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Aims: Proximal humerus fractures are commonly observed in postmenopausal

women. The goal of this study was to investigate menopause-related changes

in cortical structure of the humeral head.

Materials and methods: Clinical computed tomography (CT) scans of 75

healthy women spanning a wide range of ages (20–72 years) were analyzed.

For each subject, cortical bone mapping (CBM) was applied to create a color

three-dimensional (3D) thickness map for the proximal humerus. Nine regions

of interest (ROIs) were defined in three walls of the humeral head. Cortical

parameters, including the cortical thickness (CTh), cortical mass surface density

(CM), and the endocortical trabecular density (ECTD), were measured.

Results: Compared to premenopausal women, postmenopausal women were

characterized by a significantly lower CTh and CM value in the lateral part of the

greater tuberosity. Similar changes were only found in ROI 4, but not in ROIs 5–

6 in the lesser tuberosity. Linear regression analysis revealed that the CTh and

CM value of ROIs 1, 3, and 4 were negatively associated with age. These results

showed that menopause-related loss in CTh and CM was mainly in the greater

tuberosity besides the proximal part of the lesser tuberosity. Trabecular bone

variable measured as ECTD showed a notably lower value in ROIs 1–9 in

postmenopausal vs. premenopausal group. Inverse linear associations for

ECTD and age were found in ROIs 2, 3, 5, 6, 7, and 9, indicating no site-

specific differences of endocortical trabecular bone loss between the greater

and lesser tuberosity.

Conclusions: Menopause-related cortical loss of the humeral head mainly

occurred in the lateral part of the greater tuberosity. The increased rate of

humeral bone loss in the greater tuberosity may contribute materially to

complex proximal humerus fractures.
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Introduction

Proximal humerus fractures (PHFs) are common fragility

fractures in elderly patients, second only to vertebral and hip

fractures in terms of incidence (1). These fractures are associated

with low bone mineral density (BMD) and increase in incidence

after the age of 50 (1–3). Most PHFs are observed in

postmenopausal women (3). Estrogen deficiency after

menopause resulted in an unbalanced coupling between

resorption and formation in favor of bone resorption,

gradually producing microstructural deterioration and

reduction of the mineral content of the bone material.

Previous studies have concentrated on age-related changes of

trabecular microstructure for its distinct remodeling (4, 5).

However, cortical bone constitutes 80% of skeletal mineralized

bone volume in adults, particularly at appendicular sites where

the cortex accounts for the majority of axial load transfer (6, 7).

Recent studies on the radius, femur, and humerus had found

that bone loss during aging is predominantly cortical in origin

and reaches a maximum around the age of 65 years (8, 9).

Cortical bone accounted for over 80% of all the bone loss during

and after menopause. Porosity increased in the compact-

appearing, outer, and inner transitional zones of the cortex

(10). In a 3-year prospective study using high-resolution

peripheral QCT (HR-pQCT), an increase in endosteal

perimeter and cortical porosity at the radius was detected in

postmenopausal women, which partly led to an annual decline

in the estimated failure load (11). Therefore, cortical loss has a

more negative effect on mechanical stability than trabecular

bone loss and contributes to skeletal fragility (8–12).

Bone strength is determined not only by bone mass but also

by bone morphology as size, shape, and three-dimensional (3D)

architecture and microarchitecture. The most important risk

factor for bone loss in midlife women is menopause. The

increases in the outer diameter of the femoral neck were found

to parallel the reduction in BMD and section modulus during the

menopause transition (13). These suggest that changes in bone

size could contribute to an increased fracture risk, although they

may partially compensate for bone loss resulting from endosteal

resorption. Several cohort studies demonstrated that deficits in

cortical and trabecular bone density and microstructure predict

incident fracture independently of femoral neck BMD and FRAX

(Fracture Risk Assessment Tool) score (14–16). Cortical BMD,

thickness, and area at the tibia were considered as part of the best

set of fracture predictors in these studies that can be expected, as

the structural properties of cortical bone are proposed to be the

major contributors to bone strength (14, 16, 17).

