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ABSTRACT

Single-nucleotide polymorphism (SNPs) may cause
the diverse functional impact on RNA or pro-
tein changing genotype and phenotype, which may
lead to common or complex diseases like can-
cers. Accurate prediction of the functional impact
of SNPs is crucial to discover the ‘influential’ (dele-
terious, pathogenic, disease-causing, and predis-
posing) variants from massive background polymor-
phisms in the human genome. Increasing computa-
tional methods have been developed to predict the
functional impact of variants. However, predictive
performances of these computational methods on
massive genomic variants are still unclear. In this re-
gard, we systematically evaluated 14 important com-
putational methods including specific methods for
one type of variant and general methods for multi-
ple types of variants from several aspects; none of
these methods achieved excellent (AUC ≥ 0.9) perfor-
mance in both data sets. CADD and REVEL achieved
excellent performance on multiple types of variants
and missense variants, respectively. This compari-
son aims to assist researchers and clinicians to se-
lect appropriate methods or develop better predictive
methods.

INTRODUCTION

With the rapid development of next-generation sequenc-
ing technologies, massive genomic variants in the human
genome have been detected (1–3). Among them, a small
subset of variants may be involved in common and com-
plex diseases such as cancers and Mendelian diseases (4).
How to distinguish which variants are ‘influential’ to the
normal activities of life from the massive genomic variants,
is meaningful and challenging research work. The func-
tional impact (deleterious, pathogenic, disease-causing, and
predisposing) of variants is that a genetic alteration may

increase an individual’s susceptibility or predisposition to
a certain disease or disorder (5). For example, a variant
that occurred at the coding region of the DNA sequence
may lead to the different amino acid translation or protein
truncation, which may result in protein function weaken-
ing, association instability, or loss of protein function. The
identification of the functional impact of massive variants
is insufficiently efficient and usually time-consuming using
experimental validation and manual curation. To the identi-
fication process, a growing number of computational meth-
ods and platforms have been developed to prioritize mas-
sive variants based on sequence homology/conservation
(6–8), GC content (9), transcription factor binding sites
(10,11), histone modification (12,13) and so on. According
to the types of variants, all the methods can be classified
into two types: (i) general methods applicable to all types
of SNPs and (ii) specific methods applicable to a kind of
variants.

Several surveys or comparisons (14–16) have been made
to evaluate and analyze these prediction methods for dif-
ferent types of variants such as non-synonymous or syn-
onymous variants. However, no studies have focused on the
difference in prediction ability of computational methods
of different types of SNPs within our knowledge. In this
article, we provide a comprehensive comparison of general
and specific methods in large-scale computational studies
on predicting the functional impact of variants. In addition,
one of the keys to a consistent and accurate comparison lies
on unbiased test datasets. Thus, we constructed two inde-
pendent test datasets based on the ClinVar and VariBench
databases, which are widely used (14,16–18), reliable in
quality and easily accessible. On these two datasets, we per-
formed a comprehensive comparison of 14 functional im-
pact prediction methods including CADD (19,20), DANN
(21), FATHMM-MKL (22), FunSeq2 (23), PredictSNP2
(24), SIFT (25), PROVEAN (26), MetaLR (14), MetaSVM
(14), MutationAssessor (27), PrimateAI (28), M-CAP (29),
REVEL (30) and MISTIC (17). Based on the performance
evaluation of these two datasets for 14 prediction methods,
CADD and REVEL, obtained the best performance, re-
spectively.
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MATERIALS AND METHODS

Dataset resource

ClinVar. The ClinVar (31–35) database is a freely accessi-
ble, comprehensive, and public archive of human variations,
phenotypes, and annotations of the functional impact of
variants. ClinVar divides all human variants into 14 cate-
gories of clinical significance. Among them, five terms (be-
nign, likely benign, uncertain significance, likely pathogenic
and pathogenic) are used to indicate whether a variant is
harmless or harmful. ClinVar provides continuous muta-
tion information update to support researchers’ continuous
research work.

