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Abstract

Background: Although brain-derived neurotrophic factor (BDNF) has been identified as a molecular biomarker of the neurophysiological effects

induced by exercise, the acute effects of high-intensity exercise (HIE) on BDNF levels are inconclusive. This study aims to estimate the immedi-

ate effects of HIE on BDNF levels in healthy young adults.

Methods: A systematic search was conducted in the MEDLINE, Scopus, Cochrane CENTRAL, and SPORTDiscuss databases up to December

2020. Randomized controlled trials (RCTs) and non-RCTs reporting pre�post changes in serum or plasma BDNF after an acute intervention of

HIE compared to a control condition were included. Pooled effect sizes (p-ESs) and 95% confidence intervals (95%CIs) were calculated for

RCTs using a random effects model with Stata/SE (Version 15.0; StataCorp., College Station, TX, USA). The Preferred Reporting Items for Sys-

tematic Reviews and Meta-Analyses guidelines were followed. PROPERO registration number: CRD42020221047.

Results: A total of 22 studies with 552 individuals (age range: 20�31 years; 59.1% male) were included. The meta-analysis included 10 RCTs

that reported valid outcome data. Higher BDNF levels were observed when HIE interventions were compared with non-exercise (p-ES = 0.55,

95%CI: 0.12�0.98; I2 = 25.7%; n = 4 studies) and light-intensity exercise (p-ES = 0.78, 95%CI: 0.15�1.40; I2 = 52.4%; n = 3 studies) but not

moderate-intensity exercise (p-ES = 0.93, 95%CI: �0.16 to 2.02; I2 = 88.5%; n = 4 studies) conditions.

Conclusion: In comparison to non-exercise or light-intensity exercises, an immediate increase in BDNF levels may occur when young adults per-

form HIE. Given the benefits obtained maximizing circulating BDNF when performing HIE and its potential effects on brain health, our findings

suggest that HIE could be recommended by clinicians as a useful exercise strategy to healthy adults.
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1. Introduction

Brain-derived neurotrophic factor (BDNF), a protein mem-

ber of the neurotrophin family of growth factors, has been

associated with the modulation of cognition, neuroplasticity,

angiogenesis, and neural connectivity. The role of BDNF in

the improvement of metabolic and cardiovascular functions

and in delaying the onset of neurodegenerative diseases

has received increased attention.1,2 Current evidence has

pointed out the influence of BDNF levels on structural and
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intensity exercise on brain-derived neurotrophic factor in healthy young adults: A sy
functional brain changes,3 including hippocampal neurogene-

sis,1 long-term potentiation,4 increased hippocampal volume,

and survival of new born hippocampal neurons.5 Thus, higher

BDNF levels have been associated with better cognitive per-

formance, attention, and spatial memory.6 Indeed, reduced

BDNF concentrations have been found in patients with demen-

tia,7 mild cognitive impairment, Alzheimer’s disease,8,9 and

major depression.10

Consistent evidence supports that interventions based on

physical exercise are effective in reducing physical and mental

illness incidence and all-cause mortality.11,12 It has been

suggested that exercise induces BDNF release,13 such that

BDNF could be an intermediate variable in the relationship
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between exercise and cognition.4,14 Accordingly, BDNF seems

to act as a potential mediator of exercise effects on the brain

because it could enhance neuroplasticity via different path-

ways (i.e., neurogenesis, synaptogenesis, long-term potentia-

tion, etc.). Therefore, the BDNF may be located in the causal

path between exercise and cognition. Support for this idea

comes from studies showing that higher BDNF levels induced

by exercise were associated with improvements in cognition14

and memory.15,16 In addition, among the characteristics of the

exercise prescription (i.e., type, duration, frequency, etc.),

intensity has been identified as having the most relevant effect

on acute release of BDNF.17 Higher serum BDNF concentra-

tions have been found following high-intensity interval train-

ing (HIIT) as a consequence of the greater synthesis of BDNF

in the brain.18

Some studies have suggested that high-intensity exercise

(HIE), which includes HIIT and sprint interval training, may

enhance serum BDNF levels even more than moderate- or low-

intensity continuous training.17,19 A previous meta-analysis

reported that aerobic exercise programs with moderate-to-

vigorous intensity in adolescents did not result in a significant

increase in BDNF levels.1 Another systematic review reported a

dose response in terms of the frequency and intensity of the pro-

grammed sessions in samples including people with a variety of

health conditions (i.e., healthy individuals, chronic patients).20

However, neither of these explored the immediate effect of exer-

cise at different intensities on BDNF levels. Although it is

known that exercise intensity is correlated with heart rate (which

has been linked to BDNF levels21) and that the abovementioned

reviews suggest the intensity of exercise is positively related to

increases in BDNF levels, there is a lack of evidence about

whether or not there is a threshold of exercise intensity from

which a significant increase in BDNF concentrations can be

observed.4,5,13 This information could be relevant to guide indi-

vidual exercise prescriptions aimed at improving cognitive per-

formance.

