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ABSTRACT: Two tridentate N,N,O-donor ligands, HL1 = 4-chloro-2-(((2-(methylamino)ethyl)amino)methyl)phenol and HL2 =
4-chloro-2-(((2-(dimethylamino)ethyl)amino)methyl)phenol, have been used to synthesize phenolate-bridged dinuclear complexes
[Zn2(L1)2Cl2] (1) and [Zn2(L2)2(N3)2] (2). Single-crystal X-ray diffraction analysis confirmed their structures. Both complexes form
assemblies in the solid state. Moreover, the existence of nonconventional spodium bonds in 1 and tetrel bonds in 2 has been
explored using theoretical calculations, including MEP surface plots and QTAIM and NCIplot analyses.

■ INTRODUCTION
A thorough knowledge and deep understanding of noncovalent
interactions are essential to work in the field of supramolecular
chemistry, crystal engineering, supramolecular catalysis, host−
guest chemistry, nanochemistry, etc.1−12 Obviously, H-
bonding and π-stacking interactions are the most common
among all the supramolecular interactions and are well
explored by several researchers.13−20 Investigations on σ-hole
interactions are emerging very rapidly in recent times.21−30

These σ-hole interactions are sometimes referred to as a
powerful competitor of the hydrogen bonding interactions in
crystal engineering and supramolecular chemistry.21,22,31−34 σ-
hole interactions in the compounds of Zn, Cd, or Hg are
known as spodium bonds (SpB).35−42 Similarly, σ-hole
interactions in the compounds of C, Si, Ge, Sn, or Pb are
termed tetrel bonds.43−57 The spodium bonds and tetrel bonds
have noncovalent contact with negligible covalent character
and this is the most important difference between the spodium
bonds and tetrel bonds and the normal coordination bonds
(with high covalent character).58−61 Tetrel and spodium bonds
are significantly weak compared with coordination bonds. The
literature indicates that antibonding σ* orbitals participate in
this type of interaction.37

In the present study, two tridentate N,N,O-donor ligands,
HL1 = 4-chloro-2-(((2-(methylamino)ethyl)amino)methyl)-
phenol and HL2 = 4-chloro-2-(((2-(dimethylamino)ethyl)-

amino)methyl)phenol, have been used to synthesize two
phenolate-bridged dinuclear complexes [Zn2(L1)2Cl2] (1) and
[Zn2(L2)2(N3)2] (2). The structures of these complexes were
confirmed by SC-XRD analysis. Intricate solid-state assemblies
were facilitated by strong H-bonding between the amine
groups of the ligands and the anionic halide or pseudohalide
coligands. In addition to conventional structural analysis, we
delved into the theoretical realm to investigate the presence of
nonconventional spodium bonds in complex 1 and tetrel
bonds in complex 2. These explorations employed MEP
surface plots, QTAIM, and NCI plot to provide a deeper
understanding of the electronic factors influencing these
nonconventional interactions.

■ EXPERIMENTAL SECTION
The experiments and instrumental details are provided in the
Supporting Information.
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■ RESULTS AND DISCUSSION
Synthesis. At first, two N,N,O-donor Schiff base ligands,

HLa and HLb, were produced by refluxing the respective
diamine (N-methyl-1,2-diaminoethane or N,N-dimethyl-1,2-
diaminopropane respectively) and 5-chlorosalicylaldehyde in
methanol in a 1:1 molar ratio.62−71 These were then reduced
with a mild reducing agent, sodium borohydride, to produce
the corresponding “reduced Schiff base” ligands HL1 and HL2.
It may be noted here that the synthesis of HL2 was already
reported in the literature.72 HL1 reacted with zinc chloride in
methanol to produce complex 1 on adding a few drops of
triethylamine. On the other hand, HL2 on reaction with
zinc(II) acetate dihydrate produced complex 2 when sodium
azide was added. Synthesis of complexes 1 and 2 is
schematically shown in Scheme 1. Suitable single crystals of
both complexes, suitable for SC-XRD analysis, were collected
after a few days.

1H NMR Spectra. 1H NMR spectra have been collected for
both the ligands and complexes. The spectra are discussed
below.