The proximal humerus is relatively under investigation as one of

the most common sites of osteoporotic fracture. Few studies have

explored age-related changes in trabecular bone properties at the

proximal humerus (4, 6, 18). Little data are available formenopause-

related changes of the cortical structure in the proximal humerus.
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The purpose of the present study was to evaluate the cortical bone

characteristics of the proximal humerus in quantitative CT data

obtained in healthy women before and after menopause.
Materials and methods

Subjects and study design

Individuals were participants in the aging and osteoporotic

PHF study, a single-center prospective ongoing population study

of Chinese men and women. Our analytical sample included 75

healthy women, aiming to evaluate menopause-related changes

in cortical bone of the humeral head region in the dominant

upper extremity. All subjects were Han Chinese. Menopause

was defined as the date of the last menses followed by 12

months without menses. Thirty-five (46.7%) women were

premenopausal, with a regular cycle in the last 3 months, and

40 (53.3%) were postmenopausal. Subjects with a history of or

evidence of metabolic bone disease and those receiving chronic

treatment that may affect bone metabolism were excluded from

the study. Arm dominance was determined as the arm with

which subjects would throw a ball. For this study, no dual-energy

X-ray absorptiometry screening was performed prior to

enrollment; therefore, no BMD inclusion/exclusion criteria

were used. Written informed consent was obtained from all

participants, and the study was approved by the institutional

review board of Tianjin Hospital.
Cortical bone mapping

CT scanning (Mx 8000 IDT; Philips Medical Systems, Best,

Netherlands) was performed at 120 kV (peak) and 168

milliampere-seconds. CT images were created in slice

increments of 2.00 mm at a resolution of 0.566 mm × 0.566

mm/pixel with a field of view of 29 cm × 29 cm. Subjects were

positioned supine with their arms in neutral position and

centered within the gantry of the machine. Each image was

analyzed from the slice that included the top of the acromion to

the slice that included the inferior angle of the scapula. All CT

scanning was performed by JL. CT values of pixels were recorded

in Hounsfield units (HUs).

The cortical parameter measurement and mapping

technique have been previously described (19, 20). Cortical

thickness (CTh) measurement was performed using cortical

bone mapping (CBM), implemented by a freely available in-

house program called Stradwin (http://mi.eng.cam.ac.uk/~rwp/

stradwin/). First, an approximate segmentation of each proximal

humerus from the CT data was performed using Stradwin and

results in a triangulated surface mesh with ~10 (4) vertices

distributed uniformly over the proximal humerus surface.

Second, the CT data were sampled at each vertex of the mesh
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using 18-mm lines perpendicular to and passing through the

humeral cortex and trabeculae. Finally, a model that accounts for

the imaging blur was fitted to the data samples. This validated

model-based deconvolution process allows the measurement of

much smaller features than would normally be visible in the CT

data. This process was repeated at all vertices. As a result, color

maps on the proximal humerus were created for accurately

estimating the CTh (in mm) and cortical mass surface density

(CM, the cortical mass per unit surface area), as well as the

endocortical trabecular density (ECTD), which is the trabecular

density directly adjacent to the cortex.
Definition of the regions of interest for
cortical bone distribution assessment

For the evaluation of the bone morphometric analysis,

specific regions of interest (ROIs) were defined within the

proximal end of the humerus. The specific methodology has

been described in detail previously and will be briefly outlined

here (18). The cortical bone in the humeral head region was

defined as anterior, lateral, and posterior walls. In an anatomical

perspective, the anterior wall is equivalent to the lesser

tuberosity. The lateral and posterior parts of the greater

tuberosity correspond to the lateral and posterior walls.

Following the creation of a single 3D thickness map, the

humeral head height (H) was determined by measuring the

distance between the highest point of the humeral head and
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the most distal margin of the articular surface (Figure 1). The

height of the humeral head was then quartered by axial planes 1–

3 that were equidistant to each other. In each slice, to obtain

more details of cortical bone tissue, the longest line (Line 1)

between the joint surface and greater tuberosity was drawn; this

line was divided into a medial and a lateral segment by line 2,

which intersected it at right angles (Figure 2). ROIs 1–9 were

established as cortical bone measurement points (Figure 3).
Statistical analysis

The cortical difference between premenopausal vs.

postmenopausal group was compared using t tests for
FIGURE 1

Region of investigation. The humeral head height (H) was the
distance between the highest point of the humeral head and the
most distal margin of the articular surface. In the humeral head
region (HHR), cortical parameters were determined within
different trisections of humeral head height. GT, greater
tuberosity; LT, lesser tuberosity.
FIGURE 2

Locations of the measuring points in the humeral head region.
Line 1, longest diameter between the articular surface and the
greater tuberosity. Line 2, vertical bisection of line 1. GT, greater
tuberosity; LT, lesser tuberosity.
FIGURE 3