Therefore, the aim of the present study was to estimate the

immediate changes in BDNF levels after exercise interven-

tions at different intensities based on clinical trials in healthy

young adults. Additionally, we explored whether acute

changes in BDNF levels varied based on time spent on HIE

(i.e., �30 min or <30 min) or with respect to baseline cardio-

respiratory fitness.

2. Methods

2.1. Search strategy and study selection

The present systematic review and meta-analysis was con-

ducted based on the recommendations of the Cochrane Hand-

book for Systematic Reviews of Interventions22 and reported

following the Preferred Reporting Items for Systematic

Reviews and Meta-Analyses (PRISMA).23 This review was

previously registered in the PROSPERO database (registration

number: CRD42020221047).

We conducted a systematic search in the MEDLINE (via

PubMed), Scopus, Cochrane CENTRAL, and SPORTDiscus

databases from inception until December 2020 for studies
reporting serum or plasma BDNF levels after an acute inter-

vention of HIE. The search strategy was conducted by combin-

ing medical subject headings, free terms, and matching

synonyms, and it included the following words: “brain derived

neurotrophic factor”, “BDNF”, “high-intensity interval train-

ing”, “high-intensity exercise”, “HIIT”, or “SIT”. Addition-

ally, we screened the references in the selected papers. The

complete search strategy for MEDLINE is available in Supple-

mentary Table 1.

2.2. Eligibility criteria

Two independent reviewers (RFR and C�AB) examined the

titles and abstracts of retrieved articles to identify potentially

eligible studies. The studies in which the titles and abstracts

were related to the purpose of the present review were selected

for full text screening. The inclusion criteria were as follows:

(1) type of studies: randomized controlled trials (RCTs), non-

RCTs, or pre�post studies; (2) type of participants: healthy

young adults aged 18�35 years; (3) type of intervention: phys-

ical exercise described as HIE (i.e., HIIT, sprint interval train-

ing, vigorous continuous training that reached 75% maximal

heart rate or maximal oxygen consumption (VO2max) in aero-

bic or strength modalities); (4) comparison: control condition

as resting (non-exercise) or another physical exercise interven-

tion with moderate or low intensity assessed through maximal

heart rate or VO2max (moderate-intensity continuous training

or low-intensity continuous training); and (5) outcome: BDNF

levels (in plasma or in serum). No language restrictions were

applied. Moreover, the studies were excluded when: (1) partic-

ipants were diagnosed with any pathology or when animal

models were used, and (2) if the laboratory assessment of

BDNF was not detailed. A third reviewer (BNP) was consulted

to resolve disagreements between reviewers.

2.3. Data extraction and risk of bias assessment

The following information was independently extracted

from the included studies by 2 reviewers (RFR and C�AB): the
first author’s name and year of publication, study design,

characteristics of the study population (age and sex), baseline

VO2max, total sample size and sample size by groups, interven-

tion characteristics (HIE modality and training protocol), com-

parison groups, outcome measure (BDNF levels in plasma or in

serum), and main results. A third reviewer (BNP) was consulted

to resolve disagreements between reviewers.

The Cochrane risk-of-bias tool was used for randomized

trials (RoB 2.0)24 to assess the risk of bias of the included

RCTs. The following domains were assessed: randomization

process (allocation sequence and concealment), deviations

from intended interventions (occurrence of non-protocol inter-

ventions and failures in implementing the protocol interven-

tions that could affect the outcomes, or non-adherence to the

assigned intervention by participants), missing outcome data

(evidence regarding the result was not biased by missing out-

come data), measurement of the outcome (measurement error

for continuous outcomes differential or non-differential in

relation to intervention assignment), and selection of the
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reported results. Each domain was assessed as “low risk of

bias”, “some concerns”, or “high risk of bias”.25 Accordingly,

the overall risk of bias for each study was classified as (1)