VariBench. The VariBench (36) database provides multi-
ple benchmark datasets from different resources such as
ClinVar and Swiss-Prot. VariBench contains annotation in-
formation for experimentally verified effects and datasets
that have been used to evaluate the performance of predic-
tion methods. All variants are divided into two categories:
pathogenic and neutral.

Test datasets

We constructed two independent datasets (reference gnome
version is GRCh37/Hg19) in this study to conduct the per-
formance comparison among the prediction methods listed
in Table 1: (i) multiple types of variants such as missense
variants, splice variants and 5′ UTR variants from the Clin-
Var database. Single-nucleotide variants with the clinically
significant terms (‘pathogenic’, ‘likely pathogenic’, ‘benign’,
‘likely benign’) were collected as our tested benchmark data;
(ii) missense variants from ClinVar and VariBench (the fil-
tered VariBench datasets consists of HumVar (37), ExoVar
(38), VariBench (36), predictSNP (39) and SwissVar (40)).
The overlapping variants between the training set of com-
pared methods and these two databases were removed to
avoid the biased performance evaluation.

Performance evaluation

The performance of the functional impact prediction meth-
ods was evaluated using the following measures:

• Accuracy = T P+TN
T P+F P+TN+F N

• Precision = T P
T P+F P

• Recall = T P
T P+F N

• F1 − score = 2∗Recall∗Precision
Recall+Precision• AUC = Area Under the ROC Curve

In the equations above, the following evaluation criteria
are defined as follows: TP: True Positive; TN: True Nega-
tive; FP: False Positive; FN: False Negative. The Accuracy
is the rate at which the prediction method correctly classi-
fies the positive and negative cases. The Precision and Recall
represent the ratio of real positive cases to predicted positive
cases and correctly predicted positive to correctly predicted
cases, respectively. F1-score is a compromise between pre-
cision and recall. The Area Under the Receiver Operating
Characteristic curve (AUC) is a numerical representation of

the ROC curve to indicate the performance of the predic-
tion method more conveniently. Here, we employed ‘excel-
lent’ (AUC ≥ 0.9), ‘very good’ (0.9 > AUC ≥ 0.8), ‘good’
(0.8 > AUC ≥ 0.7), ‘sufficient’ (0.7 > AUC ≥ 0.6) and ‘bad’
(0.6 > AUC ≥ 0.5) to evaluate the performance of compu-
tational prediction methods (41). The AUC, accuracy, pre-
cision, recall, and F1-score were obtained using the pROC
(42) package implemented by the R language and the eval-
uation used the best accuracy to determine the thresholds.

Overview of prediction methods for functional impact of vari-
ants

Several computational methods have been developed to
predict the functional impact of variants. In this arti-
cle, we evaluated 14 important state-of-the-art prediction
methods (Table 1) including CADD (19,20), DANN (21),
FATHMM-MKL (22), FunSeq2 (23), PredictSNP2 (24),
SIFT (25), PROVEAN (26), MetaLR (14), MetaSVM
(14), MutationAssessor (27), PrimateAI (28), M-CAP (29),
REVEL (30) and MISTIC (17) (we obtained prediction
scores for each genomic variant for 14 methods by running
their stand-alone programs, publicly available web servers,
ANNOVAR (43) or the dbNSFP (44) database). According
to the employed features and model, all of the prediction
methods are divided into two types: (i) general methods ap-
plicable to all types of SNPs and (ii) specific methods appli-
cable to a kind of variants.

General methods

CADD. The Combined Annotation–Dependent Deple-
tion (CADD) is a general framework, which integrates di-
verse genome annotations and scores of any possible hu-
man single-nucleotide variant or small insertion-deletion
event. CADD employs 63 distinct variant annotations re-
trieved from Ensembl (45), Variant Effect Predictor (VEP),
ENCODE project, and UCSC genome browser tracks (46–
48) and implemented a support vector machine (SVM)
as the predictive model, which was trained to differenti-
ate 14.7 million high-frequency human-derived alleles from
14.7 million simulated variants.