1H NMR Spectra of the Ligands. The singlet signal at 7.14
ppm and two doublet signals, one at 7.08 ppm and another at
6.70 ppm, in the 1H NMR spectrum of HL1 may be assigned to
the aromatic protons of the 5-chlorosalicylaldehyde moiety. J
values of both doublet peaks are 7.5 Hz. Two benzylic protons
give a singlet signal at 3.76 ppm. Three methyl protons give a
signal at 3.17 ppm. The multiplets at 2.51 ppm (J = 7.1 Hz)
may be assigned to four methylene protons. Two NH protons
give a singlet signal at 2.26 ppm.
The NMR spectrum of HL2 is more or less similar to that of

HL1. Three signals, a singlet at 7.13 ppm, two doublets at 7.08
ppm (J = 7.5 Hz), and another at 6.70 ppm (J = 7.5 Hz),
correspond to the aromatic protons of the salicylaldehyde
moiety. The singlet signal at 3.77 ppm indicates the presence
of two benzylic protons. Six methyl protons give a singlet signal
at 2.31 ppm. Two methylene protons give a triplet signal at

3.17 ppm. Two methylene protons give a triplet signal at 2.57
ppm. Two NH protons are observed as a singlet at 2.33 ppm.
The 1H NMR spectra of HL1 and HL2 are given in Figures S1
and S2 (Supporting Information), respectively.

1H NMR Spectra of the Complexes. In the 1H NMR
spectrum of complex 1, a singlet signal at 6.98 ppm and two
doublet signals at 6.96 ppm (J = 7.5 Hz) and 6.64 ppm (J = 7.5
Hz), corresponding to six aromatic protons, have been
detected. These are slightly shielded compared to the free
ligand, HL1. Four benzylic protons have been observed as
singlets at 4.08 ppm. This signal is slightly deshielded
compared to the free ligand. Six methyl protons have been
observed as a singlet at 3.17 ppm. Eight methylene protons
have been observed as multiplets around 2.54 ppm (J = 7.1
Hz). Four NH protons have been observed as a singlet at 2.22
ppm.
In the 1H NMR spectrum of complex 2, a singlet signal at

6.99 ppm and two doublet signals at 6.96 ppm (J = 7.5 Hz)
and 6.54 ppm (J = 7.5 Hz), corresponding to six aromatic
protons, have been detected. These are slightly shielded
compared to free ligand HL2. Four benzylic protons were
observed as singlets at 3.76 ppm. Twelve methyl protons have
been observed as a singlet at 2.26 ppm. Four methylene
protons were observed at 3.17 ppm. Four methylene protons
have been observed as a triplet at 2.84 ppm. Four NH protons
have been observed as a singlet at 2.46 ppm. The 1H NMR
spectra of complexes 1 and 2 are shown in Figures S3 and S4
(Supporting Information), respectively.
IR and Electronic Spectra. A distinct band in the region

of 3382−3175 cm−1 in the infrared spectrum of each of
complexes 1 and 2 indicates the presence of N−H stretching
vibration.73−75 Bands indicating C−H stretching vibrations are
observed in the region of 2995−2814 cm−1.76,77 A strong band
at 2049 cm−1 indicates the presence of azide in complex 2.78,79

C−N and C−Cl stretching vibrations are present in the
fingerprint region. The IR spectra of complexes 1 and 2 are
shown in Figures S5 and S6, respectively (Supporting
Information).
Electronic spectra of both complexes were recorded in a

10−4 M acetonitrile solution. The bands at 246 and 296 nm in
the electronic spectrum of 1 and at 242 and 294 nm in the
electronic spectrum of 2 may be attributed to the intraligand π
→ π* and n → π* transitions, respectively.80−82 The electronic
spectra of both complexes are shown in Figures S7 and S8
(Supporting Information).
Description of Structures. The crystallographic data and

refinement details of [Zn2(L1)2Cl2] (1) and [Zn2(L2)2(N3)2]
(2) are summarized in Table 1. Important bond lengths and
angles of [Zn2(L1)2Cl2] (1) and [Zn2(L2)2(N3)2] (2) are
collected in Tables 2 and 3, respectively.

