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Integrin-linked kinase (ILK) has been implicated as a molecular driver and mediator in
both inflammation and tumorigenesis of the colon. ILK functions as an adaptor and
mediator protein linking the extracellular matrix with downstream signaling pathways.
ILK is broadly expressed in many human tissues and cells. It is also overexpressed
in many cancers, including colorectal cancer (CRC). Inflammation, as evidenced by
inflammatory bowel disease (IBD), is one of the highest risk factors for initiating CRC.
This has led to the hypothesis that targeting ILK therapeutically could have potential in
CRC, as it regulates different cellular processes associated with CRC development and
progression as well as inflammation in the colon. A number of studies have indicated an
ILK function in senescence, a cellular process that arrests the cell cycle while maintaining
active metabolism and transcription. Senescent cells produce different secretions
collectively known as the senescence-associated secretory phenotype (SASP). The
SASP secretions influence infiltration of different immune cells, either positively for
clearing senescent cells or negatively for promoting tumor growth, reflecting the dual
role of senescence in cancer. However, a role for ILK in senescence and immunity in
CRC remains to be determined. In this review, we discuss the possible role for ILK in
senescence and immunity, paying particular attention to the relevance of ILK in CRC. We
also examine how activating Toll-like receptors (TLRs) and their agonists in CRC could
trigger immune responses against cancer, as a combination therapy with ILK inhibition.

Keywords: integrin-linked kinase, colorectal cancer, senescence, immunity, combination theraoy

INTRODUCTION

The development of colorectal cancer (CRC) is a multistage process during which mutations in
epithelial cells of the intestinal inner layer accumulate. In the early stages of CRC, benign polyps
are formed; however, an accumulation of specific mutations in these polyps result in the formation
of adenomas, which have a potential to develop to a more advanced stage of cancer. Subsequently,
tumors can spread and metastasize to different areas of the body via the lymphatic system and blood
vessels (Australian Institute of Health and Welfare, 2018).

According to the International Agency for Research on Cancer, in 2018 there were about
1.85 million new cases of CRC and 900,000 deaths in both sexes globally (International Agency
for Research on Cancer, 2018). The CRC is the third most commonly diagnosed cancer and
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the second leading cause of cancer deaths worldwide
(International Agency for Research on Cancer, 2018). CRC
is the third most commonly diagnosed cancer in males and the
second most commonly diagnosed cancer in females worldwide
(Ferlay et al., 2019; Keum and Giovannucci, 2019). There are
several different risk factors for CRC that include behavioral,
environmental and biomedical risks. For example, alcohol use,
diet, physical inactivity, tobacco use, occupation, diabetes, and
obesity all contribute to the risk of CRC (Australian Institute
of Health and Welfare, 2019). Inflammation, as evidenced by
inflammatory bowel disease (IBD), is one of the highest risk
factors for initiating CRC (Terzić et al., 2010). The 5 year relative
survival rate is dependent on the stage of diagnosis and is
influenced by the fact that this cancer is asymptomatic until later
stages. For example, the survival rate at stage I is 100%, but this
falls to only 13% at stage IV (Australian Institute of Health and
Welfare, 2019).

The classification of CRC depends on etiology and genetics.
There are three main groups: sporadic, familial and hereditary.
The sporadic group represents the majority (75%) of CRC cases
(Nojadeh et al., 2018). This group can be further divided into
two subsets: microsatellite instability (MSI) and microsatellite
stability (MSS), and they represent 15 and 85% of cases,
respectively (Fernandes et al., 2018). MSI colorectal carcinoma
is characterized by high immune cell infiltration (Smyrk et al.,
2001; Llosa et al., 2015) and features a large number of mutations
(Segal et al., 2008). This type is characterized by hot or inflamed
tumors and it displays a better response to immunotherapy
(Llosa et al., 2015).

Many studies have shown that tumor-infiltrating immune
cells are associated with prognosis and metastasis of CRC.
IBD is a chronic inflammation of the gastrointestinal tract
(GIT) and is an important risk factor for developing and
promoting colon cancer, i.e., colitis-associated cancer (CAC).
IBD presents as two types: ulcerative colitis (UC) and Crohn’s
disease (CD). CD affects the small intestine and large intestine,
in addition to the mouth, esophagus, stomach and the
anus, while UC mainly affects the colon and the rectum
(Baumgart and Carding, 2007). Inflammation contributes to
all stages of colon cancer tumorigenesis and progression
(Terzić et al., 2010). The infiltrating inflammatory cells produce
a variety of pro-inflammatory cytokines, chemokines, and
growth factors to promote an immune response. However,
excessive immune responses lead to tissue damage and tumor
development (Sobczak et al., 2014; Li et al., 2017). Furthermore,
parainflammation, which is a low level of inflammation that is
intermediate between homeostasis and classical inflammation,
is commonly widespread in different cancers, including CRC
(Aran et al., 2016).