“low risk of bias” when a low risk of bias was determined for

all domains, (2) “some concerns” when at least 1 domain was

assessed as raising some concerns, but no single domain was

assessed as having a high risk of bias, or (3) “high risk of bias”

when a high risk of bias was reached for at least 1 domain or

when there were some concerns for multiple domains.24

Non-RCTs and quasi-experimental studies were assessed using

the Risk Of Bias In Non-randomized Studies of Interventions

(ROBINS-I)26 by which 7 domains were evaluated: (1) confound-

ing (when: (a) at least 1 prognostic variable that predicts the out-

come could also be implicated in the intervention received at

baseline, (b) individuals switch between the interventions being

compared, and (c) post-baseline prognostic variables affect the

intervention received at baseline); (2) selection of participants into

the study (when each trial excludes: (a) some eligible participants,

(b) initial follow-up time of some participants, or (c) some out-

comes events related to both intervention and outcome); (3) classi-

fication of the interventions (when the interventions are defined

and categorized with the knowledge of subsequent outcomes:

non-differential misclassification or differential misclassification);

(4) biases due to deviations from intended interventions; (5) miss-

ing data; (6) measurement of outcomes; and (7) selection of the

reported results. Each domain was rated as having a low, moderate,

serious, or critical risk of bias. Studies were categorized as (1) “low

risk of bias” when a low risk of bias was determined for all

domains; (2) “moderate risk of bias” when a low or moderate risk

of bias was determined for all domains; (3) “serious risk of bias”

when there was at least 1 domain determined to have a serious risk

of bias, but no domain was assessed as having a critical risk of

bias; or (4) “critical risk of bias” when there was at least 1 domain

determined to have a critical risk of bias.26

Two reviewers (RFR and C�AB) independently assessed the

risk of bias of the included studies. A third reviewer (BNP)

was consulted to resolve disagreements.

2.4. Quality of evidence

The Grades of Recommendations, Assessment, Develop-

ment, and Evaluation (GRADE) tool was used to evaluate and

summarize the quality of the evidence.27 Based on the design

of the studies, the BDNF outcome measure was rated as high-,

moderate-, low-, or very low-quality evidence considering the

following domains: risk of bias, inconsistency, indirect evi-

dence, imprecision, and publication bias.

2.5. Dealing with missing data

We contacted authors to receive missing outcome data to

compute the analysis. Inoue et al.,28 Rodriguez et al.,29 and

Baird et al.30 sent additional data.

2.6. Data analysis

Once the primary data from each study were extracted

(including pre�post mean BDNF values, standard deviations,
and sample sizes of intervention and control groups), the

pooled effect sizes (p-ESs) and their 95% confidence intervals

(95%CIs) were calculated for each study31 using the DerSimo-

nian and Laird random effects method.32 The p-ESs for the effect

of HIE vs. the control condition—that is, low-intensity exercise

(LIE), moderate-intensity exercise (MIE), or non-exercise—

were estimated for the RCTs. Likewise, to show the change in

BDNF units of measurement (pg/mL), we computed the pooled

raw mean difference after transforming all outcome data into the

same unit (considering that 1 ng/mL = 1000 pg/mL). We evalu-

ated heterogeneity using the I2 statistic, with I2 values of

0%�40% considered to be “not important” heterogeneity,

30%�60% representing “moderate” heterogeneity, 50%�90%

representing “substantial” heterogeneity, and 75%�100% repre-

senting “considerable” heterogeneity,22 taking into account the

corresponding p-values and 95%CIs.33

A sensitivity analysis was conducted to determine the

robustness of the summary estimates by removing each

included study from the analysis one by one. Furthermore, sub-

group analyses based on comparison group (non-exercise, LIE,

and MIE), training length (�30 min or <30 min), sex, BDNF

(serum/plasma), and high-intensity interval vs. non-interval

exercise on serum BDNF response, as well as meta-regression

models with duration in minutes and VO2max, were conducted

to determine their potential influence on the p-ES estimates.

Finally, publication bias was evaluated through visual inspec-

tion of funnel plots and Egger’s regression asymmetry test for

the assessment of small study effects.34 All statistical analyses

were performed using Stata/SE (Version 15.0; StataCorp.,

College Station, TX, USA).
3. Results

3.1. Study selection

A total of 55 full-text articles were assessed for eligibility,

of which 22 were included in the systematic review. Of those

included, 10 RCTs were included for the meta-analysis

because 2 RCTs35,36 did not contain the data needed for the

meta-analysis (Fig. 1).