DANN. Deleterious annotation of genetic variants using
neural networks (DANN) is a deep neural network model.
Instead of SVM model of CADD, DANN performed an
artificial neural network with several hidden layers of units
using the training data of CADD (16627775 ‘observed’ vari-
ants and 49407057 ‘simulated’ variants).

FATHMM-MKL. FATHMM-MKL is an integrative ap-
proach that predicts the functional impacts of coding and
non-coding variants. Ten coding and non-coding feature
sets (such as sequence conservation, histone modification,
and transcription factor binding sites) are employed to train
the SVM model to prioritize the coding and non-coding
variants.

FunSeq2. FunSeq2 implements a scoring system that con-
sists of coding scoring scheme and noncoding scoring
scheme to prioritize variants in cancer. Four feature groups
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including variants in potential regulatory elements, the
nucleotide-level impact of regulatory variants, variants in
conserved regions, and network analysis of variants associ-
ated with genes were used as the input of the scoring system.

PredictSNP2. PredictSNP2 integrates five prediction
methods (CADD, DANN, FATHMM, FunSeq2 and
GWAWA) to predict the functional impact of variants.
PredictSNP2 employs a consensus classifier to build the
prediction model. The consensus was determined based on
a majority vote, with the composition of classifier being
weighted by their confidences.

Specific methods

SIFT. Sorting tolerant from intolerant (SIFT) is designed
to prioritize non-synonymous single nucleotide polymor-
phism (nsSNP) occurring in the coding region of genome
may cause an amino acid substitution (AAS) of the cor-
responding gene product, and this change may affect the
function of host gene product and the phenotype of host
organism. SIFT calculates a prediction score derived from
the distribution of amino acid residues observed at the given
position in the sequence alignment and the estimated un-
observed frequencies of amino acid distribution calculated
from a Dirichlet mixture.

PROVEAN. Protein Variation Effect Analyzer
(PROVEAN) is a prediction method based on the delta
alignment score of pairwise sequence alignment. The delta
alignment score represents that it can interpret a change
in the alignment score caused by an amino acid variation
as the functional impact of host protein of the variant.
PROVEAN also can be used to predict the functional
impact of all classes of protein sequence variations such as
insertions, deletions and multiple substitutions.

MetaLR and MetaSVM. MetaLR and MetaSVM are two
ensemble methods, logistic regression and support vec-
tor machine, which integrate multiple scores of prediction
methods. These two methods only focused on the non-
synonymous variants.

MutationAssessor. MutationAssessor predicts the func-
tional impact of variants based on the assumption that pro-
tein family sequences reflect the continuity of functional
constraints and can be treated as a statistical ensemble,
that is, the observed distributions of residues in aligned
positions of homologous sequences reflect the functional
constraints on these residues. Thus, evolutionarily unfavor-
able variants/residues are not observed or observed less fre-
quently than neutral variants/residues, while critically im-
portant residues are conserved in diverse evolutionary set-
tings. As a result, the functional impact score consists of
the conservation score and the specificity score is used as
the prediction score.

PrimateAI. PrimateAI was proposed by the researchers of
Illumina Artificial Intelligence Laboratory. PrimateAI pre-
dicts the functional impact of variants based on the archi-
tecture of deep learning network and takes the 54-length

amino acid sequence centered at the variants of interest as
input of deep learning model. In addition to using linear se-
quence data, the secondary structure of proteins is also used
as input data for deep learning models.

M-CAP. Mendelian clinically applicable pathogenicity
(M-CAP) produces likelihood scores that aim to misclassify
no >5% of pathogenic variants while aggressively reducing
the list of variants of uncertain significance. The feature set
of M-CAP consists of 9 functional prediction scores such
as SIFT and CADD, 7 pre-existing conservation and vari-
ant intolerance scores and 4 custom amino acid scores. The
prediction model of M-CAP is gradient boosting tree clas-
sifier.

REVEL. REVEL is an ensemble method, which inte-
grates multiple functional prediction scores and sequence
conservation scores such as SIFT, PROVEAN, FATHMM,
MutationAssessor, GERP++ and phyloP. The employed
model of REVEL is random forest classifier.