Cellular senescence was identified more than five decades ago
as an arrest of the cell cycle in cultured fibroblasts associated with
limited proliferative capacity (Hayflick and Moorhead, 1961). It
is currently recognized as a process that is induced in cells when
they become aged and/or when they are exposed to different types
of stress, including DNA damage, telomere uncapping, oxidative
stress, oncogene activation, lack of nutrients and growth factors,
and others (Ben-Porath and Weinberg, 2005). The cells are

reprogrammed to block their proliferation to prevent future cell
generations from damage (Ingram Jane et al., 2010). However,
they are still active in metabolism and transcription and are
able to produce different chemokines, cytokines, growth factors,
and matrix remodeling enzymes, which is termed senescence-
associated secretory phenotype (SASP) (Lasry and Ben-Neriah,
2015). SASPs secreted by senescent cells recruit immune cells
for the elimination of the senescent cells and the suppression
of tumorigenesis (Wen et al., 2007; Burton and Stolzing, 2018).
Senescence induction by therapy, therapy-induced senescence
(TIS), has been utilized as an anti-cancer therapy (Lleonart et al.,
2009). The main argument for senescence being an anti-cancer
strategy is the loss of cellular proliferation (Schosserer et al.,
2017). However, in the last two decades it has been recognized
that senescence is more complex, and several reports indicate that
a senescence inflammatory response (SIR), which is related to
SASP, has a major effect on the tumor microenvironment (TME),
suppressing anti-tumor immunity and stimulating neighboring
cells growth (Lasry and Ben-Neriah, 2015; Pribluda et al., 2015).

Integrin-linked kinase (ILK) has been implicated as a
molecular driver and mediator in both inflammation and
tumorigenesis of the colon (Yan et al., 2014; Ahmed et al., 2017).
ILK functions as an adaptor and mediator protein linking the
extracellular matrix with downstream signaling pathways such
as protein kinase B (PKB/Akt), glycogen synthase kinase 3β

(GSK3β) and nuclear factor kappa B (NF-κB) (Delcommenne
et al., 1998; Troussard et al., 2003; Ahmed et al., 2017). ILK
regulates and mediates different cellular processes, including
differentiation, proliferation, survival, apoptosis, cell adhesion,
angiogenesis, migration, and invasion (Hannigan et al., 1996;
Persad and Dedhar, 2003; Assi et al., 2008; Chan et al.,
2011; Wani et al., 2011; Rooney et al., 2016; Lu et al.,
2017). ILK is broadly expressed in many human tissues and
cells (Hannigan and Dedhar, 1997). It is also overexpressed
in many cancers, including colorectal cancer (CRC) (Bravou
et al., 2006; Shen et al., 2016; Tsoumas et al., 2018). In
addition, ILK has been shown to regulate inflammation which,
as discussed above, is an important risk factor for developing
CRC. ILK regulates inflammation in the mouse model of
experimental colitis (Ahmed et al., 2017), and regulates growth
and proliferation in colitis-associated cancer (CAC) (Assi et al.,
2008). ILK is also involved in tumorigenesis (Chan et al.,
2011) and cancer progression (Persad and Dedhar, 2003;
Bravou et al., 2006).

More importantly, although there is less understanding of
the role for ILK in cellular senescence in the cancer context,
some reports that have suggested an involvement for ILK
in cellular senescence regulation. One study has shown that
cellular senescence is induced and suppressed skin tumors and
benign colon adenomas by peroxisome proliferator-activated
receptor-β/δ (PPARβ/δ) via repressing ILK expression and Akt
phosphorylation (pAkt) (Zhu et al., 2014). Another study has
found that inhibiting ILK in retinoblastoma and glioblastoma
cell lines induced senescence markers (Duminuco et al., 2015).
Nonetheless, there is less understanding about the role of
ILK in senescence and its inflammatory response or SIR in
a cancer context.
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FIGURE 1 | ILK structure and multi-protein binding. The localization of ILK is to focal adhesions. ILK contains three distinct domains: four repeats of amino-terminal
ankyrin, a central PH-like domain and a carboxy-terminal pseudokinase catalytic domain. The ankyrin repeat domain binds the negative regulator of ILK, ILKAP, and
also binds PINCH, which interacts with NCK2 for connection of ILK with growth factor receptors (RTK). The PH-like domain is in the center of ILK protein that binds
PIP3, which is essential for activation of ILK via PI3K. PIP3 is dephosphorylated by tumor suppressor PTEN to negatively regulate the ILK activation. The ILK
pseudokinase domain interacts with cytoplasmic domains of β1 and β3-integrin subunits and different actin-binding adaptor proteins such as α-Parvin. The
interaction of ILK with PINCH and α-Parvin mediates the communication between the ECM and actin. The main ILK-binding proteins, which are involved in cell
signaling via the pseudokinase domain, are PDK1, Rictor and Src. The ILK pseudokinase domain also interacts with and regulates the Akt-GSK3β signaling pathway.
ILK mediates activation of the TLR4/NF-κB/TNF-α signaling pathway by lipopolysaccharides (LPS). The dotted line indicates the proposed mechanism of
downstream activation.