[Zn2(L1)2Cl2] (1). Two distorted square pyramidal zinc
centers, Zn(1) and Zn(2), are present in complex 1 (Figure
1). These two zinc centers are connected by two phenolate
oxygen atoms, {O(1) and O(2)}, of the ligands. The binding
mode of the ligand (L1)− is μ2- η2:η1:η1 to form a Zn2O2 core.
The Zn(1) center is equatorially coordinated by N(1), N(2),
and O(1) of a tridentate ligand and a phenolate oxygen atom,
O(2), of a second molecule of the ligand. A chloride ion,
Cl(3), coordinates the Zn(1) center in an apical position to
complete its square pyramidal geometry. Similarly, the Zn(2)
center is coordinated by N(3), N(4), and O(2) of a tridentate
ligand, a phenolate oxygen atom, O(1), of a second ligand, and
a chloride ion, Cl(4), to complete its square pyramidal

Scheme 1. Synthetic Pathways to [Zn2(L1)2Cl2] (1) and
[Zn2(L2)2(N3)2] (2) (TEA = Triethylamine)
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geometry. The trigonality index (Addison parameter, τ) values
are 0.248 and 0.073 for Zn(1) and Zn(2), respectively.83 The
chelate ring, Zn(1)−N(1)−C(8)−C(9)−N(2), represents an
envelope conformation (Figure S9a, Supporting Information)
with puckering parameters q = 0.459(19) Å and φ =
293.9(5)°.84,85 Another chelate ring, Zn(2)−N(3)−C(18)−
C(19)−N(4), represents a half-chair conformation (Figure
S9b, Supporting Information) with puckering parameters q =
0.481(6) Å and φ = 272.5(5)°.84,85

[Zn2(L2)2(N3)2] (2). The complex of [Zn2(L2)2(N3)2] (2) is
very similar to that of [Zn2(L1)2Cl2] (1). The zinc(II) centers
in complex 2 are bridged by two phenoxo oxygen atoms {O(1)
and O(2)} of the reduced Schiff base ligands (Figure 2). The
ligand (L2)− binds the zinc centers in the μ2-η2:η1:η1 mode to
form a Zn2O2 core. The Zn(1) center is coordinated by N(1),
N(2), and O(1) of a tridentate ligand, a phenolate oxygen
atom, O(2), of a second molecule of the ligand, and a nitrogen
atom, N(5), of an azide anion, to complete its square

pyramidal geometry. Similarly, the Zn(2) center is also
showing square pyramidal geometry, being coordinated by
N(3), N(4), and O(2) of a tridentate ligand, a phenolate
oxygen atom, O(1), of a second ligand, and a nitrogen atom,
N(8), of an azide anion. The trigonality index (Addison
parameter, τ) values are 0.248 and 0.073 for Zn(1) and Zn(2),
respectively. The chelate ring, Zn(1)−N(1)−C(8)−C(9)−
N(2), represents an envelope conformation (Figure S10a,
Supporting Information) with puckering parameters q =

Table 1. Crystallographic Data and Refinement Details of
[Zn2(L1)2Cl2] (1) and [Zn2(L2)2(N3)2] (2)

[Zn2(L1)2Cl2] (1) Zn2(L2)2(N3)2] (2)

formula C20H28Cl4N4O2Zn2 C22H32Cl2N10O2Zn2
FW 629.04 670.26
temperature (K) 273 273
crystal system monoclinic triclinic
space group P21/c P-1
a (Å) 12.6502(7) 8.3747(11)
b (Å) 19.6352(11) 11.471(2)
c (Å) 11.3654(7) 16.822(2)
α (90) 108.781(3)
β 112.281(2) 102.880(3)
γ (90) 94.376(4)
Z 4 2
V (Å3) 2612.3(3) 1472.2(4)
dcalc (g cm−3) 1.599 1.512
μ (mm−1) 2.270 1.849
F(000) 1280 688
total reflections 32413 12812
unique reflections 4630 6696
observed data [I > 2σ(I)] 4625 4558
R(int) 0.0387 0.0456
R1, ⧧wR2 (all data) 0.0621, 0.1236 0.0966, 0.1386
R1, ⧧wR2 [I > 2σ(I)] 0.0387, 0.1006 0.0456, 0.1105
CCDC Number 2353796 2353795

