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Abstract

Tandem mass spectrometry (MS/MS) is the dominant high throughput technology for identifying

and quantifying proteins in complex biological samples. Analysis of the tens of thousands of

fragmentation spectra produced by an MS/MS experiment begins by assigning to each observed

spectrum the peptide that is hypothesized to be responsible for generating the spectrum. This as-

signment is typically done by searching each spectrum against a database of peptides. To our know-

ledge, all existing MS/MS search engines compute scores individually between a given observed

spectrum and each possible candidate peptide from the database. In this work, we use a trellis, a

data structure capable of jointly representing a large set of candidate peptides, to avoid redundantly

recomputing common sub-computations among different candidates. We show how trellises may

be used to significantly speed up existing scoring algorithms, and we theoretically quantify the ex-

pected speedup afforded by trellises. Furthermore, we demonstrate that compact trellis representa-

tions of whole sets of peptides enables efficient discriminative learning of a dynamic Bayesian net-

work for spectrum identification, leading to greatly improved spectrum identification accuracy.

Contact: bilmes@uw.edu or william-noble@uw.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A critical problem in medicine and biology is accurately identifying

the proteins in a complex mixture, such as a drop of blood.

Solutions to this problem have many important applications, includ-

ing the early detection of diseases and congenital defects (Walters

et al., 1996). The most widely used high throughput technology to

identify proteins in complex mixtures is tandem mass spectrometry

(MS/MS), whose output is a collection of tens of thousands of frag-

mentation spectra, each of which ideally corresponds to a single gen-

erating peptide. The core problem in the interpretation of MS/MS

data involves identifying the peptide responsible for generating each

observed spectrum, which we call the spectrum identification

problem.

The most accurate methods to solve the spectrum identification

problem employ a database of peptides (reviewed in Nesvizhskii,

2010). Given an observed spectrum, peptides in the database are

scored, and the top scoring peptide is assigned to the spectrum. The

pair consisting of an observed spectrum and a peptide sequence is

referred to as a peptide-spectrum match (PSM).

In this work, we show how trellises may be used to make this

database search significantly more efficient and accurate. A trellis is a

data structure capable of representing an exponential size collection

of strings in polynomial space. Trellises have been used to speed up in-

ference in hidden Markov models (Huang and Soong, 1991; Jelinek,

1997; Young et al., 1997), dynamic Bayesian networks (DBNs) and

dynamic graphical models (DGMs; Ji et al., 2006). In the context of

MS/MS, we use a trellis to compactly represent the collection of can-

didate peptides associated with an observed fragmentation spectrum,

i.e. peptides whose masses are close to the observed peptide mass

associated with the spectrum. Using the trellis allows for the sharing

of computation across candidate peptides. We describe how to apply

trellises to any scoring function expressible as a DGM. This includes

linear scoring functions such as the SEQUEST XCorr (Eng et al.,

1994), the score functions employed by X!Tandem (Craig and Beavis,

2004), Morpheus (Wenger and Coon, 2013), MS-GFþ (Kim and

Pevzner, 2014) and OMSSA (Geer et al., 2004), as well non-linear

methods such as our recently proposed DBN for Rapid Identification

of Peptides (DRIP; Halloran et al., 2014).
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For common MS/MS application settings, we prove and quantify

the extent to which, in expectation, determining the top scoring data in-

stance in a trellis is substantially more efficient than scoring each data

instance individually. We then demonstrate empirically that trellises

provide a significant reduction in the computational costs of the XCorr

and DRIP scoring functions, ranging from 12- to 16-fold speedups in

the low-resolution and high-resolution datasets examined here.

Next, we show that trellises may be used to discriminatively

train DBNs for MS/MS, leading to significantly improved peptide

identification accuracy. In particular, we modify the DRIP model,

which was originally trained via maximum likelihood estimation, to

instead employ discriminative training via maximum mutual infor-

mation (MMI) estimation (Povey, 2003).

Maximum likelihood estimation maximizes the log-likelihood

given a set of high-confidence PSMs, whereas MMI estimation

maximizes the conditional log-likelihood between the high-

confidence PSMs and a large ‘background’ collection of alternative

PSMs. Thus, MMI estimation encourages learned parameters which

both explain the high-confidence labels well and discriminate

against the background labels. However, MMI estimation is costly

because it requires computing denominator quantities over whole

sets of peptides before being able to take a single gradient step in the

parameter space; this is infeasible if considering each peptide in the

set individually. We demonstrate that using trellises renders the dis-

criminative training procedure feasible. Furthermore, we present

empirical evidence that this discriminative approach significantly

improves identification accuracy relative to the generatively trained

DRIP model (Section 7.2), resulting in 11.2% and 6.2% more cor-

rect identifications at a stringent false discovery rate (FDR) of 0.5%

for two datasets. The general trellis-based discriminative training

procedure used herein is applicable to any DGM for any class of

problem, but we are unaware of any previous work that does this.

The article is organized as follows. In Section 2, we formally de-

fine the spectrum identification problem and introduce the two data-

base search scoring functions, XCorr and DRIP. We then define

trellises in Section 3, which we utilize to compress the theoretical

spectra of candidate peptides to be scored during database search.

We show how graphical models may be used to efficiently traverse

elements in a trellis (Section 3.3), enabling easy combination with

any scoring function represented as a graphical model. Thus, in

Section 4, we show how the vastly different scoring functions,

XCorr and DRIP, may be represented as graphical models. The com-

bination of trellises with these graphical model scoring functions

(Section 5) allows for significantly faster database search (Section

7.1). The highly compressed trellises allow feasible discriminative

training for DRIP (Section 6), providing significantly more accurate

peptide identification accuracy (Section 7.2).

