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Protein domain evolution<p>Novel protein domain stochastic duplication/innovation models that are independent of genome-specific features are used to interpret global trends of genome evolution.</p>

Abstract

Background: Protein domains can be used to study proteome evolution at a coarse scale. In
particular, they are found on genomes with notable statistical distributions. It is known that the
distribution of domains with a given topology follows a power law. We focus on a further aspect:
these distributions, and the number of distinct topologies, follow collective trends, or scaling laws,
depending on the total number of domains only, and not on genome-specific features.

Results: We present a stochastic duplication/innovation model, in the class of the so-called
'Chinese restaurant processes', that explains this observation with two universal parameters,
representing a minimal number of domains and the relative weight of innovation to duplication.
Furthermore, we study a model variant where new topologies are related to occurrence in
genomic data, accounting for fold specificity.

Conclusions: Both models have general quantitative agreement with data from hundreds of
genomes, which indicates that the domains of a genome are built with a combination of specificity
and robust self-organizing phenomena. The latter are related to the basic evolutionary 'moves' of
duplication and innovation, and give rise to the observed scaling laws, a priori of the specific
evolutionary history of a genome. We interpret this as the concurrent effect of neutral and
selective drives, which increase duplication and decrease innovation in larger and more complex
genomes. The validity of our model would imply that the empirical observation of a small number
of folds in nature may be a consequence of their evolution.

Background
The availability of many genome sequences provides us with
abundant information, which is, however, very difficult to
understand. As a consequence, it becomes very important to
develop higher-level descriptions of the contents of a genome,
in order to advance our global understanding of biological
processes. At the level of the proteome, an effective scale of
description is provided by protein domains [1]. Domains are

the basic modular topologies of folded proteins [2]. They con-
stitute independent thermodynamically stable structures.
The physico-chemical properties of a domain determine a set
of potential functions and interactions for the protein that
carries it, such as DNA- or protein-binding capability or cata-
lytic sites [1,3]. Therefore, domains underlie many of the
known genetic interaction networks. For example, a tran-
scription factor or an interacting pair of proteins need the
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proper binding domains [4,5], whose binding sites define
transcription networks and protein-protein interaction net-
works, respectively.

Protein domains are related to sets of sequences of the pro-
tein-coding part of genomes. Multiple sequences give rise to
the same topology, so sequence diversity can be explained as
a stochastic walk in the space of possible sequences. However,
the choice of a specific sequence in this set might also fine-
tune the function, activity and specificity of the inherent
physico-chemical properties that characterize a topology
[6,7]. The topology of a domain then defines naturally a
'domain class', constituted by all its realizations in the
genome, in all the proteins using that given fold to perform
some function. The connection between the repertoire of pro-
tein functions and the set of domains available to a genome is
an open problem. This question is related to the fate of
domains in the course of evolution, as a consequence of the
dynamics of genome growth (by duplication, mutation, hori-
zontal transfer, gene genesis, and so on), gene loss, and
reshuffling (for example, by recombination), under the con-
straints of selective pressure [3,8]. These drives for combina-
torial rearrangement, together with the defining modular
property of domains, enable the construction of increasingly
complex sets of proteins [9]. In other words, domains are par-
ticularly flexible evolutionary building blocks.

In particular, the sequences of two duplicate domains that
diverged recently will be very similar, so one can also give a
strictly evolutionary definition of protein domains [3] as
regions of a protein sequence that are highly conserved. The
(interdependent) structural and evolutionary definitions of
protein domains given above have been used to produce sys-
tematic hierarchical taxonomies of domains that combine
information about shapes, functions and sequences [10,11].
Generally, one considers three layers, each of which is a supr-
aclassification of the previous one. At the lowest level,
domains are grouped into 'families' on the basis of significant
sequence similarity and close relatedness in function and
structure. Families whose proteins have low sequence iden-
tity but whose structures and functional features suggest a
common evolutionary origin are grouped in 'superfamilies'.
Finally, domains of superfamilies and families are defined as
having a common 'fold' if they share the same major second-
ary structures in the same arrangement and with the same
topological connections.

The large-scale data stemming from this classification effort
enable us to tackle the challenge of understanding the func-
tional genomics of protein domains [1,12-14]. In particular,
they have been used to evaluate the laws governing the distri-
butions of domains and domain families [8,15-18]. As noted
by previous investigators, these laws are notable and have a
high degree of universality. We reviewed these observations,
performing our own analysis of data on folds and super-
families from the SUPERFAMILY database [19] (Additional

data file 1). Using the total number of domains n to measure
the size of a genome, we make the following observations,
which confirm and extend previous ones (note that n
increases linearly with the number of proteins and, thus, the
two measures of genome size are interchangeable; Figure
A2.4 in Additional data file 1).