Table 2. Important Bond Lengths (Å) in [Zn2(L1)2Cl2] (1)
and [Zn2(L2)2(N3)2] (2)

complex 1 2

Zn(1)−O(1) 2.045(3) 2.064(4)
Zn(1)−O(2) 2.021(3) 2.013(3)
Zn(1)−N(1) 2.176(4) 2.182(5)
Zn(1)−N(2) 2.102(3) 2.202(5)
Zn(1)−Cl(3) 2.2936(13)
Zn(2)−O(1) 2.015(3) 2.038(3)
Zn(2)−O(2) 2.072(3) 2.092(4)
Zn(2)−N(3) 2.118(4) 2.123(5)
Zn(2)−N(4) 2.186(5) 2.206(6)
Zn(2)−Cl(4) 2.2706(16)
Zn(1)−N(5) 2.018(5)
Zn(2)−N(8) 2.022(6)

Table 3. Important Bond Angles (deg) of [Zn2(L1)2Cl2] (1)
and [Zn2(L2)2(N3)2] (2)

complex 1 2

O(1)−Zn(1)−O(2) 78.23(12) 75.31(14)
O(1)−Zn(1)−N(1) 86.73(13) 86.65(16)
O(1)−Zn(1)−N(2) 140.61(13) 149.78(16)
O(1)−Zn(1)−N(2) 107.5(2)
O(2)−Zn(1)−N(1) 155.54(14) 141.71(17)
O(2)−Zn(1)−N(2) 97.90(13) 97.26(16)
O(2)−Zn(1)−N(5) 118.89(18)
N(1)−Zn(1)−N(2) 81.56(15) 81.57(18)
N(1)−Zn(1)−N(5) 98.55(18)
N(2)−Zn(1)−N(5) 101.8(2)
O(1)−Zn(2)−O(2) 77.74(11) 74.15(14)
O(1)−Zn(2)−N(3) 145.38(15) 144.81(18)
O(1)−Zn(2)−N(4) 95.20(15) 98.78(17)
O(1)−Zn(2)−N(8) 111.72(18)
O(2)−Zn(2)−N(3) 87.52(14) 87.12(18)
O(2)−Zn(2)−N(4) 149.77(14) 148.89(19)
O(2)−Zn(2)−N(8) 108.1(2)
N(3)−Zn(2)−N(4) 81.95(18) 81.98(19)
N(3)−Zn(2)−N(8) 102.3(2)
N(4)−Zn(2)−N(8) 102.7(2)

Figure 1. Perspective view of [Zn2(L1)2Cl2] (1).

Figure 2. Perspective view of [Zn2(L2)2(N3)2] (2).
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Figure 3. Fingerprint plot: different contacts contributed to the total Hirshfeld surface area of [Zn2(L1)2Cl2] (1).

Figure 4. Fingerprint plot: different contacts contributed to the total Hirshfeld surface area of [Zn2(L2)2(N3)2] (2).
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0.470(6) Å and φ = 99.5(5)°.84,85 Another chelate ring,
Zn(2)−N(3)−C(18)−C(19)−N(4), represents an envelope
conformation (Figure S10b, Supporting Information) with
puckering parameters q = 0.476(7) Å and φ = 98.5(6)°.84,85
Hirshfeld Surface Analysis. The Hirshfeld surfaces of

complexes 1 and 2 are shown in Figure S11 (Supporting
Information). It is observed that the Cl···H/H···Cl interaction
is the leading interaction in complex 1. These interactions are
identified as red spots on the dnorm surface in Figure S11
(Supporting Information). The dominant interactions in
complex 2 are N···H/H···N interactions. In addition, H···H
contacts in the Hirshfeld surfaces of both complexes are
indicated by other visible spots.
It is observed that 39.7 and 12.6% of the total Hirshfeld

surface of [Zn2(L1)2Cl2] (1) are comprised of Cl···H/H···Cl
and C···H/H···C interactions, respectively. The interactions
are appearing as two distinct spikes in the 2D fingerprint plots
(Figure 3).86 Similarly, 28.4, 20.6, and 9.4% of the total
Hirshfeld surface of [Zn2(L2)2(N3)2] (2) are comprised of N···
H/H···N, H···Cl/Cl···H, and C···H/H···C interactions,
respectively. Each interaction appears as two distinct spikes
in the 2D fingerprint plots (Figure 4).
DFT Calculations. The theoretical study focuses on the