In this review, we aim to focus on a possible association of
ILK with cellular senescence regulation and cancer immunity
in CRC. This review summarizes up-to-date studies of ILK and
its crosstalks with signaling pathways involved in cancer growth
and progression. Also, we analyze the possible role of ILK in
the inflammatory response of senescence which is considered the
deleterious factor in tumor progression and cancer immunity.
We also examine how activating Toll-like receptors (TLRs)
could trigger anti-tumor immune responses and be used as a
combination therapy with ILK inhibition in CRC.

ILK Structure and Multi-Protein Binding
ILK was first discovered in 1996 as an intracellular
serine/threonine kinase and adaptor protein interacting

with β1 integrin cytoplasmic domain (Hannigan et al., 1996).
ILK is able to interact with cytoplasmic domains of β1 and
β3-integrin subunits (Hannigan et al., 1996), and as predicted
localizes to focal adhesions and myofilaments (Figure 1). While
ILK phosphorylated serine and threonine residues of β1 integrin
indicating its function as a protein kinase (Hannigan et al.,
1996), it is now defined as a pseudokinase since its kinase-like
domain lacks key active sites and likely functions as a non-
catalytic signal transducer (Vaynberg et al., 2018). The gene
that encodes ILK maps to the distal tip of human chromosome
11, at band 11p15.4/15.5 (Hannigan et al., 1997) and the single
mRNA transcript encodes a protein of 452 amino acids that
contains three distinct functional domains (Figure 1), including
four repeats of an amino-terminal ankyrin domain, a central
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pleckstrin homology (PH)-like domain and a carboxy-terminal
pseudokinase catalytic domain (Hannigan et al., 1997). The
function of ILK as an adaptor and mediator protein links the
extracellular matrix with downstream signaling pathways (Wu
and Dedhar, 2001). In addition, it has shown that ILK localizes
to centrosomes and regulates mitosis (Fielding et al., 2008).
Centrosome clustering is regulated by ILK in cancer cells and
this is an important process for cell survival (Fielding et al., 2011;
Sikkema et al., 2014).

The ankyrin domain of ILK binds adaptor proteins such
as particularly interesting new cysteine-histidine-rich protein
(PINCH) (Tu et al., 1999) and ILK-associated phosphatase
(ILKAP), a negative regulator of ILK (Leung-Hagesteijn et al.,
2001). PINCH interacts with NCK2 to connect ILK with receptor
tyrosine kinases (RTK) (Tu et al., 1998) including epidermal
growth factor receptor (EGFR), fibroblast growth factor
receptor (FGFR), vascular endothelial growth factor receptor
(VEGFR), platelet derived growth factor receptor (PDGFR), and
transforming growth factor-beta receptor (TGFβR) (Shi and
Chen, 2017; Urner et al., 2019).

The PH-like domain is located in the center of the ILK protein
and binds phosphatidylinositol 3,4,5-triphosphate (PIP3), which
is essential for activation of ILK via phosphoinositide 3-kinase
(PI3K) (Delcommenne et al., 1998). PIP3 is dephosphorylated
to phosphatidylinositol 4,5-diphosphate (PIP2) by tumor
suppressor PTEN to negatively regulate ILK activation (Obara
et al., 2004). PTEN deficiency in cells leads to high PIP3 levels
and constant activation of ILK and PKB/Akt (Persad et al., 2000).

The ILK pseudokinase domain interacts with cytoplasmic
domains of β1 and β3-integrin subunits and different actin-
binding adaptor proteins, including α-Parvin and Paxillin
(Hannigan et al., 1996; Wu, 2004; Rooney et al., 2016). The main
ILK-binding proteins, which are involved in cell signaling via the
pseudokinase domain, are PDK1, Rictor and Src (Delcommenne
et al., 1998; Kim et al., 2008; McDonald et al., 2008b). Rictor
colocalization with ILK via this domain is necessary for Akt
phosphorylation (McDonald et al., 2008b). Also, ILK and Rictor
form a complex to regulate TGF-β function (Serrano et al., 2012).
ILK pseudokinase domain interacts with and regulates the Akt-
GSK3β signaling pathway (Delcommenne et al., 1998; Pap and
Cooper, 1998; Troussard et al., 2003). The phosphorylation of
GSK3 inhibits its activity and this can be mediated by ILK
overexpression (Delcommenne et al., 1998).