2 Database search in tandem mass

spectrometry

We describe the spectrum identification problem as follows. Given

an observed spectrum x (check Table 1 for notations in the paper)

with precursor m/z m
x and precursor charge c

x, and given a data-

base D, we wish to find the peptide y 2 D responsible for

generating x. Using the precursor m/z and charge, we constrain

the set of peptides to be scored by setting a mass tolerance threshold,

w, such that we score the set of candidate peptides

Dðmx;cx;D;wÞ¼ y :y2D; jmðyÞ=cx�m
xj �wf g, where mðyÞ de-

notes the mass of peptide y. Denoting an arbitrary scoring function

as f ðy;xÞ, the spectrum identification problem, for a given x, in-

volves finding:

y� 2 argmax
y2Dðmx ;cx ;D;wÞ

f ðy; xÞ: (1)

We study two very different database search algorithms:

SEQUEST (Eng et al., 1994) and DRIP (Halloran et al., 2014).

SEQUEST begins by quantizing and preprocessing the observed

spectrum x into a vector bx. Given a candidate peptide y, a theoret-

ical spectrum by (typically, a sparse vector) is constructed from y

with length equal to that of bx. This yields the XCorr score function:

XCorrðx; yÞ ¼ byT bx � 1

151

X75

s¼�75

bxs

 !
¼ byTbx 0; (2)

where bxs denotes the vector shifted by s m/z units. XCorr is thus a

foreground minus a background inner product, and is hence linear.

Our recently proposed DBN-based scoring function, DRIP

(Halloran et al., 2014), constructs a potentially non-linear alignment

between the theoretical and observed spectra. A peptide’s theoretical

spectrum is given, and hidden variables are used to represent two

MS/MS alignment phenomena: insertions, which are observed peaks

that do not match a theoretical peak, and deletions, which are theor-

etical peaks that do not match an observed peak. The most probable

alignment, i.e. sequence of insertions and deletions, is calculated via

the max-product (or the Viterbi) algorithm (Bilmes, 2010), and pep-

tides are scored using the log-likelihood of the most probable align-

ment. A key advantage of DRIP over most other scoring functions is

that the alignment costs are automatically deduced using a machine

learning method such as maximum likelihood estimation or (in the

present paper) conditional likelihood.

Table 1. Notation used in this article

Symbol Function

x observed spectrum of length Tx, xt is a (m/z, intensity) pair

t index along m/z axis for DGM expansion, t ¼ 0; . . . ;T � 1

T DGM frame unrolling amount and number of peaks in

observed spectrum

m;mx precursor mass, precursor mass of spectrum x

c;cx precursor charge, precursor charge of spectrum x

B number of bins of m/z axis quantization (i.e. typically 2000

for low-resolution data)bx binned and processed observed spectrum of length Bbx 0 difference observed spectrum (used in XCorr).

y a peptide

My length of y

M number of theoretical peaks in some peptideby binned sparse theoretical vector of length B (dot product

with binned observed spectrum: hbx 0; byi)
�y length My sequence of increasing incremental m/z values of

fragment ions of y (used for trellis)
�Y set of strings �y 2 �Y to be compressed into a trellis.

y
�

vector of peaks indices of y of length T

y
�

t1 :t2
subsequence of 8y from position t1 to t2

a vector of peaks types of y of length T

ni; ns; nt trellis nodes

l trellis links

D trellis DGM transition variable

N trellis DGM node variable

L trellis DGM link variable

�zt observed child variable for use in a DGM (i.e. �zt ¼ 1 always)

Note: x and its variations denote the observed spectrum for different meth-

ods/contexts. y and its variations denote the theoretical spectrum for different

methods/contexts.
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For these two scoring functions, we define their corresponding

DGMs in Section 4. We note that the DGM used to model XCorr

may be used to model any linear MS/MS scoring function, including

functions employed by many commonly used search algorithms (e.g.

X!Tandem, the base scores for MS-GFþ and OMSSA, and

Morpheus). By combining these DGMs with trellises, we efficiently

model the scoring of all candidate peptides in Equation (1) within a

single data structure (Section 3), affording efficient discriminative

training for MS/MS (Section 6) and significantly faster database

search (Section 7.1).

3 Trellises

Trellises are powerful structures capable of representing an expo-

nentially large set of sequential data hypotheses compactly and effi-

ciently, often using only linear space. For example, natural language

dictionaries can be stored in trellises for more efficient querying; in

speech recognition, trellises constructed out of the top phoneme (or

word, or sentence) hypotheses (e.g. N-best lists) can be used to re-

score and select the best hypothesis much more efficiently than a

simple linear max computation over all N scores (Dyer et al., 2008;

Huang and Soong, 1991; Jelinek, 1997; Young et al., 1997). In this

section, we first formally define a trellis, then show how to effi-

ciently construct a trellis given a large (exponential) set of strings,

and lastly show how to apply the constructed trellises to MS/MS

scoring.

A trellis over an alphabet R is a directed graph G ¼ ð¥;L; ns; ntÞ,
where ¥ is the node set, L is the link set, and ns; nt 2 ¥ denote the

source and target nodes, respectively. To avoid confusion, we use

the terms ‘vertex’ and ‘edge’ for graphical model graphs (Section

3.3), and we use ‘node’ and ‘link’ for trellis graphs. Every link l 2 L

is a tuple ðn1;n2; aðlÞÞ, where n1, n2 are the from-node, and to-node

respectively, and aðlÞ 2 R is the alphabet element encoded in l. Each

path in the trellis from ns to nt represents a sequence. Thus, letting

PðG;ns;ntÞ denote the set of paths from ns to nt, every

p ¼ l1; l2; . . . ; ljpj, p 2 PðG;ns;ntÞ represents a sequence of charac-

ters, or a string, over alphabet R: aðl1Þ; aðl2Þ; . . . ; aðljpjÞ. Also, let

PðG; l1; l2Þ, where l1; l2 2 L, denote the set of paths starting with l1
and ending with l2.

For a set of strings �Y ¼ f�y1; �y2; . . . ; �ymg, the trellis representa-

tion of the strings Gð �Y Þ can be extremely compact because the elem-

ents of �Y might be highly redundant. For example, if �yi and �yj share

some substring in common, then we can merge the common parts

into a sequence of common links. Figure 1A shows a trellis over four

character strings, with the shared substrings collapsed into common

trellis links to reduce redundancy.

The common links of trellises not only reduce memory require-

ments when representing a set of strings but can also speed up com-

putations over the encoded string set, sometimes quite significantly.