MISTIC. MISTIC also is an ensemble method, which in-
tegrates four feature groups: (i) 8 multi-ethnic MAF; (ii)
8 conservation scores; (iii) 690 functional measures; (iv)
7 functional prediction scores such as SIFT and CADD.
MISTIC employs random forest classifier and logistic re-
gression classifier as the prediction model.

RESULTS

Experiments based on multiple types of variants in ClinVar
and VariBench

Experimental results on multiple types of variants (e.g. in-
tron variants and missense variants) are shown in Figure 1
and Table 2. Figure 1 shows the ROC curves for five general
methods. The CADD (AUC: 0.948) showed the best per-
formance and the AUCs for the other four methods (Pre-
dictSNP2, DANN, FATHMM-MKL and FunSeq2) were
>0.7 (AUC for PredictSNP2 is 0.787, AUC for DANN is
0.883, AUC for FATHMM-MKL is 0.857 and AUC for
FunSeq2 is 0.822). Table 2 shows the accuracy, precision,
recall and F1-score for five general methods. The CADD
(accuracy: 0.8796, precision: 0.761 and F1-score: 0.8242)
showed best performances on accuracy, precision and F1-
score. The DANN (recall: 0.9223) showed the best perfor-
mance on recall. Overall, the CADD method achieved the
best performance based on the multiple types of variants.

To visualize the distribution of scores of PredictSNP2,
DANN, FATHMM-MKL, FunSeq2 and CADD, we plot-
ted raw prediction scores of deleterious and neutral vari-
ants as shown in Figure 2. As demonstrated in Figure 2,
CADD scores are distributed in low score areas for neu-
tral variants and in high score areas for deleterious variants.
Thus, CADD achieved the best performance in most eval-
uation criteria. PredictSNP2 scores are highly concentrated
near −1 for neutral variants and 1 for deleterious variants.
However, there are many deleterious and neutral variants
densely clustered around 1 leading to the average perfor-
mance of predictSNP2. The distribution of scores analy-
sis facilitated the selection of threshold for clinicians and
researchers.
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Figure 1. The AUCs of different prediction methods on the multiple types of variants.

Table 2. The performance of prediction methods using multiple types of
variants

Order Methods Accuracy Precision Recall F1-score

1 PredictSNP2 0.7142 0.5266 0.8940 0.6628
2 DANN 0.8258 0.6592 0.9223 0.7688
3 FATHMM-MKL 0.7855 0.6134 0.8576 0.7152
4 FunSeq2 0.7235 0.5391 0.8264 0.6525
5 CADD 0.8796 0.7610 0.8988 0.8242

To evaluate the correlation of predictive results between
any two computational methods, we computed the Spear-
man’s Rank Correlation Coefficient� (rho) based on predic-
tion scores of five general methods. As shown in Figure
3, the highest correlation was found between CADD and
DANN (rho: 0.85). The prediction scores of CADD and
DANN were also highly positively correlated, which may
be related to the fact that both used the same training set
and feature set. The prediction scores of FunSeq2 have rel-
atively low correlation with other methods, which also co-
incided with the score distribution in Figure 2.

Experiments based on missense variants in ClinVar and
VariBench

Missense variants produce the Amino Acid Substitutions
(AASs) in the sequences of gene products. Usually, the
AASs may affect the biological function of a gene prod-
uct in many ways (49). However, compared with nonsense
variants, the effect of AASs on sequences and structures
of gene products is not intuitive enough. Thus, predic-
tion of the possible functional impact of missense vari-
ants is an important and challenging problem. Therefore,
we choose missense variants to evaluate these computa-
tional prediction methods. Experimental results on mis-
sense variants are shown in Figure 4 and Table 3. Fig-
ure 4 shows the ROC curves for 14 methods. The REVEL
(AUC: 0.905) showed the best performance and FunSeq2
(AUC: 0.603) achieved the worst performance. The AUC for
the other individual prediction methods ranged from 0.696
to 0.89. In the experiments on multiple types of variants,
DANN, FATHMM-MKL and FunSeq2 have achieved
’very good’ performance and CADD has achieved ’excel-
lent’ performance. In the experiments on missense variants,
CADD and FATHMM-MKL just achieved ’good’ perfor-
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Figure 2. The distribution histogram of scores of PredictSNP2, DANN, FATHMM-MKL, FunSeq2 and CADD for deleterious and neutral variants.
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Figure 3. Correlation coefficients between the 5 methods (PredictSNP2,
DANN, FATHMM-MKL, FunSeq2 and CADD) based on multiple types
of variants.