Observation 1
The number of domain classes (or hits of distinct domains)
concentrates around a curve F(n). This means that even
genomes that are phylogenetically very distant, but have sim-
ilar sizes, will have similar numbers of domain classes. This is
the case, for example, of the enterobacterium Shigella
flexneris, with 3,425 domains and 670 distinct domain topol-
ogies (giving rise to domain classes), and the distant alka-
liphilic Bacillus Bacillus halodurans, with 3,406 domains and
637 domain classes. Furthermore, the curve F(n) is markedly
sublinear with size (Figure 1a), perhaps saturating. This
means that as the total number of domains n measuring
genome size expands, the number of different domains
becomes strikingly invariant; for example, there is little dif-
ference in the number of different domains between Tetrao-
don nigroviridis and Homo sapiens despite a doubling in n.
Interestingly, the same trend is observed within kingdoms, so
that, for example, within bacteria both Escherichia coli and
Burkholderia xenovorans (one of the largest bacterial
genomes) have 702 distinct domain classes, but n = 3,921 for
the former and n = 7,817 for the latter. Note that although the
number of domains is increasingly invariant with n, the
number of proteins is linear in n. Hence, the number of differ-
ent domain combinations in one protein expands, indicating
that proteome complexity increasingly relies on combinator-
ics rather than on number of distinct domain topologies (Fig-
ure A2.4 in Additional data file 1).

Observation 2
The populations of domain classes follow power law distribu-
tions. Stated mathematically, the number F(j,n) of domain
classes having j members (in a genome of size n) follows the
power law ~ 1/j1+α, where the fitted exponent 1 + α typically
lies between 1 and 2 (Figure 2). In other words, the population
of domain classes tends to have 'hubs' or very populated
domain classes. For example, in E. coli the hub is the SUPER-
FAMILY domain 52540 (P-loop containing nucleoside tri-
phosphate hydrolase) with 222 occurrences.

Observation 3
The slopes tend to become flatter with genome size - that is,
the fitted exponent of this power law appears to decrease (Fig-
ure 2a) - and there is evidence for a cutoff that increases line-
arly with n (Figure 2c). For example, this cutoff can be
measured by the population of the largest class of the hub,
and in the case of B. xenovorans, the population of the hub is
445, in accordance with the above-mentioned nearly double
genome size in terms of domains compared to E. coli.
Genome Biology 2009, 10:R12
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Number of domain classes versus genome sizeFigure 1
Number of domain classes versus genome size. (a) Plot of empirical data for 327 bacteria, 75 eukaryotes, and 27 archaeal genomes. Data refer to 
superfamily domain classes from the SUPERFAMILY database [19]. Larger data points indicate specific examples. Data on SCOP folds follow the same 
trend (section A2 in Additional data file 1). (b) Comparison of data on prokaryotes (red circles) with simulations of 500 realizations of different variants of 
the model (yellow, grey, and green shaded areas in the different panels), for fixed parameter values. Data on archaea are shown as squares. α = 0 (left 
panel, graph in log-linear scale) gives a trend that is more compatible with the observed scaling than α > 0 (middle panel). However, the empirical 
distribution of folds in classes is quantitatively more in agreement with α > 0 (Table 1 and Figure 2). The model that breaks the symmetry between domain 
classes and includes specific selection of domain classes (right panel) predicts a saturation of this curve even for high values of α, resolving this quantitative 
conflict. (c) Usage profile of SUPERFAMILY domain classes in prokaryotes, used to generate the cost function in the model with specificity. On the x-axis, 
domain families are ordered by the fraction of genomes they occur in. The y-axis reports their occurrence fraction. The red lines indicate occurrence in all 
or none of the prokarotic genomes of the data set.
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Figure 2 (see legend on next page)
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These observed 'scaling laws' are related to the evolution of
genomes. In particular, we explore them using abstract mod-
els that contain the basic moves available to evolution:
domain addition, duplication, and loss. Recent modeling
efforts have focused mainly on observation 2, or the fact that
the domain class distributions are power laws. They have
explored two main directions, a 'designability' hypothesis and
a 'genome growth' hypothesis. The designability hypothesis
[20] claims that domain occurrence is due to accessibility of
shapes in sequence space. While the debate is open, this alone
seems to be an insufficient explanation, given, for example,
the monophyly of most folds in the taxonomy [3,21]. The
'genome growth' hypothesis, which ascribes the emergence of
power laws to a generic preferential-attachment principle due
to gene duplication, seems to be more promising. Growth
models were formulated as nonstationary, duplication-inno-
vation models [8,22,23], and as stationary birth-death-inno-
vation models [16,24-26]. They were successful in describing
to a consistent quantitative extent the observed power laws.
However, in both cases, each genome was fitted by the model
with a specific set of kinetic coefficients, governing duplica-
tion, influx of new domain classes, or death of domains.
Another approach used the same modeling principles in
terms of a network view of homology relationships within the
collective of all protein structures [27,28].

On the other hand, the common trend for the number of
domain classes at a given genome size and the common
behavior of the observed power laws in different organisms
having the same size (observations 1-3), call for a unifying
behavior in these distributions, which has not been addressed
so far. Here, we define and relate to the data a non-stationary
duplication-innovation model in the spirit of Gerstein and
coworkers [8]. Compared to this work, our main idea is that a
newly added domain class is treated as a dependent random
variable, conditioned by the preexisting coding genome struc-
ture in terms of domain classes and number. We will show
that this model explains the three observations made above
with a unique underlying stochastic process having only two
universal parameters of simple biological interpretation, the
most important of which is related to the relative weight of
adding a domain belonging to a new family and duplicating
an existing one. In order to reproduce the data, the innova-