Fig. 1. (A) A trellis encoding ‘seattle’, ‘seafood’, ‘kungfu’ and ‘tofu’. ns ;n0;n1; and nt are trellis nodes, and every arrow corresponds to a trellis link, e.g.

ðns ;n0;’sea’Þ. (B) An example of a simple trellis for MS/MS scoring functions, consisting of the theoretical peaks (discretized b/y-ions) for three peptides: ‘ELAK’,

‘EALK’ and ‘EAKK’. Every edge corresponds to the m/z value of a fragment ion rounded to the nearest integer. Three colored paths from source node ns to sink

node nt correspond respectively to three peptides. The observed spectrum is chargeþ2 with low-resolution fragment ions. (C) Trellis construction algorithm that

takes as input a set of strings �Y and the corresponding alphabet R and returns a trellis representation of �Y . (D) Sample trellis construction for strings: ‘ac’, ‘ad’,

‘bc’ and ‘bd’.
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For this article, we focus on the task of DGM inference with the

Viterbi algorithm. Trellises allow us to reduce the state space of the

Viterbi algorithm and to apply smart pruning strategies more effect-

ively, achieving orders of magnitude reductions in computation time

(Section 7.1).

3.1 Trellis construction
Constructing the optimal trellis from the input set of strings �Y over

alphabet R is a difficult problem. The objective of the ‘optimal’ trel-

lis is task dependent. For example, for natural language dictionary

queries to be computationally optimal, the trellis should have a min-

imal number of nodes. For data compression, trellises are often

stored as a node list and a link list, where each entry of the link list

records the starting/ending node and possibly some additional fea-

tures. The optimal trellis should, thus, be minimal in overall size, so

both the nodes and links matter. Moreover, some tasks do not re-

quire the trellis to be an ‘exact’ representation of the input strings.

For a set of strings �Y , let Gð �Y Þ be a trellis representation, and for a

trellis G, let TðGÞ be the set of strings represented by the trellis. We

define an exact trellis to be one where precisely TðGð �Y ÞÞ ¼ �Y . For

our task of speeding up DGM training/inference for MS/MS data-

base search, our objective is to construct a trellis Gð �Y Þ ¼ ð¥;L; ns; nt

Þ that is exact but where jLj is minimized.

Constructing the optimal trellis is a hard problem, as we can

think of a trellis as a non-deterministic finite automaton (NFA;

Hopcroft et al., 2001), and it has been proven (Schnitger and

Gramlich, 2005) that NFA minimization in terms of the number of

states/transitions (trellis nodes/links) is NP-hard to approximate

within a constant factor. We have hence developed a heuristic algo-

rithm (Fig. 1C) that is similar to the determinize–minimize proced-

ure of Watson (1993) but that is specialized to sets of MS/MS

theoretical spectra. The resulting trellis Gð �Y Þ is the minimum state

deterministic finite automaton (DFA; Hopcroft et al., 2001) of the

given language of peptides �Y .

An example run of this algorithm for the strings ‘ac’, ‘ad’, ‘bc’

and ‘bd’ is depicted in steps (1)–(5) of Figure 1D. The for loop,

which merges prefixes of input strings, constructs a DFA out of �Y .

Minimization on the constructed DFA can be thought of as a process

that merges nodes which share the same suffixes. Both merging pre-

fixes and suffixes reduce the number of links in the trellis, making

the algorithm a powerful heuristic in practice. The complexity of the

algorithm is bounded by the DFA minimization step. With

Hopcroft’s algorithm (Hopcroft, 1971), the running time is

OðjRjj �Y jlmaxlogðj �Y jlmaxÞÞ, where lmax ¼ max�y2 �Y j�yj.

3.2 Trellises for MS/MS scoring functions
To speed up the scoring of a set of candidate peptides, we construct

a trellis, Gp, consisting of the set of theoretical peaks from the candi-

date peptides to be scored (i.e. peptides whose masses lie within the

specified precursor mass tolerance window). The alphabet Rp for Gp

contains all possible peak m/z values (in Thomsons) discretized ac-

cording to the resolution of the dataset (e.g. for low-resolution frag-

ment ion spectra, the values are rounded to the nearest integers).

Figure 1B gives an example of a trellis constructed over the theoret-

ical spectra of three peptides.

For each observed spectrum, a trellis is thus constructed contain-

ing the theoretical peaks of all peptide candidates within the corres-

ponding mass window. Each trellis then becomes a ‘database’ to

search for the best peptide candidate match. All trellises (one for

each 1 Th mass bin) are pre-computed and stored during a database

indexing step prior to search. The complexity of construction is

bounded by the DFA minimization step as stated above

(OðjRjj �Y jlmaxlogðj �Y jlmaxÞÞ), and for trellises of theoretical peptide

peaks, jRj is the number of distinct peak m/z values and is a constant

based on the resolution of the data, j �Y j is the number of theoretical

peptides in the querying mass window, and lmax is the number of

theoretical peaks of the longest peptide candidate in the mass

window.

We next show how MS/MS trellis traversal can be expressed and

implemented with DGMs (Section 3.3). This enables the combined

use of trellises with both linear and non-linear MS/MS scoring func-

tions expressed by DGMs (Section 4), thereby allowing significantly

faster database search (Section 5.1) and efficient generative and dis-

criminative training for improved identification accuracy (Section

7.2).

3.3 Traversing trellises using DGMs
A graphical model compactly represents the factorization properties

of a family of probability distributions defined over a set of random

variables. In a graphical model’s graph, vertices represent random

variables and edges denote allowable direct interaction between

variables. A Bayesian network is one type of graphical model that

uses directed acyclic graphs. DGMs are defined over temporal se-

quences where each element in the sequence (called a frame) is repre-

sented by a repeated set of vertices and edges. DGMs provide a great

deal of modeling power and flexibility, offering a calculus with

which to construct widely varying and potentially very complex

models to reason about the underlying data while providing strat-

egies to maintain tractable inference. DBNs are DGMs where the

graphs are directed and acyclic.