Placement of the regions of interest (ROIs) Nine ROIs were
defined in the humeral head region. (A) Anterior view; (B)
posterior view. GT, greater tuberosity; LT, lesser tuberosity.
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normally distributed values and Kruskal–Wallis test for non-

normally distributed values. The correlation between cortical

indices and age in ROIs 1–9 was studied by linear regression

analysis. All statistical analyses were performed using IBM SPSS

Statistics for Windows version 20.0 (IBM SPSS Inc., Chicago, IL,

USA). Significance level was set at P < 0.05 for all statistical tests.
Results

Changes in morphology prior to and
after menopause

The median age of the premenopausal and postmenopausal

groups was 35 years (interquartile range, 27–43 years) and 65

years (interquartile range, 61–67 years), respectively. When

compared to the premenopausal women, postmenopausal

women were characterized by a significantly lower CTh and

CM value of ROIs 1–3 in the lateral part of the greater tuberosity

(all P < 0.05). Similar changes were only found in ROI 4 (all P <

0.05) but not in ROIs 5–6 in the anterior wall. In the posterior

wall, no difference was detected between the two groups for

either CTh or CM. These results indicated that menopause-

related loss in CTh and CM was mainly in the greater tuberosity,

but also the proximal part of the lesser tuberosity. Trabecular

bone parameter measured as ECTD showed a notably lower

value in ROIs 1–9 in the postmenopausal group, showing that

endocortical trabecular loss occurred in both the greater and

lesser tuberosity (all P < 0.05, Table 1).
Age-related differences in cortical
bone quality

When pooled across all decades, linear regression analysis

revealed that the CTh and CM values of ROIs 1, 3, and 4 were

negatively associated with age (all P < 0.05) (Figure 4). Similarly,

inverse linear associations for ECTD and age were found in ROIs

2, 3, 5, 6, 7, and 9 (all P < 0.05). It can be seen that the decline of

CTh and CM with age occurred in the proximal part of the

greater and lesser tuberosity, whereas there was no site-specific

difference in endocortical trabecular bone loss between the

greater and lesser tuberosity.
Discussion

This study investigated the menopause-related changes in

CTh, CM, and ECTD in specific regions of the humeral head

region measured in a Chinese cohort by CBM technique. Our

principal findings are as follows: 1) The predominant cortical

loss occurred in the lateral part of the greater tuberosity after

menopause; 2) Obvious cortical loss in the proximal parts of the
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greater and lesser tuberosity was detected in postmenopausal

women; 3) The greater and lesser tuberosity had similar patterns

of endocortical trabecular bone loss with aging.

Cortical bone bears the bulk of axial loads in the proximal

humerus, and the distribution of the cortex is an important factor in

bone strength and fracture prediction (18, 21). Our data

demonstrated a main accentuation of cortical bone in the lateral

part of the greater tuberosity after menopause. Meanwhile, ECTD

decreased obviously in each ROI in the greater and lesser tuberosity,

suggesting that excess endocortical resorption in postmenopausal

women agreed with earlier histomorphometric analysis (4). The

marked decrease of cortical bone thickness andmass surface density

in the greater tuberosity indicated a structural weakness, which was

closely connected with fracture for stress concentration effects. Focal

cortical thinning in the greater tuberosity may play a vital role in
TABLE 1 Menopause-related difference in variables of ROIs of
the subjects.

Variables Premenopausal
(n=35)

Postmenopausal
(n=40)

p
value

Age
CTh(mm)

34.83±9.13 64.80±6.77

ROI1 5.24±1.28 3.37±1.74 0.00

ROI2 3.31±1.36 2.57±1.51 0.03

ROI3 3.23±1.28 2.34±1.06 0.02

ROI4 4.49±1.44 3.67±1.58 0.02

ROI5 4.10±1.49 3.52±1.71 0.12

ROI6 4.21±1.50 3.56±1.80 0.09

ROI7 2.77±0.99 2.18±0.90 0.84

ROI8 2.34±0.74 2.18±0.91 0.41

ROI9 2.97±1.28 2.79±1.71 0.53

CM(HUmm)

ROI1 56401.68±17832.52 38621.11±22082.35 0.00

ROI2 45311.95±44759.36 29414.84±17783.92 0.04

ROI3 37257.85±17071.22 26409.81±11929.56 0.03

ROI4 49615.49±18884.85 40749.49±18470.29 0.04

ROI5 46744.91±18571.47 38875.54±19476.03 0.08

ROI6 48107.64±18513.44 40049.46±20818.40 0.08

ROI7 32088.01±13076.91 31503.35±15719.24 0.86

ROI8 26173.71±9264.46 24712.46±10513.65 0.53

ROI9 34894.03±16476.05 32391.99±14546.94 0.49

ECTD(HU)