analysis of self-assembled centrosymmetric dimers, which are

stabilized by two N−H···X (X = Cl or N3) hydrogen bonds,
referred to as R22(8) synthons (illustrated in Figure 5, top).
Beyond these conventional synthons, the research also explores
more unconventional interactions, such as Zn···Cl spodium
bonds (SpB) in complex 1 and H3C···Cl tetrel bonds in
complex 2. These interactions have been energetically
evaluated and characterized through a combination of
Quantum Theory of Atoms in Molecules (QTAIM) and
Noncovalent Interaction (NCIplot) analyses.
We initiated our study by computing the molecular

electrostatic potential (MEP) surfaces of complexes 1 and 2
to identify the most nucleophilic and electrophilic regions of
these molecules. Both complexes exhibit a similar distribution,
with one-half of each molecule displaying predominantly
nucleophilic properties due to the influence of anionic
coligands, while the other half appears electrophilic, influenced
by NH groups and alkyl linkers. The maximum MEP values are
54 kcal/mol for complex 1 and 46.4 kcal/mol for complex 2.
Conversely, the MEP minima for these complexes are −57.5
and −52.7 kcal/mol, respectively, at the chlorido and azido
ligands. Notably, the MEP values are also negative around the
chlorine substituents, with −15.7 and −17.6 kcal/mol for
complexes 1 and 2, respectively, thus being able to participate
in noncovalent interactions as electron donors. Each complex

Figure 5. Partial views of the X-ray structures of (a) [Zn2(L1)2Cl2] (1) and (b) [Zn2(L2)2(N3)2] (2) with indication of H-bonded dimers (top) and
other supramolecular assemblies (bottom) analyzed herein.

Figure 6. MEP surfaces of (a) [Zn2(L1)2Cl2] (1) and (b) [Zn2(L2)2(N3)2] (2). The values are given in kcal/mol. Details of some portions of the
surfaces are also given in the upper part. Isovalue, 0.001 au.
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features a small electrophilic cavity near the Zn atoms, which
aligns well with the dimer formation depicted in Figure 5a
(bottom), where the chloro ligand occupies this site. This
cavity is smaller in complex 2, thereby preventing the same
dimer arrangement. Additionally, in complex 2, the MEP at the
methyl group is highlighted (Figure 6b, top), which is involved
in forming the H3C···Cl tetrel bond (TtB, illustrated in Figure
5b, bottom). The MEP at this C atom is significantly positive,
measured at 32.0 kcal/mol, supporting the establishment of the
tetrel bond.
Figure 7 displays the QTAIM and NCIplot analyses for the

two dimers of complex 1, effectively demonstrating how these
combined methods can elucidate noncovalent interactions in
real space. For the dimer illustrated in Figure 7a, the chlorine
atom is linked to adjacent monomers through six bond critical
points (BCPs) and corresponding bond paths (dashed bonds),
which consist of five CH···Cl and one NH···Cl contacts.
Additionally, two more BCPs connect the other chlorido
ligand to one C−H group and one N−H group, cumulatively
forming a total of eight hydrogen bonds. QTAIM analysis
indicates that there are no direct connections between the
chlorine atoms and zinc atoms, suggesting the absence of
spodium bonds (SpBs). However, the NCIplot reveals a
reduced density gradient (RDG) isosurface between the
chlorine atom and the Zn2O2 ring, hinting at some level of
interaction between the chlorine atoms and the metal centers.
The interaction energy of −14.2 kcal/mol is primarily
attributed to these eight hydrogen bonds with a possible
minor contribution from the Zn···Cl interaction.
The QTAIM/NCIplot analysis of the R2