As in Ji et al. (2006), we can use DGMs to traverse over a trellis.

At frame t, we use three vertices to access the trellis: a trellis-node

vertex Vt, a trellis-link vertex Lt, and a transition vertex Dt.

Intuitively, Vt corresponds to a node in the trellis, Lt corresponds to

a link in the trellis and Dt controls the traversal of the trellis. Vt�1,

Vt, and Dt determine the set of possible values for Lt, with each value

of Lt corresponding to one character in the encoded strings.

Our trellises can be represented as a DGM structure (Fig. 2).

Values Vt ¼ ni and Dtþ1 ¼ d (d � 0) determine the allowable set of

trellis nodes Vtþ1 2 fnj 2 Nj9p 2 PðG; ni; njÞ; jpj ¼ dg (Vtþ1 has 0

probability for values not in the allowable set, and has the same

probability for all values in the allowable set). Also, values Vt ¼ ni,

Vtþ1 ¼ nj, and Dtþ1 ¼ d together determine the allowable set of

links Ltþ1 2 fl 2 Lj9p 2 PðG; ni;njÞ; jpj ¼ d; p½d � 1� ¼ lg. Thus,

Ltþ1 is a random variable corresponding to all links that go into nj

and can be reached from ni with a path of length d. If d¼0 (i.e. a

Fig. 2. DBN for traversing a trellis. Lt corresponds to the set of links being tra-

versed, which contains the data to access. The value of Lt is decided based on

the previous node Vt�1, the current node Vt, and the transition Dt.
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zero length path connecting two nodes), then the algorithm stays at

the current node and the link stays put as well, i.e. Ltþ1 ¼ Lt. In the

simplest case, Dt is binary (so Dt 2 f0; 1g), so that if Dtþ1 ¼ 0, the al-

gorithm stays at the current node and link, and if Dtþ1 ¼ 1; Ltþ1

may be the outgoing link incident to ni, and Vtþ1 the set of corres-

ponding destination trellis-nodes for those outgoing links. Taking

Figure 1A as an example, suppose Vt ¼ fn0; n1g and Dtþ1 ¼ 1, then

Vtþ1 ¼ fntg and Ltþ1 ¼ f’ttle’, ‘food’, ‘fu’g. The ‘FIRST_NODE’

vertex is observed to be the node value ns and is used only for initial-

izing the time-dependent structure.

The complexity for constructing the conditional probability table

(CPT) to store PrðLtjVt;Vtþ1;Dtþ1Þ, which is required for traversing

the trellis as described above, is jfðl1; l2Þ : l1; l2 2 L; 9p 2
PðG; l1; l2Þ; jpj � dmaxgj, where dmax is the largest value Dt may take

(i.e. the maximum number of deletions). The CPT is likely quite sparse

because many paths do not exist. The value of dmax can vary based on

the underlying DGM. If only link-by-link traversal is desired, then

dmax ¼ 1. Setting dmax ¼ 1 encodes all subsequences of the data in-

stance in the trellis. The CPT can be constructed online to save mem-

ory. Our implementation in the Graphical Model Toolkit (GMTK)

(Bilmes and Zweig, 2002) efficiently supports sparse trellis CPTs.

A trellis DGM representation is applicable to any DGM that

accesses data in a sequential manner. Rather than accessing data in

the traditional way, the trellis representation, moreover, offers two

major benefits over accessing sets of sequences in the traditional

way, namely: (i) various pruning and approximate inference strat-

egies can be applied locally that speed up the underlying DGM sig-

nificantly, since pruning causes many trellis paths to be removed

simultaneously; (ii) compressed trellis representation makes prac-

tical certain expensive learning methods that requires access to the

entire set of data, such as discriminative training. Below, we show

how we take advantage of both of these benefits in our trellis/DGM-

based peptide-spectrum score functions.

4 Graphical model MS/MS scoring functions

4.1 Linear scoring via graphical models
Many MS/MS scoring functions, including XCorr, X!Tandem, the

base scores for MS-GFþ and OMSSA, and Morpheus (Wenger and

Coon, 2013), are linear in the theoretical and observed spectra (i.e.

they constitute a dot product between two preprocessed vectors cor-

responding to the theoretical and the observed spectrum). Using vir-

tual evidence (Bilmes, 2004; Pearl, 1988), where the conditional

distributions of observed child variables may be unnormalized non-

negative scores, we may easily represent any MS/MS linear scoring

function in a graphical model as the log-likelihood of a mixture-like

model. This can then be combined with the aforementioned trellis

constructs. In this section, we first describe linear score functions

and then, in Section 4.2, show how a non-linear score function is

also compatible with trellises.

Let �zt be an observed child variable that is always observed to be

a fixed and known value (e.g. unity). Such a child is known as ‘vir-

tual evidence’ since it may be used to impart a soft version of evi-

dence into a model as follows: given a distribution PrðytÞ over a

random variable yt, the construct Prð�ztjytÞPrðytÞ is a function of only

yt but is a generalization of evidence for yt. For example, if

Prð�ztjytÞ ¼ dðyt ¼ �ytÞ, where d is a Kronecker delta, then this would

be the same as yt being observed at value �yt. If, on the other hand, Pr

ð�ztjytÞ is a non-negative vector (indexed by yt) of real values, this im-

parts virtual evidence for different values of yt. Another construct we

utilize (Bilmes and Zweig, 2002) is that of ‘switching parents’ and

‘switching weights’. Let at be what is known as a switching parent,

and consider a conditional distribution Prð�ztjyt; atÞ. When at is a

switching parent, the current value of at determines the subset of

other parents of �zt that are active. For example, at¼3 might say that

�zt is no longer dependent on yt. The construct of switching weights,

moreover, allows at to determine an exponential weight of the distri-

bution. That is, Prð�ztjyt; atÞ / ðPrð�ztjytÞÞwat , where Prð�ztjytÞ is some

locally normalized yt-dependent distribution on �zt, and wat
is some

non-negative at-dependent constant weight. More details of these

constructs are given in Bilmes (2004).