mance, DANN and FunSeq2 even only achieved ’sufficient,
performance. We attribute the different performances to
insufficient/unoptimized feature set for missense variants in
these general prediction methods.

Then, we also plotted the distribution histogram of raw
scores of 14 prediction methods for deleterious and neu-
tral variants as shown in Supplementary Figure S1. The
prediction scores of some methods, including MetaLR,
MetaSVM, REVEL and MISTIC, can produce peaks in
two relatively separate regions. These methods also showed
good performances in the prediction of the functional im-
pact of missense variants (Figure 4 and Table 3). Although
the prediction scores of M-CAP did not call two separate
peaks for deleterious and neutral variants, the prediction
scores of neutral variants concentrated on the low-score
area and the prediction scores of deleterious variants were
evenly distributed in the whole prediction score range. Thus,
the performance of M-CAP also was relatively good. How-
ever, the score distribution of this method may cause con-
fusion in the selection of the threshold in practical applica-
tions. This analysis provided another way to illustrate the
ability of different methods and another perspective to help
researchers and users determine the classification threshold
reasonably.

The rho coefficients between 14 prediction methods on
missense variants are as shown in Figure 5. MetaLR and
MetaSVM showed the highest positive correlation (rho:
0.95) because these two methods employed the same en-
semble learning components. Besides, the scores of Met-
aLR, MetaSVM, REVEL and MISTIC also showed a high
positive correlation, which was also consistent with the
performance of evaluation criteria as shown in Figure 4
and Table 3. Compared with the other prediction meth-
ods, the lower scores for SIFT and PROVEAN indicate
deleterious variants and higher scores indicate neutral vari-
ants. Therefore, the coefficients of SIFT /PROVEAN and
other prediction methods are negative, that is, negative cor-
relation. MetaLR and MetaSVM employ the same fea-

ture set but different machine learning methods (linear re-
gression and support vector machine) to predict the func-
tional impact of variants. However, both the experimen-
tal results and the correlation coefficients of the predicted
scores of these two methods are similar. MetaSVM, CADD
and FATHMM-MKL employ support vector machine as
the predictive model, but different feature sets to predict
the functional impact of variants. CADD and FATHMM-
MKL have achieved ‘good’ performance, and MetaSVM
has achieved ‘very good’ performance. SIFT, PROVEAN
and MutationAssessor employ scoring system or probabil-
ity estimation based on the protein sequence to predict the
functional impact of variants. Although the three meth-
ods use different scoring systems or probability estimations,
they achieve ‘good’ performance.

DISCUSSION

Annotation and analysis of genomic variants are critical
and interesting studies in the post-genome era. Among
them, the study of functional impact of SNPs is an impor-
tant research field. For example, Daboub et al. (50) claimed
the discovery that two deleterious variants in RASA1 were
associated with Parkes Weber syndrome. Timms et al. (51)
discovered that some BACA1/2 deleterious variants oc-
curred in all breast cancer subtypes. Based on the biologi-
cal experiment methods, the identification of the functional
impact of massive variants is insufficiently efficient and usu-
ally time-consuming. Thus, many computational prediction
methods have been widely developed to investigate the func-
tional impact of genomic variants. However, the predic-
tive performance of these computational methods on mas-
sive genomic variants is still unclear. Here, we evaluated 14
state-of-the-art computational methods including general
methods applicable to all types of SNPs and specific meth-
ods applicable to a kind of variants. For general methods,
CADD achieved ‘excellent’ (AUC ≥ 0.9) performance on
multiple types of variants but ‘good’ (0.8 > AUC ≥ 0.7)
performance on missense variants. FATHMM-MKL and
PredictSNP2 achieved ‘very good’ (0.9 > AUC ≥ 0.8) per-
formance on multiple types of variants but also ‘good’
performance on missense variants. For specific methods,
REVEL achieved ‘excellent’ performance and some ensem-
ble learning methods (e.g. MISTIC, MetaSVM and Met-
aLR) achieved ‘very good’ performances on missense vari-
ants. Some methods that employed single type of feature
(e.g. SIFT and PROVEAN) also achieved ‘good’ perfor-
mance on missense variants.

