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Abstract

We describe a protocol for fully automated detection and segmentation of asymmetric, presumed excitatory, synapses in
serial electron microscopy images of the adult mammalian cerebral cortex, taken with the focused ion beam, scanning
electron microscope (FIB/SEM). The procedure is based on interactive machine learning and only requires a few labeled
synapses for training. The statistical learning is performed on geometrical features of 3D neighborhoods of each voxel and
can fully exploit the high z-resolution of the data. On a quantitative validation dataset of 111 synapses in 409 images of
194861342 pixels with manual annotations by three independent experts the error rate of the algorithm was found to be
comparable to that of the experts (0.92 recall at 0.89 precision). Our software offers a convenient interface for labeling the
training data and the possibility to visualize and proofread the results in 3D. The source code, the test dataset and the
ground truth annotation are freely available on the website http://www.ilastik.org/synapse-detection.
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Introduction

The chemical synapse is the predominant means by which

information is transferred and stored in the central nervous system.

Analysis of synapse size, shape and distribution contributes

essential information to the understanding of neural circuitry, its

function and its plasticity.

Despite the advances in light microscopy, detailed structural

analysis of synapses is still only possible with electron microscopy.

With serial section transmission electron microscopy (ssTEM),

synaptic density can be estimated by manually counting synapses

within a large volume, or by stereological extrapolation from

paired 2D images [1–4]. However, using fairly thick 2D slices

severely impedes detection of synapses in cases when the synaptic

cleft is oriented at a low angle with respect to the plane of imaging

[5].

The recent introduction of focused ion beam/scanning electron

microscopy (FIB/SEM)[6] with isotropic resolution approaching 5

nm has now opened the door to a direct detection and

segmentation of all synapses in large volumes of tissue, without

the need to resort to extrapolation from paired slices. When

searching for synapses, the human observer is not limited to the

imaging plane projections of the volume, but can also explore the

planes orthogonal to it. A protocol for manual synapse detection in

FIB/SEM data has recently been proposed in [7]. Still, even for

the best quality EM images, manual detection of synapses remains

a difficult, error-prone and time-consuming task, which calls for

automated protocols to overcome the tedium of manual analysis.

To detect synapses in EM images, human experts follow a set of

morphological criteria: the presence of the pre- or post-synaptic

densities, a visible synaptic cleft and a nearby cluster of at least two

vesicles. If an automated protocol was to be based on these criteria

directly, it would require a segmentation of the entire volume to

find the membrane apposition sites and a full segmentation of

ultra-cellular structures to detect vesicles. Although the problem of

automated segmentation of neural tissue has advanced signifi-

cantly in recent years, it is not yet fully solved [8,9]. Also,

automated segmentation of vesicles is nontrivial, especially at

lower resolution, and has not received much attention in the

literature. Rather than explicitly implementing the currently used

criteria, machine learning allows to imitate the overall decisions of

a human. The prediction rules are learned automatically from

examples, provided in the form of annotated images (the training

dataset). A meaningful measure of success is how well the

automated predictions on a separate test set agree with those of

the human.

Our contribution proposes an automated approach of this type

and shows, through quantitative evaluation on a set of 111
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synapses, that state-of-the-art machine learning methods can now

achieve detection rates comparable to those of humans for

asymmetric synapses in FIB/SEM data. Even though our

approach does not explicitly implement the morphological criteria

listed above, it finds enough evidence in the geometric features,

extracted from a local neighborhood of each voxel, to mimic the

decisions of the human expert.

In the field of neuroscience, recent influential work along these

lines has focused on tracing and segmentation of neurons ([10–18])

or automated segmentation of ultracellular structures ([19,20]). In

[9], automated synapse detection has been proposed in the course

of a large-scale semi-automated volume reconstruction effort.

However, this approach relies on correct partitioning of the entire

volume into cells, which is still impossible by fully automated

means. Finally, automated methods for synapses detection have

already been proposed for fluorescence light microscopy [21,22].

Since these rely on fluorescent pre-labeling of all synapses, they are

not applicable to EM images.