Virtual evidence, along with switching weights, allows us to ex-

press any linear (i.e. dot-product) MS/MS score within a DGM in a

way that is ideally suited to DGM-expressed trellises. Given a pep-

tide y, recall that its binned theoretical spectrum, by, is a length-B

sparse vector that corresponds to the positions, along the binned m/z

axis, where there are peaks in a theoretically derived spectrum. Let y
8

be an increasing-order sorted vector of indices from 0 to B� 1, that

is y
8 ¼ ð0; 1; . . . ;B� 1Þ. Also, recall that bx 0 is the length-B processed

observed spectrum that is utilized in a dot-product scoring function

hbx 0; byi (for example, Equation (2) in the case of XCorr).

Most MS/MS linear scoring functions use different weights de-

pending on the type of theoretical peak. For instance, in XCorr, b-

and y-ions are each assigned weight 50, and the neutral losses of am-

monia, water and carbon monoxide are each assigned weight 10.

These weights are the unique values in the vector by and are then

multiplied by the corresponding processed observed spectrum bx 0, as

expressed by the dot-product hbx 0; byi. Let a ¼ ða0; a1; . . . ; aB�1Þ be a

length-B vector of peak type indices, so there are B peak types indi-

ces, one for each peak. Each at is integer valued and takes on values

at 2 f0; 1; . . . ; kg for k peak types. Since by is sparse, some of the pos-

itions along the binned m/z are empty, and we encode the empty

condition of position t as at¼0. Moreover, let w ¼ ðw0;w1; . . . ;wkÞ
be a fixed vector of peak type non-negative weights, one weight for

each of the k possible peak types, and where w0 ¼ 0. That is, the

value of wðatÞ depends on the ion type of the theoretical t-th theoret-

ical peak (i.e. whether it is a b-/y-ion or a neutral loss), or if the peak

is non-present. Therefore, ðbyðy80Þ; byðy81Þ; . . . ; byðy8B�1ÞÞ ¼
ðwða0Þ;wða1Þ; . . . ;wðaB�1ÞÞ. Now for t ¼ 1; . . . ;B, define a virtual

evidence factor so that logPrð�ztj y
8
tÞ ¼ bx 0ðy8 tÞ. Then with virtual evi-

dence, and switching weights, we produce a probability model as

follows:

Prð�z0:B�1; y
8
0:B�1; a0:B�1Þ ¼

YB�1

t¼0

pðutÞpðatÞpð�ztjy8 t; atÞ (3)

/
YB�1

t¼0

pðy8 tÞpðatÞðPrð�ztjy8 tÞÞ
wðatÞ (4)

When it is the case that the current theoretical peptide is observed,

then both y0:B�1 and a0:B�1 are also observed, and if at these

observed values we set pðy8 tÞ ¼ pðatÞ ¼ 1, we, therefore, get that

logPrð�z0:B�1; y
8
0:B�1; a0:B�1Þ ¼ hbx 0; byi þ const. All of the above can

be expressed with a graphical model of length T¼B (Fig. 3A). If a

sequencer over a trellis determines the vector variables y
8
0:T�1 and

a0:T�1 (which are no longer observed), then the specifics of the dot-

product be directly controlled and used via a trellis, and all of the

aforementioned benefits of trellises become applicable (see Fig. 4B

and details in Section 5).

4.2 Non-linear scoring via graphical models
A linear model is not the only one that can be used with trellises

with a DGM. DRIP is a model that (potentially non-linearly) aligns
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an unquantized observed spectrum with a peptide’s theoretical spec-

trum. In DRIP, the theoretical spectrum is represented by hidden

variables, as are constructs corresponding to insertions (spurious

observed peaks) and deletions (missing theoretical peaks). An

instantiation of the random variables in DRIP thus correspond to an

alignment between the theoretical and observed spectra, where an

alignment corresponds to the sequence of theoretical peaks used to

score observed peaks as well as the sequences of insertions and dele-

tions. During exact probabilistic inference, all possible alignments

between the theoretical and observed spectra are considered, and

the most probable alignment is used to score a peptide. We next de-

scribe particulars of how DRIP aligns spectra, and in Section 5 we

show how it naturally combines with trellises.

The DRIP DGM template is displayed in Figure 3B, where the

middle frame (the chunk) is dynamically expanded to fit the length

of the current observed spectrum; that is, like in Figure 3A, DRIP

considers the observed spectrum as the temporal sequence being

modeled. Let ~nx be the number of frames and t be an arbitrary frame

number. Each frame of the model corresponds to a single observed

peak, with observed variables �omz
t and �o in

t corresponding to the t-th

m/z value and intensity, respectively. Parent to these variables, the

Bernoulli random variable it denotes whether an observed peak is an

insertion (in which case, we score these observations using a con-

stant penalty) or not (in which case, we score these observations

using a Gaussian centered along the m/z access—a Gaussian cen-

tered near the current frame’s theoretical peak will of course score

much higher than a Gaussian centered farther away).

To score a sequence of observed peaks using a set of theoretical

peaks (which corresponds to a particular theoretical spectrum), a se-

quencer, expressed using a set of hidden random variables, probabilis-

tically traverses through the spectrum from left to right, and this

corresponds to the blue shaded portion of Figure 3B. Let vy be a vec-

tor containing a theoretical peptide’s fragment ions, sorted in increas-

ing order. We index into elements of this vector via the random

variable Kt, which denotes the element index of vy in a particular

frame. The non-negative, discrete random variable dt indicates the

number of theoretical peaks we skip when advancing in the model by

one frame; hence, PrðKtþ1 ¼ ijKt ¼ jÞ ¼ 1fi¼jþdtg. Hence, the number

of deletions that occur after frame t is dt � 1. The observed variable

~ny, dt’s parent, ensures that dt does not increment past the number of

remaining theoretical peaks in the current theoretical peptide.

We note that despite the use of probability in DRIP to traverse

through a theoretical peptide’s spectrum to achieve an alignment

with an observed spectrum, only one theoretical peptide is con-

sidered at a time to control the sequencer. In the next section, we de-

scribe trellises which mitigate this limitation.

