$ and have contact trajectories that are staggered with respect to these bonds.

Conclusion

The present study provides the first instances where both chemically bound krypton and xenon are present in the same compound. The $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF}) \mathrm{AsF}_{6}\right]$ and $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF})_{2} \mathrm{AsF}_{6}\right]$ complexes have been isolated in macroscopic quantities and structurally characterized by X-ray crystallography and Raman spectroscopy. Their syntheses, which significantly extend the limited chemistry of krypton and the $\mathrm{XeF}_{2}-\mathrm{KrF}_{2}$ analogy, provide a new class of coordination complex in which
KrF_{2} coordinates through a fluorine atom to $\mathrm{Xe}^{\mathrm{VI}}$ of the $\left[\mathrm{XeF}_{5}\right]^{+}$cation. The stabilities of these complexes are reliant on the Lewis acidity of $\left[\mathrm{XeF}_{5}\right]^{+}$and its resistance to oxidation by the potent oxidative fluorinator, KrF_{2}. NBO, ELF, and MEPS analyses demonstrate that the bonding interactions between the fluorine bridge atom of KrF_{2} and the Lewis acidic xenon atom are essentially noncovalent and may be ascribed to σ-hole bonding. The HF solvates, $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FH}) \mathrm{PnF}_{6}\right]$ $(\mathrm{Pn}=\mathrm{As}, \mathrm{Sb})$, also characterized in this study, provide rare examples of HF coordinated to $\mathrm{Xe}^{\mathrm{VI}}$.

Experimental Section

Cautionary statements relating to the safe handling of XeF_{6}, KrF_{2}, and $\left[\mathrm{XeF}_{5}\right]^{+}$salts are provided in the Supporting Information. Details relating to the apparatus, starting materials, syntheses, lowtemperature crystal mounting, X-ray data collection and refinement, Raman spectroscopy, and computational details are provided in the Supporting Information. Details of the crystal structure investigations may be obtained from the joint CCDC/FIZ Karlsruhe online deposition service by quoting the deposition numbers CSD 2000547 (1), 2000548 (2), 2000549 (3), and 2000550 (4).

Acknowledgements

Support from the Marie Curie International Outgoing Fellowship (M.L.) within the $7^{\text {th }}$ European Community Framework Programme; the Natural Sciences and Engineering Research Council of Canada, in the form of a Discovery Grant (G.J.S.); and the Slovenian Research Agency, in the form of the Research Programme P1-0045 (M.L.), are gratefully acknowledged. We also thank SHARCNet (Shared Hierarchical Academic Research Computing Network; www.sharcnet.ca) and Compute Canada (www.computecanada.ca) for providing computational resources. We are grateful to Mark R. Bortolus for improving the crystal structure solution of $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FH}) \mathrm{AsF}_{6}\right]$.