2(8) dimer is
depicted in Figure 7b, where each NH···Cl contact is
characterized by a distinct BCP, a bond path, and a bluish
RDG isosurface. This analysis also uncovers the formation of
two CH···π and two NH···Cl contacts that further stabilize the

dimer. Consequently, the significant dimerization energy of
−20.3 kcal/mol rationalizes the formation of these self-
assembled dimers in the solid state of complex 1. This analysis
highlights the complex interplay of interactions and the robust
nature of the dimeric structures facilitated by these non-
covalent forces.
Figure 8 presents the analysis we conducted on the two

dimers of complex 2. For the tetrel bonding dimer, QTAIM
analysis confirms that the chlorine atom is connected to the
carbon atom of the methyl group (instead of the H atoms),
thereby validating the presence of the TtBs, shown in Figure
8a. Additionally, a green RDG isosurface is observed at the
location of the BCP, supporting the existence of these
interactions. The dimers are interconnected by two CH···Cl
contacts and a π−π parallel displaced interaction, in which only
one carbon atom of the aromatic ring is involved. The
dimerization energy is relatively modest (−7.0 kcal/mol),
attributed to the lack of strong hydrogen bonding involving the
NH groups, as observed in other dimers of complexes 1 and 2.
Furthermore, the analysis of the R22(8) dimer of complex 2,

shown in Figure 8b, confirms the formation of NH···N bonds
accompanied by CH···π, CH···Cl, and CH···N contacts. The
dimerization energy of this configuration is substantial (−19.4
kcal/mol), similar to that observed in the R22(8) dimers of
complex 1. This finding underscores the significant stabilizing
role of the R22(8) synthon in facilitating the formation of these
complex molecular structures in the solid state.
To further substantiate the existence and σ-hole nature of

the H3C···Cl TtBs in complex 2, natural bond orbital (NBO)
analysis was conducted. This computational approach is well
suited for dissecting donor−acceptor interactions from an
orbital perspective. Intriguingly, our findings indicate an
electron donation from a lone pair (LP) orbital on the
chlorine atom to the antibonding σ*(C−N) orbital, as

Figure 7. QTAIM and NCIPlot analyses of the SpB (a) and R22(8) (b) dimers of complex 1. The dimerization energies are indicated. Only
intermolecular interactions are represented.

Figure 8. QTAIM and NCIPlot analyses of the TtB (a) and R22(8) (b) dimers of complex 2. The dimerization energies are indicated. Only
intermolecular interactions are represented.
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depicted in Figure 9. Although the stabilization energy is
modest at 0.26 kcal/mol, the involvement of these specific

orbitals in the binding mechanism firmly supports the σ-hole
nature of the interaction. This relatively small energy likely
results from the elongated C···Cl distance of 3.44 Å
(referenced in Figure 5), suggesting that this TtB bond is
predominantly governed by electrostatic effects, consistent
with the MEP values observed for the chlorine and carbon
atoms. For the sake of comparison, LP → σ* contributions in
similar tetrel bonds (involving carbon) have been reported,
varying from 0.07 to 1.99 kcal/mol.87,88 Much larger
contributions have been reported for hydrogen,64 halogen,89

and chalcogen bonding90−92 interactions due to the partic-
ipation of heavier elements as Lewis acids.

■ CONCLUSIONS
Two new zinc complexes have been synthesized using two
tridentate-reduced Schiff base ligands, and their structures have
been confirmed by SC-XRD analysis. Our comprehensive
theoretical study employing QTAIM, NCIplot, and NBO
analyses has significantly advanced our understanding of the
complex noncovalent interactions present in complexes 1 and
2. We have elucidated the varied nature of these interactions,
from conventional hydrogen bonds to less typical tetrel and
spodium bonds. Particularly, the analyses validate the presence
of tetrel bonds in complex 2, characterized by electron
donation from chlorine’s lone pair to the antibonding σ*(C−
N) orbital, despite the modest stabilization energy influenced
by the long C···Cl distance. This finding emphasizes the
predominant role of electrostatic effects in these interactions,
as supported by the MEP data. The findings not only expand
our understanding of these unconventional interactions but
also underscore their potential applications in crystal engineer-
ing and materials science. The tetrel and spodium bonds
identified here play crucial roles in stabilizing the supra-
molecular architectures, suggesting that such interactions could
be strategically exploited in the design and synthesis of
advanced materials with tailored properties.
While this study focuses on the solid-state behavior of these

interactions, the implications for practical applications are
significant. The insights gained could guide the development of
new materials for applications in molecular recognition,
catalysis, and the design of functional supramolecular systems.
Future work may explore the influence of these interactions
under different environmental conditions, such as in solution
or under variable temperatures, to further understand their
potential utility in real-world applications.
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