5 Connecting trellises with graphical model
MS/MS scoring functions

Figure 4A shows the DGM for DRIP that uses trellises. The vertex

dt, which controls the number of deletions, behaves similarly to the

transition random variable Dt in the trellis representation in DGMs,

and we feed the value of dt into Dt (green cone in Fig. 4A). As dt

ranges from 0 to the maximum length of the candidate peptides, all

subsequences of a peptide are encoded in the trellis.

The value of Lt, which contains the set of m/z values of b/y-ions

stored as trellis links given values of Vt and Dt, is fed into the

‘THEO_PEAK’ vertex vyðKtÞ (pink cone in Fig. 4A) for peptide scor-

ing (Section 4). In general, the trellis variant of DRIP scores all the

candidate peptides all together unlike standard DRIP, which scores

candidate peptides separately and one by one. Thus, the trellis acts

like a database for querying theoretical peaks, and it does not affect

the mechanism of the underlying DGM but it does allow joint

decoding and reuse of common computational patterns.

A

B

Fig. 4. (A) The DRIP trellis model. The trellis DBN (Trellis Part) is attached to

the DRIP DBN (DRIP Part) by taking the input from dt from DRIP (green cone),

which controls the traversal of theoretical peaks, and outputting Lt for DRIP to

score (pink cone), which is the m/z values of theoretical peaks. The DRIP DBN

structure remains unchanged (the part with green background is unchanged

from Fig. 3B). (B) The graphical model representation of linear MS/MS scoring

functions incorporated with trellis structure. Trellis Part (pink background) is

attached to the linear MS/MS function graphical model (green background),

which remains unchanged.

B

A

Fig. 3. (A) The graphical model representation of linear MS/MS scoring func-

tions. (B) DRIP template. Shaded vertices are observed variables, while un-

shaded vertices are hidden variables. Black edges correspond to

deterministic functions of parent variables, red edges correspond to condi-

tional Gaussian distributions and blue edges represent switching parents.
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Similar to DRIP, candidate theoretical peaks for XCorr can be

represented as a trellis and accessed via the node, transition, link

and index variables, as in the ‘Trellis Part’ of Figure 4B (the transi-

tion is always 1 for XCorr). However, unlike DRIP, XCorr requires

that a theoretical peak be weighted differently depending on the cor-

responding ion type, i.e. whether it is a b/y-ion or neutral loss. To

traverse two sets of sequences simultaneously within the same trel-

lis—the sequence of theoretical peaks as well as the sequence of the-

oretical peak ion types—an extra bit is appended to each theoretical

peak in the trellis. This bit denotes the value of the ion type variable,

which acts as a switching parent and changes the weight of the the-

oretical peak (Section 4). This mechanism may be easily extended to

include any variable number of ion types.

5.1 Speeding up graphical model inference with

trellises
Utilizing trellises within DGMs means the state space for accessing all

the data instances is much smaller compared with accessing each in-

stance separately. Intuitively, consider a ‘simple trellis’ that contains j
�Y j disjoint paths from ns to nt, where each path corresponds to one

data instance (e.g. the ‘simple trellis’ in Fig. 1D). The state space for

the simple trellis is no different than accessing each data instance sep-

arately. By constructing the compact trellis, redundant structures in

the simple trellis get merged into shared links so that the state space is

greatly reduced [step (5) in Fig. 1D]. Depending on the data, the state

space reduction can be quite significant. In general, as datasets get

larger, we expect more shared structures since there is more tendency

for redundancy. Hence, the size of a trellis will grow sublinearly with

the size of the input data. For the task of peptide identification in

mass spectrometry, there are often thousands of candidate peptides

within a certain mass window for one spectrum having the potential

of being compressed. Moreover, trellises can be even more effective

when post-translational modifications or sequence variants are con-

sidered (which otherwise greatly increase the number of separate pep-

tide candidates).

Along with trellises, approximate inference algorithms are ef-

fective at significantly reducing the state space of DGMs, decreas-

ing runtime but without keeping the most probable sequence from

being inferred. One such method, ideally suited for trellis infer-

ence, is k-beam pruning (histogram pruning in Ney et al. (1994), a

heuristic where only the k most probable hypotheses (or states) at

each time frame are retained and all other hypotheses are pruned

away (i.e. no longer modeled). While k-beam pruning may be used

in DGMs without trellises, utilizing k-beam pruning with trellises

is significantly more effective since we are pruning hypotheses

from the joint representation shared by all sequences. For example,

the hypotheses of the original DRIP model only consists of a single

peptide’s alignments between an observed spectrum so that, when

using beam pruning, poor alignments are pruned away early on.

With trellises, beam pruning induces a competition among all pep-

tide hypotheses, where peptide candidates which align poorly with

the observed spectrum are pruned away early, so we end up scoring

only a subset of the candidates. Note that, while we use k-beam

pruning in this work, other beam pruning methods or forms of ap-

proximate inference may also be sped up using trellises, because

trellises only alter the representation of the underlying sequential

hypothesis space.

5.1.1 Optimal pruning bounds for Viterbi decoding in trellises

Here we prove under generally applicable assumptions that, in ex-

pectation, a small beam width may be used with impunity when

jointly modeling multiple sequences (in our case, theoretical spectra)

in a single trellis, compared to performing approximate inference

with beam pruning independently on each sequence. This pruning

results in a substantial computational reduction while ensuring that

we have not pruned the most probable hypothesis.

Define a hypothesis h ¼ h1; . . . ; ht ¼ h1:t to be a sequence of

instantiated random variables for frames 1 . . . ; t in a DGM. For

frame t0, let h�t0 be the most probable hypothesis we are trying to

infer, m be the number sequences represented in the trellis, nt0 be the

number of hypotheses with higher probability than h�t0, and rt0 be the

total number hypotheses in the trellis without pruning at frame t0.

Theorem 1: Suppose m and nt0 are large, rt0 � nt0 , and the nt0

hypotheses with higher probability than h�t0 are uniformly distributed

from the m sequences in the trellis. In expectation, performing inference

on each sequence independently requires Xðm
ffiffiffiffiffiffiffiffiffiffiffiffi
nt0=m

p
Þ more beam

width to ensure h� is not pruned compared to inference in a trellis.