3.2. Characteristics of studies

Among the 22 studies included in the present systematic

review, 10 studies were non-RCTs,6,29,37�44 and 12 studies

were RCTs,28,30,35,36,45�52 of which 5 studies used a parallel

design and 7 studies used a crossover design. The studies were

conducted between 2012 and 2020. Further details are avail-

able in Supplementary Tables 2 and 3.

3.3. Participants

A total of 552 healthy young adults were included. Their

mean age ranged between 20 and 31 years. Most studies (13

studies out of 22 studies; 59.1%) only included young male

participants;28,29,36,37,39�42,46�49,51 6 studies (27.3%) were

conducted in a mixed population;30,35,38,43,45,52 and only 3

studies (13.6%) were conducted in young females.6,44,50 The
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baseline VO2max values of the participants ranged from 33.0

mL/kg/min to 59.9 mL/kg/min (Supplementary Tables 2 and 3).
3.4. Interventions

Although the HIE protocols were different across the

intervention groups, the intensity was constantly set at the

individual’s maximal or submaximal capacity. The training

length was set between 7 min and 60 min, depending on the

time spent in warm-up, main body of the training session,

and calm down. Moreover, 3 studies performed HIE based

on resistance training,6,41,42 and 19 studies were performed

with an aerobic modality,28�30,35�40,43�52 mainly tread-

mill and cyclo-ergometer protocols (Supplementary Tables

2 and 3). It should be stated that because of the non-
randomized design of resistance exercise trials, the meta-

analyses were only based on aerobic modality.

The comparison groups were those with control conditions

(non-exercise, sitting, or resting)36,38,39,42,45,49�52 or

MIE28,29,35,42,46,47,49 and LIE.30,43,46,47 BDNF was measured

after the execution of exercise for the intervention groups or

after the sitting and resting time.
3.5. Outcome

BDNF levels were measured in plasma in 5 studies,30,37,40,42,51

in serum in 16 studies,31�35,38,39,41,43�50 and in both plasma and

serum in 1 study.36 According to the unit of measure employed

across the studies, 10 studies out of 22 used ng/mL,6,28,36,

44�46,48,51,52 while 12 studies employed the pg/mL unit of

measure30,35,37�43,47,49,50 (Supplementary Tables 2 and 3). The
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difference between serum and plasma levels (approximately

100�200 units) is because plasma measures represent free circulat-

ing BDNF, while blood serum measures represent total measurable

blood-borne BDNF.53 Therefore, the contribution of plasma BDNF

to total circulating levels is substantially lower than serum. It

should be stated that measures in plasma cannot be generalized to

serum. Moreover, the plasma measures of BDNF are unstable and

have very low retest stability. Finally, in all studies, BDNF was

analyzed according to the clinical standards of the laboratory or

the manufacturer’s guidelines with enzyme-linked immunosorbent

assay; there was 1 exception, in which a study used a multiplexing

assay.42

3.6. Risk of bias

According to the RoB 2.0 Cochrane tool,24 5 studies were

rated as “low risk of bias”28,36,49�51 and 7 studies were rated

as “some concerns”.30,35,45�48,52 The risk of bias assessment is

displayed in Supplementary Fig. 1. Based on the ROBINS-I

tool, 3 studies were rated as “low risk of bias”,6,39,42 3 studies

as “moderate risk of bias”,38,40,43 and 4 studies as “serious risk

of bias”29,37,41,44 (Supplementary Fig. 2).

3.7. Quality of evidence

The quality of evidence was rated as low, since the certainty

assessment showed serious concerns regarding risk of bias,

inconsistency, and imprecision. A table with a summary of the

findings is available in Supplementary Table 4.

3.8. Data synthesis

3.8.1. Meta-analysis

The p-ES for the BDNF effect of HIE vs. the comparison group

(MIE, LIE, or non-exercise intervention) was 0.78 (95%CI:

0.35�1.21; I2 = 73.8%; Fig. 2); for HIE vs. non-exercise, it was

0.55 (95%CI: 0.12�0.98; I2 = 25.7%). The mean raw difference in

BDNF levels following HIE in serum levels was 8347.54 pg/mL

(95%CI: 4866.65�11,828.42; I2 = 86.1%), and in plasma, the dif-

ference was 4143.38 pg/mL (95%CI: �5958.95 to 14,245.72;

I2 = 72.1%; Fig. 3). The mean raw difference in BDNF levels in

the comparison group (MIE, LIE, or non-exercise intervention) in

serum levels was 3084.58 pg/mL (95%CI: 1816.90�4352.27;

I2 = 39.9%), and in plasma, the difference was �30.34 pg/ml

(95%CI:�232.73 to 172.05; I2 = 39.2%; Fig. 4).