tion probability of the model has to decrease with proteome
size, that is, such as it is less likely to find new domains in
genomes with increasingly larger numbers of domains. This
feature is absent in previous models, and opens an interesting
biological question: why should the a newly added domain be
conditioned on pre-existing domain classes and number? The
possible explanations for this phenomenon can be neutral, or
selective. Neutral explanations are related to the decreasing
effective population size with increasing genome size, which
would increase the probability of duplication over innovation
for larger genomes, or to the effective pool of available
domains, which would decrease the probability of innovation.
The main selective argument is that a new domain is likely to
be favored only if it can perform a task not covered by pre-
existing domains or their combinations. Hence, as the
number of domains increases, the chance that a new one will
be accepted should decrease. Along the same lines, we also
suggest the possibility to interpret this trend as a conse-
quence of the computational cost of adding a new domain
class in a genome, manifested by an increasing number of
copies of old domains, building up new proteins and interac-
tions needed for adding and wiring a new domain shape into
the existing regulatory network. The model generalizes to the
presence of domain loss, and we have verified that the same
results hold in the limiting hypothesis that domain loss is not
dominant (that is, genomes are not globally contracting on
average). Finally, we show how the specificity of domain
shapes, introduced in the model using empirical data on the
usage of domain classes across genomes, can improve the
quantitative agreement of the model with data, and in partic-
ular predict the saturation of the number of domain classes
F(n) at large genome sizes.

Results
Main model
Ingredients
An illustration of the model and a table outlining the main
parameters and observables are presented in Figure 3. The
basic ingredients of the model are pO, the probability to dupli-
cate an old domain (modeling gene duplication), and pN, the
probability to add a new domain class with one member
(which describes domain innovation, for example by horizon-

Internal usage of domainsFigure 2 (see previous page)
Internal usage of domains. (a) Histograms of domain usage; empirical data for 327 bacteria. The x-axis indicates the population of a domain class, and the 
y-axis reports the number of classes having a given population of domains. Each of the 327 curves is a histogram referring to a different genome. The 
genome sizes are color-coded as indicated by the legend on the right. Larger genomes (black) tend to have a slower decay, or a larger cutoff, compared to 
smaller genomes (red). The continuous (red) and dashed (black) lines indicate a decay exponent of 3 and 1, respectively. (b) Histograms of domain usage 
for 50 realizations of the model at genome sizes between 500 and 8,000. The color code is the same as in (a). All data are in qualitative agreement with the 
empirical data. However, data at α = 0 appear to have a faster decay compared to the empirical data. This is also evident looking at the cumulative 
distributions (section A1 in Additional data file 1). The right panel refers to the model with specificity, at parameter values that reproduce well the 
empirical number of domain classes at a given genome size (Figure 1). (c) Population of the maximally populated domain class as a function of genome size. 
Empirical data of prokaryotes (green circles) are compared to realizations of the CRP, for two different values of α. The lines indicate averages over 500 
realizations, with error bars indicating standard deviation. α = 0 can reproduce the empirical trend only qualitatively (not shown). Data from the 
SUPERFAMILY database [19].
Genome Biology 2009, 10:R12
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tal transfer). Iteratively, either a domain is duplicated with
the former probability or a new domain class is added with
the latter.

An important feature of the duplication move is the (null)
hypothesis that duplication of a domain has uniform proba-
bility along the genome and, thus, it is more probable to pick
a domain of a larger class. This is a common feature with pre-
vious models [8]. This hypothesis creates a 'preferential
attachment' principle, stating the fact that duplication is
more likely in a larger domain class, which, in this model as in
previous ones, is responsible for the emergence of power law
distributions. In mathematical terms, if the duplication prob-
ability is split as the sum of per-class probabilities pi

O, this
hypothesis requires that pi

O ∝ ki , where ki is the population of
class i, that is, the probability of finding a domain of a partic-
ular class and duplicating it is proportional to the number of
members of that class.

It is important to note that in this model the relevant param-
eter is n. As pointed out in [8], this parameter is related to
evolutionary time in a very complex way, by nonlinear his-
tory- and genome-dependent rescalings that are difficult to
quantify. On the other hand, the weight ratio of innovation to
duplication at a given n is more precisely defined (as it can be
observed in the data we consider), and is set by the ratio 
pN/pO. In the model of Gerstein and coworkers [8], both
probabilities, and hence their ratio, are constant. In other
words, the innovation move is considered to be statistically
independent from the genome content. This choice has two
problems. First, it cannot give the observed sublinear scaling
of F(n). Indeed, if the probability of adding a new domain is
constant with n, so will be the rate of addition, implying that
this quantity will increase, on average, linearly with genome
size. It is fair to say that Gerstein and coworkers do not con-

sider the fact that genomes cluster around a common curve
(as shown by the data in Figure 1) and think of each as coming
from a stochastic process with genome-specific parameters.
Second, their choice of constant pN implies that, for larger
genomes, the influx of new domain classes is heavily domi-
nant over the flux of duplicated domains in each old class.
This again contradicts the data, where additions of domain
classes are rarer with increasing genome size.

Defining equations and the Chinese restaurant process
On the contrary, motivated by the sublinear scaling of the

number of domain classes (observation 1), we consider that

pN is conditioned by genome size. We note that, as observed

in [23], constant pN makes sense, thinking that new folds

emerge from an internal mutation-like process with constant

rate rather than from an external flux. This flux, coming, for

example, from horizontal transfer, could be thought of as a

rare event with Poisson statistics and characteristic time τ,

during which the influx of domains is θτ. For such a process,

it is apparent that f(n) must have a mean value given by

, thus increasing as θlog n. This scenario is comple-

mentary to the one of Gerstein and coworkers because old

domain classes limit the universe that new classes can

explore.