On the conceptual side, we rely on machine learning methods

that are currently transforming all of image analysis. On the

software side, we build on ilastik [23] and on our previous work,

briefly described in [24]. ilastik (www.ilastik.org) is a freely available

interactive learning and segmentation toolkit, which relies on a rich

family of generic (nonlinear) image features and a robust nonlinear

classifier [25] to estimate the probability of belonging to a synapse

for each individual voxel. The training of the classifier by means of a

pointing device (mouse or tablet pen) is fully interactive in the sense

that a real-time display of the current predictions allows the user to

iteratively provide more labels and hence improve the classifier

performance. Once the classifier has been trained on a tiny subset of

data, it can automatically classify all voxels in the volume as synapse

or non-synapse. Then, all connected components of adjacent voxels

with a sufficiently high probability of belonging to a synapse are

aggregated into synapse candidates. Finally, a deterministic post-

processing step rejects synapse candidates with implausible sizes.

We provide a software bundle comprising a simple and intuitive

graphical user interface for annotation, the machine learning

algorithms and 3D visualization.

Results

The quantitative validation of the automated synapse detection

procedure, as well as the evaluation of the human experts’ error

rate, was carried out on a test dataset of 111 asymmetric, presumed

glutamatergic, synapses (see Materials and Methods section for

details on data acquisition and gold standard generation).

For the evaluation of the error rate, a synapse candidate was

considered to be a false positive, if its ‘‘ball’’ label from the human

expert or its shape segmented by ilastik did not overlap with any

ball in the gold standard dataset. If such an overlap was found, the

corresponding gold standard ball was removed from the set of

possible matches. Conversely, a false negative detection was

counted, if a ball from the gold standard did not overlap with any

of the synapse candidates; if such an overlap was found the

corresponding synapse candidate was removed from the set of

possible matches. Human errors were additionally reverified

manually, to avoid assigning a detection error in case of a

geometric disagreement between labelers, i.e. when two labelers

labeled the same synapse at positions so far from each other, that

their ‘‘ball’’ labels did not overlap.

Human experts
The expert which only had 4 hours to label and verify the

synapses, missed 11 synapses and found 20 false positives. The

other two experts, unlimited in time, made 2 and 3 false negative

and 7 and 8 false positive detections respectively. Most expert

mistakes were made for different synapses, which is in line with the

observations of [26] about attention-related errors of expert

annotators of neurobiological images.

Automated detection
To quantitatively assess the algorithm performance and its

stability with regard to the training data, four training sets were

created from images acquired in the same experiment, but not

overlapping with the test set. The four training sets were located

in different parts of the image stack and contained approximately

the same number of voxel labels. For each training set, 2–3

synapses were labeled, and for each of those synapses it was

sufficient to only label it in one of the slices. Adding more labels

did not improve the classification performance, as long as the

already labeled set represented the data well, which can be

judged, for example, by looking at the current algorithm

predictions for some non-labeled synapses (Fig. 1, bottom row).

Although the software can discriminate an arbitrary number of

categories, we found three-class labeling of synapses vs.

membranes vs. the rest of the tissue to produce the best results.

One can also use a binary setup with synapses vs. the rest, but

then the labeler has to take extra care to annotate enough

membrane voxels to obtain a representative sample of the

background. Adding more classes, for example, for the mito-

chondria, did not help the classification. Our first training set is

illustrated in Fig. 1 and a performance comparison for the

different training sets is shown in Fig. 2A.

After training, the classifiers were applied to the test dataset, and

thresholding with different sensitivity levels was applied to the

resulting synapse probability maps. Precision and recall of the

algorithm, depending on the threshold, are illustrated in Fig. 2

(using the training set from Fig. 1 for Fig. 2B). Recall was

calculated as the (no. of true positives)/(no. of synapses in the

ground truth), precision as the (no. of true positives)/(total no. of

synapse candidates). The voxelwise threshold for the detection of

synaptic cores was specified as the probability of the synapse class.

For the training set from Fig. 1, the best algorithm performance

was at the threshold of 98%, with recall of 0.92 and precision of

0.89. Overall, the algorithm performance is better than that of a

human expert working with a four-hour time limit (0.9 recall and

0.86 precision), but worse than that of domain experts with

unlimited time, who, in practice, worked on the problem on two

consecutive days, though not all day long (recall of 0.97 and 0.98

and precision of 0.931 and 0.936). A comparable recall value for

the algorithm (0.96) was achieved at precision of 0.85. Labeling

the training set, computing its appearance features and training

the classifier took approximately 15 minutes. Running the

algorithm on the full test dataset took several hours, however, no

user interaction was needed during this time.