3.8.2. Sensitivity analysis

The p-ES was not modified when removing each included

study one by one. Further details are displayed in Supplemen-

tary Table 5.

3.8.3. Subgroup analyses and meta-regression

We conducted subgroup analyses based on the comparison

group (HIE vs. non-exercise, HIE vs. LIE, and HIE vs. MIE),

showing that HIE vs. MIE was the only comparison that was

not significant (p-ES = 0.93, 95%CI: �0.16 to 2.02; Fig. 2).

Moreover, subgroup analyses based on training length (�30

min or <30 min) and sex did not substantially modify the p-ES.
Regarding the BDNF measures (plasma vs. serum), plasma lev-

els did not show a significant increase after HIE (p-ES = 0.27,

95%CI: �0.15 to 0.70). These subgroup analyses are available

in the Supplementary Table 6. Finally, we explored the serum

BDNF response when comparing high-intensity interval to non-

interval exercise (p-ES = 1.09, 95%CI: �0.16 to 2.34; Supple-

mentary Fig. 3). The mean raw differences in serum BDNF

were only significant for high-intensity interval exercise:

9813.91 pg/mL (95%CI: 4315.88�15,311.93; I2 = 91.0%; Sup-

plementary Fig. 4).

Moreover, meta-regression models showed no significant

influence of the duration in minutes: �0.01 (p = 0.63), or of

baseline VO2max levels: 0.107 (p = 0.10). Further details are

displayed in Supplementary Figs. 5 and 6.

3.8.4. Publication bias

We confirmed by funnel plot asymmetry and Egger’s test that

there was no significant publication bias regarding BDNF out-

comes in the RCTs included (p = 0.726) (Supplementary Table 7).
4. Discussion

To our knowledge, this is the first systematic review and

meta-analysis aimed at synthesizing the evidence examining

acute HIE on BDNF levels in healthy young adults. Our study

supports the notion that HIE moderately increases serum

BDNF levels when compared with non-exercise and LIE, but

there were no significant differences observed when HIE was

compared with MIE. No significant associations between HIE

and plasma BDNF were observed. Consistent results were

observed for pooled mean differences in raw serum BDNF.

Overall, these findings remained similar across different sub-

groups based on sex, training length, and baseline cardiorespi-

ratory fitness.

The available evidence regarding exercise effects on BDNF

has been inconsistent. While 2 previous reviews reported no

changes in BDNF levels after LIE13 and MIE,20 another study

reported an increase in circulating BDNF after exercise in

healthy individuals.14 In accordance with the latter, our analy-

ses showed that exercise intensity plays a key role in the asso-

ciation between exercise and BDNF increases in healthy

young adults. These inconsistent results could be explained by

the heterogeneity in the samples (e.g., individuals with risk

factors, known cardiometabolic or neurological diseases, sed-

entary or trained individuals) or may be the result of animal

models being used in the aforementioned reviews. Moreover,

sex and exercise duration could also influence the effect of

exercise on circulating BDNF levels.14 Otherwise, apart from

sex and exercise duration, circulating serum levels are highly

correlated with platelet count but also could be influenced by

race, menstrual cycle, pathologies, or medication.53

The significant moderate effect of HIE on serum BDNF

level shown in our study may be of interest for clinicians and

professionals who prescribe physical exercise for young adults

in the general population. Concretely, in addition to the cardio-

metabolic benefits of HIE, an acute improvement in cognitive

functioning due to the increased serum BDNF levels following



Fig. 2. Forest plot of the pooled ES on BDNF for the effect of HIE vs. comparison group (MIE, LIE, or non-exercise intervention). Weights are from random

effects analysis. 95%CI = 95% confidence interval; BDNF = brain-derived neurotrophic factor; ES = effect size; HIE = high-intensity exercise; LIE = low-intensity

exercise; MIE =moderate-intensity exercise.