One can think of intermediate scenarios between the two. The
simplest scheme, which turns out to be quite general, implies
a dependence of pN by n and f, where n is the size (defined
again as the total number of domains) and f is the number of
domain classes in the genome. Precisely, we consider the
expressions:

j

n

n=1∑ +
θ

θ

Evolutionary modelFigure 3
Evolutionary model. (a) Scheme of the basic moves. A domain of a given class (represented by its color) is duplicated with probability pN, giving rise to a 
new member of the same family (hence filled with the same color). Alternatively, an innovation move creates a domain belonging to a new domain class 
(new color) with probability pN. (b) Summary of the main mathematical quantities and parameters of the model.

Basic Mathematical Quantities
n genome size (in domains)
pO probability of domain duplication
pi

O per-class probability of duplication
pN probability of innovation (new class)
ki population of class i
f number of classes
α, θ parameters in pO, pN
Ki , F averages of ki , f
F(n) average number of classes at size n
F( j,n) average number of classes having j

members at size n

(a) (b)
Genome Biology 2009, 10:R12
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and since  (that is, the total probability of dupli-

cation must coincide with the sum of per-class duplication

probabilities):

and

where θ ≥ 0 and α ∈ [0,1]. Here θ is the parameter represent-
ing a characteristic size n needed for the preferential attach-
ment principle to set in, and defines the behavior of f(n) for
vanishing n. α is the most important parameter, which sets
the scaling of the duplication/innovation ratio (see the sec-
ond column of Table 1). Intuitively, for small α the process
slows down the growth of f at small values of n (necessarily 
f ≤ n because classes have at least one member), and since pN

is asymptotically proportional to the class density f/n, it is
harder to add a new domain class in a larger, or more heavily
populated genome. As we will see, this implies pN/pO → 0 as
n → ∞, corresponding to an increasingly subdominant influx
of new fold classes at larger sizes. We will show that this
choice reproduces the sublinear behavior for the number of
classes and the power law distributions described in observa-
tions 1-3.

This kind of model has previously been explored in a different
context in the mathematical literature under the name of Pit-
man-Yor, or the Chinese restaurant process (CRP) [29-32]. In
the Chinese restaurant metaphor, domain realizations corre-
spond to customers and tables to domain classes. A domain
that is a member of a given class is represented by a customer
sitting at the corresponding table. In a duplication event, a
new customer is seated at a table with a preferential attach-
ment principle, corresponding to the idea that, with table-
sharing, customers may prefer more crowded tables because
this could be an indication of better or more food (for
domains, this feature enters naturally with the null hypothe-
sis of uniform choice of duplicated domains). In an innova-
tion event, the new customer sits at a new table.

Theory and simulation
We investigated this process using analytical asymptotic
equations and simulations. The natural random variables
involved in the process are f, the number of tables or domain
classes, ki the population of class i, and ni, the size at birth of
class i. Rigorous results for the probability distribution of the
fold usage vector (k1, ..., kf) confirm the results of our scaling
argument. It is important to note that in this stochastic proc-
ess, large n limit values of quantities such as ki and f do not
converge to numbers, but rather to random variables [29].

Despite of this property, it is possible to understand the scal-
ing of the averages Ki and F (of ki and f, respectively) at large
n, writing simple 'mean-field' equations in the spirit of statis-
tical physics, for continuous n. From the definition of the
model, we obtain:

p
ki
nO

i = ,
−
+
α
θ

p pO i O
i=∑

p
n f
nO = ,
−
+
α
θ

p
f

nN = ,
θ α

θ
+
+

∂ −
+n iK n

Ki
n

( ) =
α
θ

Table 1

Salient features of the proposed model in terms of scaling of the number of domain classes, compared to the model of Gerstein and 
coworkers [8,22]

Ki F(n) F(j, n)/F(n)

CRPα = 0 ~ n ~ n-1 ~ n-1 ~ log (n)

CRPα > 0 ~ n ~ nα-1 ~ nα-1 ~ nα ~ j -(1+α)

Qian et al. = R ~ n ~ j-(2+R)

The first three columns indicate the resulting average population of a class Ki, and the ratios of the probability to add a new class pN to the total and 
per-class probabilities of duplication, as a function of genome size n. These latter two quantities are asymptotically zero in the CRP, while they are 
constant or infinite in the model of Gerstein and coworkers. The last two columns indicate the resulting scaling of number of domain classes F(n) and 
fraction of classes with j domains F(j, n)/F(n). The results of the CRP agree qualitatively with observations 1-3 in the text.

pN
pO

pN

pO
i

~ θ
j

~ n
pO ~ n

pO1−
Genome Biology 2009, 10:R12
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and

These equations have to be solved with initial conditions
Ki(ni) = 1, and F(0) = 1. Hence, for α ≠ 0:

and

while, for α = 0:

F(n) = θlog (n + θ) ~ log (n).

These results imply that the expected asymptotic scaling of
F(n) is sublinear, in agreement with observation 1.