The proof of Theorem 1 is provided in Section 1 of the

Supplementary Appendix. Though a uniform distribution is assumed

over the hypotheses, such a distribution is biased in practice for

many applications, and the trellis may be even more efficient, be-

cause we may more aggressively prune using the k-beam strategy

while still preserving the top hypothesis. This theoretically quantifies

the expected speedup using trellises to score MS/MS candidate pep-

tides as opposed to scoring candidate peptides individually (in

Section 7.1, we demonstrate this speedup empirically).

6 Training DRIP with trellises

In Halloran et al. (2014), generatively training the DRIP model’s

Gaussian parameters was shown to significantly increase perform-

ance. Here we extend this framework to discriminative training,

using trellises to make such training tractable. For the overall train-

ing procedure, assume that we have a collection, C, of N i.i.d. pairs

ðxi; yiÞ, where xi is an observed spectrum and yi the corresponding

peptide we have strong evidence to believe generated xi. Let h be the

set of parameters for which we would like to learn (in our case,

DRIP’s Gaussian parameters). For generative training, we then wish

to find h� ¼ argmaxh

PN
i¼1 Prðxijyi; hÞ, i.e. we wish to maximize

DRIP’s likelihood with respect to the parameters to be learned,

achieved via the expectation–maximization algorithm (Dempster

et al., 1977).

A much more difficult training paradigm is that of discriminative

training, where we not only wish to maximize the likelihood of a set

of parameters, but would also like to simultaneously minimize a par-

ameterized distribution defined over a set of alternative hypotheses.

In our case, this alternative set consists of all candidate peptides

within the precursor mass tolerance not equal to yi, i.e. all incorrect

explanations of xi. More formally, our discriminative training criter-

ion is that of MMI estimation (Povey, 2003). Defining the set of can-

didate peptides for xi within precursor mass tolerance w as

Ci ¼ Dðmx;cx;D;wÞ and the set of all training spectra and high-

confidence PSMs as X and Y, respectively, the MMI objective func-

tion we maximize with respect to h is

~IhðX ;YÞ ¼ 1

N

XN
i¼1

log
Prðxijyi; hÞX

x2Ci

Prðxi;xjhÞ

¼ 1

N

XN
i¼1

ðlogPrðxijyi; hÞ � log
X
y2Ci

Prðxi; yjhÞÞ; (5)
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where we call Mnðxi; yi; hÞ ¼ logPrðxijyi; hÞ the numerator model

and Mdðyi; hÞ ¼ log
P

y2Ci Prðxi; yjhÞ the denominator model. Note

that the numerator model is our objective function for generative

training.

Intuitively, Equation (5) is maximized by learning parameters

which increase the numerator model (what is done in generative

training) and/or decrease the denominator model. Thus, while gen-

erative training only learns parameters based on the high-confidence

PSMs in the numerator, discriminative training learns parameters

which also discourage the ensemble of PSMs in the denominator

model (which are incorrect matches). We solve maximize Equation

(5) with respect to h using stochastic gradient ascent.

In stochastic gradient ascent, we calculate the gradient of the ob-

jective function with regards to a single training instance,

rh
~Ihðxi; yiÞ ¼ rhMnðxi; yi; hÞ � rhMdðxi; hÞ, where the gradients of

Mn and Md are vectors typically referred to as Fisher scores. We up-

date the parameters h using the previous parameters plus a damped

version of the objective function’s gradient, iterating this process

until convergence. In practice, we begin the algorithm by initializing

h0 to a good initial value, i.e. the output of generative training, and

the learning rate gj is updated with gjþ1 ¼ ð
ffiffi
j
p
Þ�1. Intuitively, the

gradients move in the direction maximizing the difference between

the numerator and denominator models, encouraging improvement

for the numerator while discriminating against the incorrect labels

in the denominator.

Discriminative training is computationally expensive. The de-

nominator model requires calculating the gradients of all candidate

peptides Ci, which can be infeasible for many tasks. A further chal-

lenge in DRIP’s case is that it is difficult to constrain the model to

consider valid peptides only, because the distance between subse-

quent theoretical peaks can take on any value. Trellises address both

of these challenges. The denominator model of the discriminative

training for DRIP is exactly the same as the DRIP trellis model

(Section 5). Furthermore, the trellis of all possible labels can be very

compact; together with different strategies to speed up graphical

models with trellises discussed in the previous session, discriminative

training with trellises is highly efficient. In practice, we use a trellis

constructed from a decoy set, which contains permutations of the

target peptides as the denominator. As the denominator set grows

larger, trellises make the computational cost grow sub-linearly so

that discriminative training with trellises is efficient. Our experimen-

tal results show that discriminative training positively influences

performance (Section 7.2).

7 Results

A significant challenge in evaluating the quality of a spectrum identi-

fication algorithm is the absence of a ‘ground truth’ dataset where

the generating peptide is known for each observed spectrum. We,

therefore, follow the standard approach of using decoy peptides

(which in our case correspond to randomly shuffled versions of each

real target peptide) to estimate the number of incorrect identifica-

tions in a given set of identified spectra. In this work, targets and

decoys are scored separately and used to estimate the number of

identified matches at a particular FDR, i.e. the fraction of spectra

improperly identified at a given significance threshold. We estimate

FDR using the target-only variant of target-decoy competition, T-

TDC (Keich et al., 2015). Because the FDR is not monotonic with

respect to the underlying score, we instead use the q-value, defined

to be the minimum FDR threshold at which a given score is deemed

to be significant. Since datasets containing more than 10% incorrect

identifications are generally not practically useful, we only plot q-

values in the range ½0; 0:1�.