A 3D view of the synapses detected by the algorithm based on

the training set from Fig. 1 (with probability ratio threshold of

92%) is illustrated in Fig. 3.

The human labelers only detected synapses and specified their

approximate size by the ball labels, while the algorithm seg-

mented synapses, i.e. listed every voxel belonging to a synapse

candidate. Since the real synapses are not spherical, these human

annotations can not serve as voxel-level gold standard. Conse-

quently, the performance of the segmentation part of the algori-

thm was assessed qualitatively and found to be of sufficiently high

quality for detailed analysis of synapse morphology, see Fig. 3 and

Fig. 4.

Automated Synapse Detection in EM Data
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Discussion

The results show that with an adequate selection of appearance

features, synapses are sufficiently different from other structures in

neural tissue to allow for reliable automated detection in nearly

isotropic FIB/SEM serial images. Fig. 5 illustrates typical false

negative and false positive detections of the humans and of the

algorithm, which have different causes. The false positives of the

algorithm are mostly caused by myelinated membranes or very

dark lines located near mitochondria (Fig. 5J, 5K, 5L). Similarly,

most of the false negative detections also stem from synapses

located very close to myelinated membranes. In the probability

maps, they become connected to the large false positives caused by

these membranes, and these large connected components are then

filtered out based on the size criterion (Fig. 5G). Since ilastik

provides a convenient summary report of all detected synapses

(Fig. 4) and reduces the data from millions of voxels to just dozens

of synapse candidates, the false positives for the entire stack can

easily be discarded by a human in just a few minutes of additional

proofreading.

Figure 1. User labels and algorithm predictions. Top row: the complete set of user annotations for the first training set (20 brush strokes in
total), with yellow labels for synapses, red for membranes, green for the rest. Bottom row: raw data and algorithm predictions on two other slices in
the first training set. In black circles: some unlabeled synapses and their probability maps. The color intensity corresponds to the certainty in the
prediction, predictions for green class are omitted for clarity.
doi:10.1371/journal.pone.0024899.g001

Figure 2. Precision and recall of the algorithm and the human experts. Recall was calculated as the (no. of true positives)/(no. of synapses in
the ground truth), precision as the (no. of true positives)/(total no. of synapse candidates). A: Precision and recall of the algorithm results for the four
different training sets. B: Precision and recall of the algorithm compared to the human experts with and without the time limit. The synapse
probability threshold values are annotated next to the corresponding points of the curve.
doi:10.1371/journal.pone.0024899.g002

Automated Synapse Detection in EM Data
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For the human experts, while some synapses that were missed

are accidental omissions, others serve as a good illustration of the

advantages of truly 3D processing (Fig. 5A, 5B). These synapses

are oriented at a low angle to the plane of imaging and do not

strictly qualify as synapses according to the morphological criteria,

since the synaptic cleft is not seen in the plane of imaging. Besides

that, they are just hard to discern when viewing the data in native

(x-y) projection only. Since the algorithm bases its decisions on

geometric features computed in full 3D neighborhoods, it is not

affected by synapse orientation.

As for any machine learning-based algorithm, the performance

of ilastik depends significantly on how well the training dataset

represents the true variability of the test data. Note also, that the

images with the training labels must be large enough to allow for

computation of all features from neighborhoods of the labeled

voxels. The interactive learning interface of ilastik allows the user

to immediately assess the algorithm performance on a subset of

data and, if necessary, to modify the training labels or the

threshold value. As shown in Fig. 2A, on our data the quality of

the prediction was stable with respect to the exact choice of the

training set.

We expect the proposed tool to be useful not only for synapse

counting, synapse density estimation or estimation of synapse-to-

neuron ratio, but also for the ongoing efforts in the reconstruction

of neural circuits [8,9,26–29]. We are currently working on new

machine learning methods which take more spatial context into

account with the aim of solving the myelinated membranes

problem and achieving reliable synapse segmentation also in

image stacks with low z-resolution.

Software and data availability
The software runs on Linux, MacOS and Windows. The

binaries for the three platforms along with the installation

instructions and documentation can be found at www.ilastik.

org/synapse-detection, and the full source code is available in a

github repository: www.github.com/Ilastik/ilastik. The test data-

set, the gold standard set of synapse annotations and one of our

training label sets can also be downloaded from the website. A

small downsampled test dataset is also available as part of the

supporting information (Dataset S1).