The mean-field solution can be used to compute the asymp-

totics of P(j,n) = F(j,n)/F(n) [33]. This works as follows. From

the solution, j > Ki(n) implies ni > n*, with ,

so that the cumulative distribution can be estimated by the

ratio of the (average) number of domain classes born before

size n* and the number of classes born before size 

n, P(Ki(n) > j) = F(n*)/F(n). P(j, n) can be obtained by deriva-

tion of this function. For n, j → ∞, and j/n small, we find:

P(j, n) ~ j-(1+α)

for α ≠ 0, and

for α = 0. The above formulas indicate that the average
asymptotic behavior of the distribution of domain class pop-
ulations is a power law with exponent between 1 and 2, in
agreeement with observation 2.

The trend of the model of Gerstein and coworkers can be
found for constant pN, pO and gives a linearly increasing F(n)
and a power law distribution with exponent larger than two
for the domain classes (hence, in general, not compatible with
observations). A comparative scheme of the asymptotic
results is presented in Table 1. We also verified that these
results are stable for introduction of domain loss and global
duplications in the model (section A5 in Additional data file
1). Incidentally, we note also that the 'classic' Barabasi-Albert
preferential attachment scheme [33] can be reproduced by a

modified model where at each step a new domain family (or
new network node) with, on average, m members (edges of
the node) is introduced, and at the same time m domains are
duplicated (the edges connecting old nodes to the new node).

Going beyond the mean behavior for large sizes n, the proba-
bility distributions generated by a CRP contain large finite-
size effects that are relevant for the experimental genome
sizes. In order to evaluate the behavior and estimate parame-
ter values taking into account stochasticity and the small sys-
tem sizes, we performed direct numerical simulations of
different realizations of the stochastic process (Figures 1b and
2b,c). The simulations allow the measurement of f(n), and
F(j,n) for finite sizes, and, in particular, for values of n that are
comparable to those of observed genomes. At the scales that
are relevant for empirical data, finite-size corrections are sub-
stantial. Indeed, the asymptotic behavior is typically reached
for sizes of the order of n ~ 106, where the predictions of the
mean-field theory are confirmed.

Comparing the histograms of domain occurrence of model
and data, it becomes evident that the intrinsic cutoff set by n
causes the observed drift in the fitted exponent described in
observation 3 and shown in Figure 2a,b. In other words, the
observed common behavior of the slopes followed by the dis-
tribution of domain class population for genomes of similar
sizes can be described as the finite-size effects of a common
underlying stochastic process. We measured the cutoff of the
distributions as the population of the largest domain class,
and verified that both model and data follow a linear scaling
(Figure 2c). This can be expected from the above asymptotic
equations, since Ki(n) ~ n.

The above results show that the CRP model can reproduce the
observed qualitative trends for the domain classes and their
distributions for all genomes, with one common set of param-
eters, for which all random realizations of the model lead to a
similar behavior. One further question is how quantitatively
close the comparison can be. To answer this question, we
compared data for the bacterial data sets and models with dif-
ferent parameters (Figures 1b and 2). Note that data concern-
ing eukaryotes refer to scored sequences for all unique
proteins, and thus are affected by a certain amount of double
counting because of alternative splicing. For this reason, for
the quantitative comparison that follows, we only use the data
concerning bacteria. On the other hand, we note that the
genomes where domain associations are available for the
longest transcripts of each gene, and thus are not affected by
double counting, the same qualitative behavior is found (Fig-
ure A3.6 in Additional data file 1), indicating that the model
should apply also to eukaryotes. Considering the data from
bacteria, while the agreement with the model is quite good, it
is difficult to decide between a model with α = 0 and a model
with finite (and definite) α: while the slope of F(n) is more
compatible with a model having α = 0, the slopes of the inter-
nal power law distribution of domain families P(j,n) and their
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cutoff as a function of n is in closer agreement to a CRP with
α between 0.5 and 0.7 (Figure 1b; sections A1 and A2 in Addi-
tional data file 1).

Domain family identity and model with domain 
specificity
We have seen that the good agreement between model and
data from hundreds of genomes is universal and realization-
independent. On the other hand, although one can clearly
obtain from the basic model all the qualitative phenomenol-
ogy, the quantitative agreement is not completely satisfac-
tory, as the qualitative behavior observed in the model for α >
0 seems to agree better with observed domain distribu-
tions.while observed domain class number better agrees with
α = 0 (Figures 1 and 2).

We will now show how a simple variant of the model that
includes a constraint based on empirically measured usage of
individual domain classes can bypass the problem, without
upsetting the underlying ideas presented above. Indeed, there
exist also specific effects, due to the precise functional signif-
icance and interdependence of domain classes. These give
rise to correlations and trends that are clearly visible in the
data, which we analyze in more detail in a parallel study
(manuscript in preparation). Here, we will consider simply
the empirical probabilities of usage of domain families for 327
bacterial genomes in the SUPERFAMILY database [19] (Fig-
ure 1c). These observables are largely uneven, and functional
annotations clearly show the existence of ubiquitous domain
classes, which correspond to 'core' or vital functions, and
marginal ones, which are used for more specialized or contex-
tual scopes. On biological grounds, this fact is expected to
have consequences on the basic probabilities of the model.
Indeed, if new domain classes in a genome originate by hori-
zontal transfer or by mutation from prior domains, not all
domains are equally likely to appear. Those that are rarer are
less likely to be added, because horizontal transfers involving
them will be rare, or because the barrier to produce them
from their precursors is higher. It is then justified to incorpo-
rate these effects into the CRP model.