7.1 Faster graphical model identification of MS/MS

spectra using trellises
In Section 5.1.1, the expected performance of Viterbi decoding with

beam pruning using trellises was proven to be significantly more effi-

cient than considering each sequence independently. We first veri-

fied that DRIP’s performance, in terms of the number of spectra

identified at a fixed FDR threshold, is equivalent with and without

use of the trellis (Supplementary Appendix Fig. 1). We then investi-

gate the improved inference speed using trellises. To do so, we ran-

domly select and search 200 spectra each from three datasets

(described in Supplementary Appendix Section 2): yeast and worm,

both acquired using low-resolution precursor scans (63 Th toler-

ance) and low-resolution fragment ions; and Plasmodium, acquired

using a high-resolution precursor scan (650 ppm tolerance) and

high-resolution fragment ions. Further details regarding these data-

sets and search settings may be found in Section 2 of Supplementary

Appendix.

For all methods, we use the same graphical model inference en-

gine, GMTK (Bilmes and Zweig, 2002). Experiments were carried

out on a 3.40 GHz CPU with 16G memory. For each experiment,

the lowest CPU time out of three runs is recorded, and we report the

relative CPU time of methods using trellises to those without. For

the XCorr mixture model (Section 4), a fixed k-beam for all frames

was used. Per spectrum, the trellis-inferred top PSM scores were

exactly the same as computing each XCorr individually and deter-

mining the top PSM.

We test DRIP trellis with two beam pruning strategies (some dis-

cussion of beam pruning with trellises can be found in Section 5.1),

and we compare the results against DRIP using the beam pruning

settings of Halloran et al. (2014). The trellisbase pruning uses

k-beams that are dynamic across time frames, with wider beams for

the early part and narrower beams later on. The trellisspeed pruning

also uses a dynamic k-beam but with a narrower beam, followed by

another pruning strategy that removes all hypotheses whose score

falls below some fraction of the currently top scoring hypothesis

while building up the inference structures. Timing tests show that

DRIP runs 7–15 times faster using trellises versus without trellises

(Fig. 5A).

The absolute timing numbers of all the searches implemented

using the graphical model engine are relatively high. XCorr (without

a trellis) takes 	2 s per spectrum to search the low-resolution data-

sets (yeast and worm) and 	0.5 s per spectrum to search the high-

resolution Plasmodium dataset. Without a trellis, the more complex

DRIP model takes 	10 s per spectrum searching the low-resolution

datasets and 	2 s searching the high-resolution dataset. Constant

factor improvements for these models may be accomplished by opti-

mized Cþþ implementations. For instance, a highly optimized im-

plementation of XCorr (McIlwain et al., 2014) takes 0.024 s per

spectrum searching the high-resolution Plasmodium dataset (min-

imum time over three runs) with the same compute environment

and search settings used in our timing tests. Thus, we expect that an

optimized trellis XCorr implementation would search the same spec-

tra (under the same settings and environment) in roughly 0.0024 s

per spectrum.

We note that trellises can speed up many scoring algorithms sim-

ply by changing the preprocessing of data; the trellis approach is ag-

nostic to the underlying scoring algorithm and, therefore,

compatible with any method that makes the underlying scoring
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algorithm more efficient. We also note that our use of a

prototyping language (GMTK) to express the above methods, while

slower than highly optimized and specialized C implementation,

allows the exploration of vastly different models (linear XCorr and

non-linear DRIP) without needing to re-implement each model from

scratch.

7.2 More accurate graphical model identification of MS/

MS spectra using trellises
As detailed in Section 6, we use a set of high confidence, chargeþ2

PSMs and their corresponding peptide database to discriminatively

train the DRIP model, using trellises in the denominator model. We

compare the discriminatively trained DRIP model to generatively

trained and hand-tuned DRIP models, as well as the methods

described in Section 2. The discriminatively trained DRIP model

identifies more spectra at a 1% FDR threshold relative to the gener-

atively trained and hand-tuned models (Fig. 5). Note that the dis-

criminatively trained model employs the trellisbase pruning strategy;

thus, the model yields an increase in accuracy as well as an approxi-

mately 7-fold speedup. Comparisons against other search engines

(MS-GFþ, XCorr, XCorr P-value and X!Tandem) may be found in

Supplementary Appendix Section 3. We further note that, while MS/

MS scoring methods that afford efficient parameter learning are

scarce, any DBN may be discriminatively trained using trellises in

the same fashion as DRIP. Because several widely used MS/MS algo-

rithms may be expressed as DBNs (shown in Section 5), they may

also adapt this overall training procedure to their benefit.

8 Discussion

We have proven that, for many practical settings, the expected run-

time when using a trellis with beam pruning for Viterbi decoding is

significantly faster than considering sequences independently. We

have also empirically shown that trellises may be used to signifi-

cantly improve the speed and accuracy of peptide identification in

tandem mass spectrometry. Using the DRIP model and a DBN im-

plementation of XCorr, we have shown how to apply trellises to

dramatically speed up inference (6- to 15-fold), both for low-

resolution and high-resolution precursor mass spectra. We further

note that the algorithmic speedup afforded by using trellises may, in

future work, be combined with previous work on improving XCorr

runtime, which focused on constant-factor improvements (Diament

and Noble, 2011). We also note that trellises constructed from pep-

tides with variable modifications can be potentially more efficient as

variable modifications produce a lot redundancy among peptides.

Our MS/MS trellises support traversing all subsequences of a

data instance, allowing ‘jumps’ over whole subsequences, a novel

feature in contrast to traditional trellises (such as those used for

speech recognition), which only allow data instances to be sequen-

tially traversed. As in DRIP, where jumps correspond to deletions,

this feature may be used to model noise or missing data.

Furthermore, the jump feature enriches the hypothesis space repre-

sentation, allowing more sophisticated models to be expressed and

evaluated efficiently. With this feature and the ability to compactly

represent entire sets of peptides, we have extended DRIP’s learning

framework to discriminative training, significantly improving its

performance relative to previous training strategies.

In future work, we plan to further explore using trellises for im-

proved MS/MS identification. Using trellises to efficiently evaluate

and score peptides beyond those in the given database, we will inves-

tigate ways to take thresholds with respect to DBN-based scoring

functions to compute P-values, similar to the P-value calculations

done via dynamic programming by MS-GFþ and XCorr P-value. By

improving score calibration, we expect this approach to greatly im-

prove DRIP’s performance.
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