Fig. 3. Forest plot of the mean raw differences in BNDF after high-intensity exercise. Weights are from random effects analysis. 95%CI = 95% confidence inter-

val; BDNF = brain-derived neurotrophic factor; MD =mean difference; RCT = randomized controlled trial.
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Fig. 4. Forest plot of the mean raw differences in BNDF of the comparison groups (MIE, LIE, or non-exercise intervention). Weights are from random effects

analysis. 95%CI = 95% confidence interval; BDNF = brain-derived neurotrophic factor; LIE = low-intensity exercise; MIE =moderate-intensity exercise;

MD =mean difference; RCT = randomized controlled trial.
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HIE could be considered an extra benefit, regardless of cardio-

respiratory fitness and training length. Although the present

results are based on findings in healthy young adults, the

increase in BDNF levels, and presumably its related cognitive

benefits,4 could be potentially extrapolated to people with

aging-related cognitive disorders.2,54 Nevertheless, we should

carefully interpret these results because of the high variability

in BDNF responses.37,44

This variability may be related to the heterogeneity of

organs, tissues, and mechanisms that have been proposed to

account for the increased BDNF circulating after exercise (i.e.,

brain tissue, vascular endothelium, peripheral blood mononu-

clear cells, platelets, and skeletal muscle).55,56 Improvement in

cerebral flow has been postulated as one of the major contribu-

tors, as neurons produce and release BDNF in a manner depen-

dent on physical activity.57 Moreover, as a consequence of the

activation of tropomyosin receptor kinase B by circulating

BDNF during exercise, the vascular endothelial tissue

increases the production of BDNF.58 In addition, the physio-

logical stress caused by acute exercise increases peripheral

blood mononuclear cells59 and, thus, their expression of

BDNF. The exercise also stimulates platelets, which contribute

to the bioavailable pool of BDNF by increasing platelet count

and the amount of BDNF per platelet.53 Finally, although the

skeletal muscle is not directly implicated by the increased

BDNF during exercise, it may contribute to the maximized

hippocampal BDNF expression, thereby causing long-term

improvements in brain health.55

Among the mechanisms related to the intensity-dependent

nature of the acute BDNF response,21 the following could be

noted: first, the release of BDNF by platelets via
thrombocytosis based on increased catecholamines and sympa-

thetic nerve activity induced by exercise bouts;55 second, the

association between the exercise intensity and the lactate path-

way, which also plays a role in brain metabolism;4 third, HIE-

related brain hypoxia and muscle damage may trigger an

immediate response in circulating BDNF;18 and finally, the

hyperthermia induced by exercise increases blood�brain bar-

rier permeability, thereby facilitating the transport of the

BDNF produced by neurons.55

Some limitations of our systematic review and meta-analy-

sis should be acknowledged. First, the small sample size of the

included studies as well as the scarcity of studies identified

could have affected the precision of our estimations. In fact,

only 6 studies calculated and reported the power analysis for

the required sample size (Supplementary Table

8).28,29,40,45,48,51 Second, gender bias cannot be dismissed

because only 3 studies included exclusively women,6,44,50

probably due to the difficulty of controlling for the variability

of estrogen levels associated with the menstrual cycle. Estro-

gen levels are known to be associated with BDNF levels and,

thus, are likely to influence their response to exercise.28 Third,

the effects induced by exercise on BDNF might have been

affected by blood collection methods and commercial

enzyme-linked immunosorbent assay kits (Supplementary

Table 8),60 as well as by age, health, smoking status, or alcohol

consumption. Fourth, the presence of a single nucleotide

polymorphism (in approximately 30% of the population)

may alter BDNF secretion.5 Fifth, although our results

were not influenced by the potential mediators or modera-

tors analyzed, trained individuals with a higher capacity to

use BDNF who may also have higher cardiorespiratory
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fitness could show lower levels of serum BDNF after

exercise.17,61 Ultimately, high-quality studies with greater

sample sizes are needed to clarify the role of potential

moderators (e.g., training protocol, trained/untrained partic-

ipants, sex, etc.) as well as to extrapolate these findings to

a larger population.
5. Conclusion

Our results showed that HIE has a positive effect on

increasing BDNF, which is not related to the exercise length

or baseline cardiorespiratory fitness of healthy young adults.

Therefore, given the potential benefits to mental and cardiome-

tabolic health by increasing BDNF through the performance of

HIE, our findings could support the recommendation of HIE

by clinicians as promising time-efficient intervention that may

maximize circulating BDNF.
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