In order to identify model domain classes with empirical
ones, it is necessary to label them. We assign each of the labels
a positive or negative weight, according to its empirical fre-
quency measured in Figure 1c. A genome can then be assigned
a cost function, according to how much its domain family
composition resembles the average one. In other words, the
genome receives a positive score for every ubiquitous family
it uses, and a negative one for every rare domain family. We
then introduce a variant in the basic moves of the model,
which can be thought of as a genetic algorithm. This variant
proceeds as follows. In a first substep, the CRP model gener-
ates a population of candidate genome domain compositions,
or virtual moves. Subsequently, a second step discards the
moves with higher cost, that is, where specific domain classes
are used more differently from the average case. Note that the

virtual moves could, in principle, be selected using specific
criteria that take into account other observed features of the
data than the domain family frequency. The model is
described more in detail in section A4 in Additional data file
1. We mainly considered the case with two virtual moves,
which is accessible analytically. The analytical study also
shows that the only salient effective ingredient for obtaining
the correct scaling behavior is the fraction of domain classes
with positive or negative cost. Using this fact, this variant of
the model can be formulated in a way that does not upset the
spirit of our formulation of having few significant control
parameters.

In the modified model, not all classes are equal. The cost func-
tion introduces a significance to the index of the domain class,
or a colored 'tablecloth' to the table of the Chinese restaurant.
In other words, while the probability distributions in the
model are symmetric by switching of labels in domain classes
[31], this clearly cannot be the case for the empirical case,
where specific folds fulfill specific biological functions. We
use the empirical domain class usage to break the symmetry,
and make the model more realistic. Moreover, the labels for
domain classes identify them with empirical ones, so that the
model can be effectively used as a null model.

Simulations and analytical calculations show that this modi-
fied model agrees very well with observed data. Figures 1b
and 2b show the comparison of simulations with empirical
data. The agreement is quantitative. In particular, the values
of α that better agree with the empirical behavior of the
number of domain classes as a function of domain size F(n)
are also those that generate the best slopes in the internal
usage histograms F(j,n). Namely, the best α values are
between 0.5 and 0.7. Furthermore, the cost function gener-
ates a critical value of n, above which F(n), the total number
of domain families, becomes flat. This behavior agrees with
the empirical data better than the asymptotically growing
laws of the standard CRP model. A mean-field calculation of
the same style as the one presented above predicts the exist-
ence of this plateau (section A4 in Additional data file 1).

Discussion
The model shows that the observed common features, or scal-
ing laws, in the number and population of domain classes of
organisms with similar proteome sizes can be explained by
the basic evolutionary moves of innovation and duplication.
This behavior can be divided into two distinct universal fea-
tures. The first is the common scaling with genome size of the
power laws representing the population distribution of
domain classes in a genome. This was reported early on by
Huynen and van Nimwegen [15], but was not considered by
previous models. The second feature is the number of domain
families versus genome size F(n), which clearly shows that
genomes tend to cluster on a common curve. This fact is
remarkable, and extends previous observations. For example,
Genome Biology 2009, 10:R12
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while it is known that generally in bacteria horizontal transfer
is more widespread than in eukaryotes, the common behavior
of innovation and duplication depending on coding genome
size only might be unexpected. The sublinear growth of
number of domain families with genome size implies that
addition of new domains is conditioned to genome size, and,
in particular, that additions are rarer with increasing size.

Comparison with previous modeling studies
Previous literature on modeling of large-scale domain usage

concentrated on reproducing the observed power law behav-

ior and did not consider the above-described common trends.

In order to explain these trends, we introduce a size depend-

ency in the ratio of innovation to duplication pN/pO. This fea-

ture is absent in the model of Gerstein and coworkers, which

is the closest to our formalism. We have shown that this

choice is generally due to the fact that pN is conditioned by

genome size. Furthermore, we can argue on technical

grounds that the choice of having constant pO and pN would be

more artificial, as follows. If one had  = ki/n, the total

probability pO would be one, since the total population n is the

sum of the class populations ki, and there would not be inno-

vation. In order to build up an innovation move, and thus 

pN > 0, one has to subtract small 'bits' of probability from .

If pN has to be constant, the necessary choice is to take

 = ki/n - pN/f, where f is the number of domain classes in

the genome. This means that the probability of duplication

for a member of one class would be awkwardly dependent on

the total number of classes.

Furthermore, we have addressed the role of specificity of
domain classes, by considering a second model where each
class has a specific identity, given by its empirical occurence
in the genomes of the SUPERFAMILY data set. This model,
which gives up the complete symmetry of domain classes, has
the best quantitative agreement with the data, and is a good
candidate for a null model designed for genome-scale studies
of protein domains. Obviously, the better performance of this
model variant has the cost of introducing extra phenomeno-
logical parameters, which, however, are not adjustable, but
empirically fixed, since each class has its own value deter-
mined by its empirical occurrence. Thus, these extra per-class
parameters do not need any estimation as α and θ. One may
suspect that this addition weakens the salient point of having
a model with few universal parameters. On the other hand, an
effective 'parameter-poor' model can reproduce the main
results of the specific model, which just depend on the
assumption of the existence of two sets of 'universal' versus
'contextual' domain classes, and can be obtained by adding
only one extra relevant parameter, the fraction of universal
domains. The detailed weight of each empirical class remains
important for the possible use as a null model.