Conflict of interest

The authors declare no conflict of interest.
Keywords: fluorine chemistry • hypervalent compounds . krypton and xenon compounds • Raman spectroscopy •
X-ray crystallography
[1] F. Schreiner, J. G. Malm, J. C. Hindman, J. Am. Chem. Soc. 1965, 87, 25-28, and references therein.
[2] N. Bartlett, Proc. Chem. Soc. 1962, 6, 218.
[3] L. Graham, O. Graudejus, N. K. Jha, N. Bartlett, Coord. Chem. Rev. 2000, 197, 321-334.
[4] R. Craciun, D. Picone, R. T. Long, S. Li, D. A. Dixon, K. A. Peterson, K. O. Christe, Inorg. Chem. 2010, 49, 1056-1070.
[5] J. F. Lehmann, H. P. A. Mercier, G. J. Schrobilgen, Coord. Chem. Rev. 2002, 233-234, 1-39.
[6] D. S. Brock, G. J. Schrobilgen, B. Žemva, In Comprehensive Inorganic Chemistry II, Vol. 1 (Eds.: J. Reedijk, K. Poeppelmeier), Elsevier, Oxford, 2013, pp. 755-822.
[7] M. Lozinšek, G. J. Schrobilgen, Nat. Chem. 2016, 8, 732.
[8] D. S. Brock, J. J. Casalis de Pury, H. P. A. Mercier, G. J. Schrobilgen, B. Silvi, J. Am. Chem. Soc. 2010, 132, 3533-3542.
[9] J. R. DeBackere, H. P. A. Mercier, G. J. Schrobilgen, J. Am. Chem. Soc. 2014, 136, 3888-3903.
[10] M. Lozinšek, H. P. A. Mercier, D. S. Brock, B. Žemva, G. J. Schrobilgen, Angew. Chem. Int. Ed. 2017, 56, 6251-6254; Angew. Chem. 2017, 129, 6347-6350.
[11] J. R. DeBackere, G. J. Schrobilgen, Angew. Chem. Int. Ed. 2018, 57, 13167-13171; Angew. Chem. 2018, 130, 13351-13355.
[12] H. P. A. Mercier, U. Breddemann, D. S. Brock, M. R. Bortolus, G. J. Schrobilgen, Chem. Eur. J. 2019, 25, 12105-12119.
[13] D. S. Brock, J. J. Casalis de Pury, H. P. A. Mercier, G. J. Schrobilgen, B. Silvi, Inorg. Chem. 2010, 49, 6673-6689.
[14] M. Tramšek, P. Benkič, B. Žemva, Inorg. Chem. 2004, 43, 699 703.
[15] J. F. Lehmann, D. A. Dixon, G. J. Schrobilgen, Inorg. Chem. 2001, 40, 3002-3017.
[16] K. Radan, E. Goreshnik, B. Žemva, Angew. Chem. Int. Ed. 2014, 53, 13715-13719; Angew. Chem. 2014, 126, 13935-13939.
[17] M. R. Bortolus, H. P. A. Mercier, G. J. Schrobilgen, Chem. Eur. J. 2020, 26, 8935-8950, and references therein.
[18] N. Bartlett, M. Wechsberg, Z. Anorg. Allg. Chem. 1971, 385, 5 17.
[19] B. Žemva, A. Jesih, D. H. Templeton, A. Zalkin, A. K. Cheetham, N. Bartlett, J. Am. Chem. Soc. 1987, 109, 7420-7427.
[20] B. Žemva, L. Golič, J. Slivnik, Vestn. Slov. Kem. Drus. 1983, 30, 365-376.
[21] B. E. Pointner, R. J. Suontamo, G. J. Schrobilgen, Inorg. Chem. 2006, 45, 1517-1534.
[22] M. Tramšek, B. Žemva, J. Fluorine Chem. 2006, 127, 1275-1284.
[23] A. Bondi, J. Phys. Chem. 1964, 68, 441-451.
[24] S. Alvarez, Dalton Trans. 2013, 42, 8617-8636.
[25] D. S. Brock, H. P. A. Mercier, G. J. Schrobilgen, J. Am. Chem. Soc. 2013, 135, 5089-5104.
[26] T. Drews, K. Seppelt, Angew. Chem. Int. Ed. Engl. 1997, 36, 273 274; Angew. Chem. 1997, 109, 264-266.
[27] K. O. Christe, E. C. Curtis, R. D. Wilson, J. Inorg. Nucl. Chem. Supplement 1976, 28, 159-165.
[28] C. J. Adams, N. Bartlett, Isr. J. Chem. 1978, 17, 114-125.
[29] M. J. Hughes, H. P. A. Mercier, G. J. Schrobilgen, Inorg. Chem. 2010, 49, 3501-3515.
[30] J. T. Goettel, M. R. Bortolus, D. G. Stuart, H. P. A. Mercier, G. J. Schrobilgen, Chem. Eur. J. 2019, 25, 15815-15829.
[31] H. H. Claassen, G. L. Goodman, J. G. Malm, F. Schreiner, J. Chem. Phys. 1965, 42, 1229-1232.
[32] A. D. Becke, K. E. Edgecombe, J. Chem. Phys. 1990, 92, 53975403.
[33] B. Silvi, A. Savin, Nature 1994, 371, 683-686.
[34] J. Haner, K. Matsumoto, H. P. A. Mercier, G. J. Schrobilgen, Chem. Eur. J. 2016, 22, 4833-4842.
[35] O. Kirshenboim, S. Kozuch, J. Phys. Chem. A 2016, 120, 9431 9445.
[36] G. R. Jones, R. D. Burbank, N. Bartlett, Inorg. Chem. 1970, 9, 2264-2268.
[37] K. M. Marczenko, H. P. A. Mercier, G. J. Schrobilgen, Angew. Chem. Int. Ed. 2018, 57, 12448-12452; Angew. Chem. 2018, 130, 12628-12632.
[38] P. Politzer, J. S. Murray, T. Clark, G. Resnati, Phys. Chem. Chem. Phys. 2017, 19, 32166-32178.

Manuscript received: November 2, 2020
Accepted manuscript online: November 26, 2020
Version of record online: March 1, 2021

[^0]: [*] Dr. M. Lozinšek, Dr. H. P. A. Mercier, Prof. Dr. G. J. Schrobilgen Department of Chemistry, McMaster University Hamilton, ON L8S 4M1 (Canada)
 E-mail: mercierhpa@live.com
 schrobil@mcmaster.ca
 Dr. M. Lozinšek
 Present address: Department of Inorganic Chemistry and Technology, Jožef Stefan Institute
 Jamova 39, 1000 Ljubljana (Slovenia)
 E-mail: matic.lozinsek@ijs.si
 Supporting information and the ORCID identification number(s) for the author(s) of this article can be found under: https://doi.org/10.1002/anie. 202014682.
 © © 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is noncommercial and no modifications or adaptations are made.