Materials and Methods

Data acquisition and generation of the gold standard
The test dataset consisted of 409 scanning electron micrographs

from layer 2/3 of the adult rat somatosensory cortex. The tissue

preparation methods followed the protocol previously described in

[6] and were performed in accordance with the procedures

approved by the Office Vétérinaire Cantonale Lausanne (license

number 2106). Briefly, the brain of an adult rat was fixed by

cardiac perfusion of 2.5% glutaradehyde, and 2% paraformalde-

hyde in phosphate buffer, it was then vibratome sectioned and

slices from the somatosensory cortex were stained with buffered

potassium ferrocyanide and osmium, followed by osmium, and

then uranyl acetate. These stained sections were then dehydrated

and embedded in Durcupan resin. The selected region was

trimmed in an ultramicrotome and mounted onto an aluminium

SEM stub for imaging in the FIB/SEM microscope (Zeiss

NVision40), using a scanning electron beam at 1.3 kV with a

current of 1 nAmp. Backscattered electrons were collected via the

energy selective in-column detector (EsB) using a grid tension of

1.1 kV. The milling was achieved with a gallium ion source at

30 kV with a current of 700 pAmp. The acquired images were of

5 nm per pixel resolution with each image 194861342 pixels in

size. The milling depth was measured at 9 nm per slice. Such high

z-resolution allowed treating the data as one 3D volume of

1948613426409 voxels instead of a collection of 2D slices.

Synapses in the dataset were manually annotated by three

independent human experts according to morphological criteria,

including the presence of a pre- and post-synaptic density, as well

as clustered vesicles close to the pre-synaptic membrane [30]. The

human experts were researchers with experience in the analysis of

electron micrographs of brain tissue and counting synapses in

serial images. TrakEM2 plug-in of the FIJI framework [31] was

Figure 3. 3D visualization of the results. Top: all synapses detected by the algorithm after training on the labels from Fig. 1. Bottom: a close-up
view of three differently oriented synapses.
doi:10.1371/journal.pone.0024899.g003

Automated Synapse Detection in EM Data
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Figure 4. Synapse detection summary report. Part of the summary report produced by ilastik. The fourth detection from the top (no. 36) is a
false positive, which can easily be filtered out by a human expert by looking at a larger context.
doi:10.1371/journal.pone.0024899.g004

Automated Synapse Detection in EM Data
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used for the annotation. One of the experts only had four hours to

label and verify the complete dataset, while the other two experts

were not limited in time and took several hours longer. The

annotation of each expert included positions and approximate size

of detected synapses, denoted by ‘‘ball’’ labels from TrakEM2.

Some examples of expert labels can be seen in Fig. 5D, 5E, 5F.

Each expert first analyzed the dataset independently from the

others and the resulting three sets of annotations were compared

automatically to find all discrepancies. Since the automatic

comparison procedure found differences between the expert

annotations, these cases had to be re-examined jointly by all

experts to establish a gold standard annotation. Synapses touching

the left or top border of the image, as well as those touching the

last slice of the stack, were excluded from the final count. For

evaluation purposes, we also excluded synapses which had their

center in the first slice of the stack, to avoid the border effects

described in the next section. The resulting set of 111 synapses

formed the gold standard and was used to estimate the error rates

of both the original human annotations and the results obtained by

the algorithm.

Algorithm
The input data for the algorithm consists of scanning electron

micrographs of neural tissue, provided as a pre-registered image

stack, and user labels on a tiny subset of the data. The labeling can

be very sparse, as shown in Fig. 1. The standard EM protocol used

to prepare the brain tissue for imaging gives high contrast not only

to synapses, but also to other cellular structures, such as

mitochondria. As a consequence, the classification cannot simply

be based on the raw intensity values of individual voxels. Instead,

more informative features are required that also encode geo-

metrical properties of 3D voxel neighborhoods. Different features

represent different properties of these neighborhoods and should

be selected so as to allow for an effective discrimination of the

labeled classes. For example, as synapses are darker than in-

tracellular space, the average intensity would serve as a good

feature to distinguish these two, but would not help to separate

synapses from membranes or mitochondria. Edge detectors

respond strongly to both membranes and endoplasmic reticulum.

Texture features respond to synapses, but also pick up thick

mitochondrial membranes. Rather than devise decision rules by

hand, we use statistical learning from a labeled training set to infer

robust classification rules.