Role of the common evolutionary history of empirical 
genomes
It is useful to spend a few words on the role of common ances-
try in the observed scaling laws, compared to the model.
Clearly, empirical genomes come from intertwined evolution-
ary paths. The model treated here does not include time in
generations, but reproduces sets of 'random' different
genomes, parameterized by size n using the basic moves of
duplication and innovation (and also loss, see below).
Genomes from the same realization can be thought of as a
trivial phylogenetic tree, where each value of n gives a new
species. In contrast, independent realizations are completely
unrelated.

The scaling laws hold both for each realization and, more
importantly, for different realizations, indicating that they
are properties that stem from the fact that all branches of phy-
logenetic trees are built with the same basic moves and not
from the fact that branches are intertwined. For example, two
completely unrelated realizations will reach similar values of
F at the same value of n. In other words, the predictions of the
model are essentially the same for all histories (at fixed
parameters), which can be taken as an indication that the
basic moves are more important in establishing the observed
global trends than the shared evolutionary history. This is
confirmed by the data, where phylogenetically extremely dis-
tant bacteria with similar sizes have nevertheless very similar
numbers and population distributions of domain classes.

While the scaling laws are found independently on the reali-
zation of the CRP model, the uneven presence of domain
classes can be seen as strongly dependent on common evolu-
tionary history. Averaging over independent realizations, the
prediction of the standard model would be that the frequency
of occurrence of any domain class would be equal, as no class
is assigned a specific label. In the Chinese restaurant meta-
phor, the customers only choose the tables on the basis of
their population, and all the tables are equal for any other fea-
ture. However, if one considers a single realization, which is
an extreme but comparatively more realistic description of
common ancestry, the classes that appear first are obviously
more common among the genomes. In particular, in the 'spe-
cific' variant of the model, the empirically ubiquitous classes
are given a lower cost function, and tend to appear first in all
realizations.

This model has full quantitative descriptive value on the
available data. Its value is also predictive, as removing a few
genomes does not affect its power. However, it can be argued
that this predictivity is trivial, as there is little biological inter-
est in knowing that a genome behaves just as all the other
ones. More interestingly, the model can be used negatively, to
verify whether and to what extent a genome deviates from the
expected behavior in its domain class composition and popu-
lation. In other words, we believe that it could be an interest-
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ing tool to use as a null model in evolutionary studies of
domains at the genome level.

Role of domain loss
While domain deletion is a common phenomenon, we have
chosen to consider (similarly to Gerstein and coworkers) a
basic model including duplication and innovation moves
only. Inspection of a variant of the model with domain dele-
tion (section A5 in Additional data file 1) shows that addition
of domain loss does not change the basic results. Provided
domain loss is not dominant (that is, genome sizes are not
globally contracting), the extra parameter of domain deletion
only determines a correction to the scaling exponents. There-
fore, it can be considered a secondary ingredient to reproduce
the scaling laws, and the basic model we consider is sufficient
to establish the relevant behavior.

The key limitation in the treatment we have performed is the
assumption that gene loss is not dominant. While domain loss
has been addressed and measured at large scales [14], no
quantitative picture is currently available, and, in particular,
it has not been established that domain loss cannot be a dom-
inant process at some evolutionary times or in some sectors of
the phylogenetic tree. In these conditions, our model would
not be applicable as formulated here.

Role of 'ORFans'
All sequenced genomes contain a large number of 'ORFan'
proteins whose domains are not scored by domain databases
because of the total lack or a very limited extent of homologs.
If all these domains are thought to give rise to singleton
domain classes, the observed scaling laws might be affected.
In other words, classes corresponding to 'rare' domain topol-
ogies are harder to discover, and thus more likely not to be in
the databases. This can create some bias in the data if these
'ORFans' do not behave as the observed domains. Assuming
they do not, in order for their domain classes to increase lin-
early with n, they have to be added with constant probability,
as in the model of Gerstein and coworkers [8]. The available
data allow us to exclude that this holds for the observed
domains, so that the only remaining possibility is that,
assuming ORFans behave differently from observed domains,
the genome is composed of two sets of domain topologies
with distinct behavior: observable domains follow our model
while ORFans follow the model of Gerstein and coworkers.

Neutral interpretations for the differential domain 
innovation to duplication ratio with varying proteome 
size
The next question worth discussing is the possible biological
interpretation of the scaling of innovation to duplication, 
pN/pO as a function of proteome size n. As we have shown, this
ratio must scale in the correct way with n in order to repro-
duce the data. As shown in Table 1 and in Figures 1 and 2, this
is set by the parameter α of the model. Precisely, the ratio 
pN/pO decreases like ~ nα-1. In other words, necessarily some-

thing affects the addition of domains with new structures rel-
ative to domains with old structures, making it sparser with
increasing size. This fact is not a prediction of the model, but
rather a feature of the data, which constrain the model. Note
that innovation events can have the three basic interpreta-
tions of horizontal transfers carrying new domain classes,
gene-genesis or splitting of domain classes when internal
structures diverge greatly, while duplication events can be
interpreted as real duplication, or horizontal transfers carry-
ing domains that belong to domain classes already present in
the genome. While this might be confusing if one focuses on
the genome, it seems reasonable to associate these processes
to true 'innovations' and 'duplications' at the protein level. At
least for bacteria, innovation by horizontal transfer could be
the most likely event. In this case, the question could be
reduced to asking why the relative rate of horizontal transfer
of exogenous domain classes decreases with proteome size
relative to the sum of duplication and horizontal transfer of
endogenous domain classes.