Advantages and disadvantages of 14 prediction methods

Different prediction methods have certain advantages and
disadvantages. The methods such as REVEL, MISTIC,
M-CAP, MetaLR and MetaSVM integrate the prediction
scores of other computational methods as features. Their
advantage is that their prediction performance is very good,
but the types of variants that can be predicted are rel-
atively limited. SIFT, PROVEAN and MutationAssessor
mainly focus on the impact of changes in protein sequence
sites. Their performance is relatively good, but the biolog-
ical meaning of their prediction scores is clear and easy



8 NAR Genomics and Bioinformatics, 2022, Vol. 4, No. 1

Figure 4. The AUCs of different prediction methods on the missense variants.

Table 3. The performance of prediction methods using the missense
variants

Order Methods Accuracy Precision Recall F1-score

1 PredictSNP2 0.6983 0.7042 0.7609 0.7315
2 DANN 0.6716 0.6642 0.7928 0.7228
3 FATHMM-MKL 0.6793 0.6884 0.7422 0.7143
4 FunSeq2 0.5947 0.6046 0.7211 0.6577
5 CADD 0.7198 0.7453 0.7312 0.7382
6 SIFT 0.7146 0.7771 0.6612 0.7145
7 PROVEAN 0.7267 0.7476 0.7457 0.7467
8 MetaLR 0.7964 0.8360 0.7751 0.8044
9 MetaSVM 0.8015 0.8409 0.7802 0.8094
10 MutationAssessor 0.7163 0.7797 0.6617 0.7159
11 PrimateAI 0.6877 0.6939 0.7546 0.7230
12 M-CAP 0.8040 0.8494 0.7744 0.8101
13 REVEL 0.8305 0.8578 0.8226 0.8398
14 MISTIC 0.8216 0.8604 0.7994 0.8288

to understand. CADD, PredictSNP2 and FATHMM-MKL
are able to predict the functional impact of multiple types
of variants. However, the predictive ability of these meth-
ods is not good enough for missense variants. DANN and
PrimateAI employ deep learning technology, but their per-
formance does not significantly outperform other meth-

ods. Here, we recommend some specific methods, such as
M-CAP and REVEL, when the variants concerned by the
user are non-synonymous or missense. However, CADD
and FATHMM-MKL may be the better choice when users
need to predict the functional impact of large-scale uncer-
tain types of variants.

Future work

Deep learning techniques have achieved an overwhelming
advantage in some research fields of computer science and
bioinformatics, such as computer vision and natural lan-
guage process. In the field of prioritizing variants, some
methods also employ deep learning techniques such as deep
neural network (DNN) to predict the functional impact of
variants. For example, PrimateAI employs a DNN model
to facilitate the effect prediction of variants. However, Pri-
mateAI did not significantly outperform other prediction
methods that employed traditional machine learning tech-
niques or scoring systems. We think that DNN model re-
quires a larger number of variant data with deleterious and
neutral labels, while variant data with deleterious and neu-
tral labels are not enough now. With the increase of labeled
variant samples, the performance of methods based on deep
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Figure 5. Correlation coefficients between the 14 methods based on the missense variants.

learning techniques should be better. In addition to increas-
ing the number of labeled variants, variant feature mining
and the development of deep learning technology are po-
tential ways to improve the performance of computational
prediction methods.
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