Since features have to be computed for every voxel, memory

consumption has to be taken into account for large volumes. To

allow running of the algorithm on a modern desktop PC rather

than a high-end server without compromising classification

accuracy, we performed selection of features, based on their Gini

importance [25]. The final list of 38 features is provided in Table 1.

Although the user is free to re-adjust the list and try out new

feature combinations, we do not expect it to be necessary, except

for the adjustment of the neighborhood sizes to the resolution of

the data. Due to boundary effects in the feature computation, the

performance of the algorithm can decrease for voxels very close to

the limits of the dataset, such as the voxels of the first and last scan

of the stack.

Based on the features and user labels, the Random Forest

classifier [25] computes a probability map for each voxel, i.e. its

probability of belonging to one of the classes defined in the

training phase. Random Forest is a bagged ensemble of

randomized decision trees that has only two parameters: the

number of trees and the number of features considered at each

split. Random Forest has been empirically shown to be fairly

robust to their choice, and to provide very good results for a broad

Figure 5. Error examples. A, B, C: false negative decisions of the human observers, D, E, F: false positive detections of the human observers,
shown as yellow ‘‘ball’’ labels in the image center, G, H, I: false negative decisions of the algorithm, J, K, L false positive decisions of the algorithm.
doi:10.1371/journal.pone.0024899.g005

Table 1. Voxel features.

Feature Sigmas
# of
channels

Eigenvalues of the Hessian matrix 1, 1.6, 3.5, 5 3

Eigenvalues of the structure tensor 1, 1.6, 3.5, 5 3

Intensity of the Gaussian-smoothed image 0.7, 1, 1.6, 3.5, 5 1

Gradient magnitude of the
Gaussian-smoothed image

1.6, 3.5, 5 1

Laplacian of the Gaussian-smoothed image 1.6, 3.5, 5 1

Difference of Gaussians 1.6, 3.5, 5 1

Total number of channels 38

Local neighborhood features, used for voxel classification. The ‘‘Sigmas’’ column
shows the standard deviation of the Gaussians, used for smoothing the data.
This parameter effectively determines the size of the necessary voxel
neighborhood. For the eigenvalues of the structure tensor, the second scale
parameter was set to sigma/2, for the difference of Gaussians the second
Gaussian sigma was set to 0.66*sigma.
doi:10.1371/journal.pone.0024899.t001
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range of applications [32–35]. An example of Random Forest

probability maps is shown in Fig. 1 (note the soft borders of the

classes, which show that it’s a probability estimate, not a hard

segmentation).

The obtained probability maps are smoothed by convolution

with a Gaussian with a standard deviation of 5 voxels to avoid

local discontinuities caused by noisy voxel-wise predictions.

Uncertain detections are then filtered out by considering only

those clusters of voxels with synapse probability greater than a

given threshold and with size of at least 1000 voxels. The lower

limit for the size filter was computed as the approximate volume

occupied by two vesicles at the given data resolution. The

probability threshold can be interactively adjusted by the user.

After thresholding, only the cores of synapses, i.e. areas of very

high synapse probability, are left. These cores underestimate the

real size of synapses, so to transition from detection to a proper

segmentation we relax the synapse probability threshold to 0.5 for

all voxels that are adjacent to synaptic cores.

Software
The freely available ilastik toolkit [23] provides an intuitive

interface for classification and segmentation of 2D and 3D data. In

the interactive mode, it allows the user to immediately see the

effect of newly added labels on the classifier’s predictions, and

therefore reduces the necessary labeling time. Once the classifier

has been trained on a representative subset of the data, predictions

on a very large dataset can be performed off-line in batch-

processing mode.

Here we present and evaluate an extension of ilastik which

includes interactively adjustable thresholding and finding of

connected components, as well as a possibility to display the

found objects in 3D with the help of the VTK toolkit [36]. A script

for off-line thresholding and filtering is provided at [www.ilastik.

org/synapse-detection]. Synapse detection results are stored in an

hdf5-based ilastik project file and in an HTML summary report

for convenient visualization and proofreading (Fig. 4). Integration

of ilastik with the VTK visualization allows the user to jump from

a 3D object directly to its position in the image stack.

Supporting Information

Dataset S1 A small downsampled subvolume of the original

data for trying out the interactive prediction.
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