ROI1 10112.27±52.88 10015.68±228.10 0.01

ROI2 10085.80±46.49 9975.02±220.37 0.00

ROI3 10066.51±55.49 9953.70±222.96 0.01

ROI4 10140.62±198.61 10025.55±222.67 0.02

ROI5 10110.30±59.89 9995.32±216.77 0.00

ROI6 10122.42±72.51 9996.68±220.12 0.00

ROI7 10129.84±68.45 10020.52±210.33 0.00

ROI8 10097.12±65.95 10000.30±225.45 0.02

ROI9 10092.00±63.28 9972.49±227.40 0.00
frontie
The values are given as the mean and the standard deviation. CTh, cortical thickness, CM,
cortical mass surface density, ECTD, the endocortical trabecular density.
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proximal humerus fractures associated with falls. Previous studies

had focused on spatial differences in proximal humeral CTh and

discovered that proximal humerus fractures occur along lines of

cortical thinning (22, 23). Furthermore, the isolated greater

tuberosity fractures are believed to represent the commencement

of a cascade of events that ultimately culminate in a shield-type

proximal humerus fracture (23). Our finding might illuminate why

complex proximal humerus fractures tend to initiate in a

particular zone.

The gross properties of cortical bone change substantially

after menopause. However, the pattern and magnitude of bone

loss differ at various skeletal sites and may be related to local

biomechanical load or to various degrees of response to

decreased estrogen (11, 24). In normal gait, the greatest

stresses occur in the subcapital and medial midfemoral neck

regions, where maximum compressive stresses occur inferiorly

(14). Superiorly, smaller-magnitude tensile stresses occur during

walking. Accordingly, bone decrement occurs preferentially in

the superior region than in the inferior region of the femoral

neck during aging (14, 24). In this study, we found that the CTh

of the proximal parts of the lateral and anterior walls of the

humerus was lower significantly in postmenopausal women and

negatively associated with age. Anatomically, the rotator cuff is
Frontiers in Endocrinology 05
attached to both the greater tuberosity and lesser tuberosity

(Figure 5). The intrinsic properties of the proximal humerus

cortex depend on mechanical loading from the rotator cuff

activity, unlike the weight-bearing bones as proximal femur or

tibia (21). We speculated that normal daily loading from the

rotator cuff cannot prevent menopause and/or age-related

cortical loss from the proximal part of the anterior and lateral

walls of the humeral head. Consistent with our findings,

Shanbhogue et al. (11) observed trabecular separation at the

radius but not the tibia with advancing age and during the

menopause transition. Taken together, we believed that it is

possible that the humerus, as a non–weight-bearing bone, may

have a higher sensitivity to decline in bioavailable estrogen levels

leading to the observed bone loss.

Our study has several limitations. The most obvious

limitation is the cross-sectional nature of the study that limits

the ability to reflect age-related changes in bone geometry. Direct

comparison of each cortical bone index in the premenopausal

and postmenopausal groups could not distinguish between age-

related and menopause-related effects. A longitudinal cohort

study of women is needed to examine changes in proximal

humeral bone health across the menopausal transition. Second,

we have evaluated menopause-related cortical bone effects in a
A B

DC

FIGURE 4

Age-related changes in cortical thickness and cortical mass surface density in the proximal part of the lateral wall (ROI 1) (A, B) and anterior wall
(ROI 4) (C, D). Premenopausal outcomes are indicated by open symbols, postmenopausal outcomes by full symbols. Solid lines represent the
fitted mean from the regression models.
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Chinese cohort. The current data are not directly translatable to

individuals of other racial or ethnic backgrounds since previous

work suggests structural differences of the proximal femur

between Asians and other ethnicities (11, 24). Finally,

microarchitectural changes of the cortical bone in the humeral

head region were not analyzed in the study. Some authors

recently reported that cortical porosity and thickness have a

significant impact on bone loss and mechanical stability (8, 9,

11). Despite this limitation, we identified menopause-related

changes in cortical bone of the humeral head region, which are

definitely relevant to risk prediction for PHFs.

In summary, we have shown that menopause-related cortical

loss of the humeral head mainly occurred in the lateral part of

the greater tuberosity. Since fractures initiate from focal cortical

thinning, the increased cortical bone loss in the greater

tuberosity may contribute materially to complex PHFs. CTh in

the proximal part of the lateral and anterior walls exhibited

significant age- and menopause-related decline in women.

Collectively, cortical loss in the greater tuberosity and the

lesser tuberosity showed marked regional heterogeneity under

the impact of estrogen deficiency and/or aging. Better

understanding of the mechanisms determining local bone loss

in elderly proximal humerus is an important topic for

future research.
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A B

FIGURE 5

Schematic presentation of rotator cuff (A) Anterior view; (B) posterior view. GT, greater tuberosity; LT, lesser tuberosity; SSC, subscapularis; SSP,
supraspinatus; ISP, infraspinatus; TMi, teres minor; LHB, the long head biceps tendon.
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