In order for pN/pO to decrease with n, either pO has to
increase, or pN has to decrease, or both. A possible source of
increase of p0 with n is the effective population size. Recent
studies [34] suggest that coding genome size correlates with
population size, and in turn this results in reduced selective
pressure, allowing the evolution of larger genomes. Thus, one
can imagine that the ease to produce new duplications and
proteome size are expected to correlate, purely on population
genetics grounds. A naive reason for the innovation probabil-
ity to decrease would be that the pool of total available
domain shapes is small, which would affect the innovations at
increasing size, while duplications are free of this constraint.
However, this would imply that the currently observed
genomes are already at the limit of their capabilities in terms
of producing new protein shapes, while the current knowl-
edge of protein folding does not seem to indicate this fact
[3,35]. On the other hand, this argument could hold on effec-
tive grounds, because of the action of other constraints. For
example, supposing that gain of new domains in a genome is
often originated by horizontal transfer or by mutation from
prior domains, not all domains are equally likely to appear:
those that are rare are less likely to be new introductions
either because horizontal transfers involving them will be
rare, or because the mutational bridge from their precursors
is very long. This aspect is partially covered by the specific
variant of the CRP, which has the best agreement with the
data. Also, the limited availability of domain classes could be
true within a certain environment, where the total pool of
domain families is restricted. We cannot exclude that the
same kind of bias could be due to technical problems in the
recognition and classification of new shapes in the process of
producing the data on structural domains. If recognition
algorithms tend to project shapes that are distinct from
known ones, they could classify new shapes as old ones with a
rate that increases with proteome size, leading to the
observed scaling.
Genome Biology 2009, 10:R12
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Possible computational cost of domain addition
Finally, another reason for pN to decrease could be selective.
New domains are only likely to be selected if they perform a
biological function that is not covered by pre-existing
domains or their combinations. Hence, as the number of
domains increases, the chance a new one will be accepted
should decrease. Along similar lines, we would like to suggest
that a reason for pN to decrease with n could be related not
only to function, but also to the cost for 'wiring' new domains
into existing interaction networks. The argument is related to
the so-called 'complexity hypothesis' for horizontal transfers
[36-39], which roughly states that the facility for a transferred
gene to be incorporated depends on its position and status in
the regulatory networks of the cell. We suppose that, given a
genome with n domains (or for simplicity monodomain
genes) and F domain families, the process leading to the
acceptance of a new domain family, and thus to a new class of
functions, will need a re-adaptation of the population of all
the domain families causing an increase δn in the number of
genes. This increase is due to an underlying optimization
problem that has to adapt the new functions exploited by the
acquired family to the existing ones (by rewiring and expand-
ing different interaction networks). To state it another way,
we imagine that in order to add δF new domain classes, or
'functions', it is necessary to insert δn new degrees of freedom
('genes') to be able to dispose of the functions. Now, generi-
cally, the computational cost for this optimization problem
(which, conceptually, may be regarded as a measure of the
evolvability of the system) could be a constant function of the
size (and thus δn ~ δF), or else polynomial or exponential in F
(that is, δn ~ Fd δF, where d is some positive exponent, or 
δn ~ exp(F)δF, respectively). Integrating these relations gives
n ~ F in the first case, n ~ Fd+1 in the second, and n ~ exp(F)
in the third. Inverting these expressions shows that the first
choice leads to the linear scaling of the model of Gerstein and
coworkers, while the second two correspond to the CRP, and
to a sublinear F(n), which could follow a power law or loga-
rithmic, depending on the computational cost. In other
words, following this argument, accepting a new domain fam-
ily becomes less likely with increasing number of already
available domain families, as a consequence of a global con-
straint. This constraint comes from the trade-off between the
advantage of incorporating new functions and the energetic
or computational cost to govern them (both of which are
related to selective pressure). This hypothesis could be tested
by evaluating the rates of horizontal trasfers carrying new
domain classes in an extensive phylogenetic analysis.

Conclusion
The model and data together indicate that evolution acts con-
servatively on domain families, and shows increasing prefer-
ence with genome size to exploiting available topologies
rather than adding new ones. A final point can be made
regarding the number of observed domains. The model
assumes that the new domain classes are drawn from an infi-

nite family of topologies, which can be even continuous [29],
and leads to a discrete and small number of classes at the rel-
evant sizes. Although physical considerations point to the
existence of a small 'menu' of three-dimensional shapes avail-
able to proteins [40], the validity of our model would imply
that the empirical observation of a small number of folds in
nature does not count as evidence for this thermodynamic
property of proteins, but may have been a simple conse-
quence of evolution.

Materials and methods
Data
We considered data on protein domains on 327 bacteria, 75
eukaryotes, and 27 archaea from the SUPERFAMILY data-
base [19].

Model and simulations
The quantitative duplication-innovation-loss evolutionary
models were explored by mean-field theory and direct simu-
lation.
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