The dynamic communication between the extracellular matrix
(ECM) and actin is mediated by ILK in its role as an adaptor and
mediator protein to support cell adhesion, spread and migration.
This is mediated when integrin binds to the ILK/PINCH/Parvin
complex, termed IPP (Wickström et al., 2010). A tight complex
is formed to localize to focal adhesion (Zhang et al., 2002a;
Wu, 2004). There are two isoforms of PINCH containing five
LIM domains and the ILK ankyrin domain binds LIM1 (Yang
et al., 2009). Also, there are three isoforms of Parvin, and
all contain two CH domains; the ILK pseudokinase domain
binds to the CH2 domain of α-Parvin (Fukuda et al., 2009).
A recent study by Vaynberg et al. found that WASP-Homology-
2 (WH2) actin-binding motifs in both PINCH and α-Parvin
organize actin bundling, which is triggered by Mg-ATP binding

to ILK (Vaynberg et al., 2018). Blocking the ATP-binding site
in the ILK pseudokinase domain disrupted actin bundling
(Vaynberg et al., 2018).

ILK mediates activation of Toll-like receptor 4 (TLR4)/NF-
κB/tumor necrosis factor alpha (TNF-α) signaling pathway by
lipopolysaccharide (LPS), a major component of the outer
membrane of Gram-negative bacteria such as Helicobacter pylori
(Ahmed et al., 2014). Since H. pylori activates both EGFR and
TLRs, and blocking EGFR signaling inhibits TLR activation of
downstream signaling pathways (Chattopadhyay et al., 2015), it
remains possible that ILK is a mediator of both growth factor
and TLR activities.

The Role of ILK in Different Contexts
The Role of ILK in Embryo and Normal Contexts
ILK is broadly expressed in many human tissues and cells
(Hannigan and Dedhar, 1997), where it is implicated in the
regulation of different cellular processes depending on context,
including differentiation, proliferation, survival, apoptosis, cell
adhesion, angiogenesis, migration, and invasion (Hannigan et al.,
1996; Persad and Dedhar, 2003; Assi et al., 2008; Chan et al., 2011;
Wani et al., 2011; Rooney et al., 2016; Lu et al., 2017). ILK is
necessary for embryonic development (McDonald et al., 2008a),
as its ablation in embryonic models (Xenopus laevis, mice and
zebrafish) is lethal, affecting adhesion and migration processes as
well as vasculature development (Yasunaga et al., 2005; Bendig
et al., 2006; Moik et al., 2013).

In normal contexts, ILK has a variety of functions that are
dependent on cell or tissue types. One study showed that ILK
deletion in mammary glands of mice and in 3D culture leads
to the failure of mammary epithelial cells to form polarized
acini, due to destabilization of microtubules (Akhtar and Streuli,
2013). Mutations in ILK that result in the interruption of binding
with its partner, Parvin, prevent the differentiation of mammary
epithelial cells in response to prolactin, a hormone that acts on
mammary glands during pregnancy (Rooney et al., 2016). The
inhibition of interaction between ILK and PINCH in hamster
ovary epithelial cells delays the change in cell shape after plating,
which in turn impairs cellular motility (Zhang et al., 2002b).
Similarly in skin, ILK deletion in keratinocytes leads to defects
in adhesion, spread and migration of cells, as well as a defect in
basement membrane integrity in vivo and in vitro (Lorenz et al.,
2007). In this study, ILK ablation does not affect proliferation,
but rather alters the location of proliferating epidermal cells
(Lorenz et al., 2007), whereas another study showed that
proliferation of keratinocytes is impaired (Nakrieko et al., 2008).
Mouse hepatocytes lacking ILK exhibit decreased matrix-induced
differentiation (Gkretsi et al., 2007a), and apoptosis is induced
without affecting Akt phosphorylation (Gkretsi et al., 2007b).

More specifically, in the context of normal intestinal
epithelium, at early time points of seeding of normal human
intestinal epithelial cells (after 4 h), ILK knockdown (KD) does
not affect the adhesion rate. However, it reduces the spread
of cells, as they remained rounded for a longer time (∼18 h)
in comparison with ILK wild-type (WT) cells (Gagne et al.,
2010). In addition to the cell adhesion and spread, ILK KD cells
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also experience less migratory and proliferative activity (Gagne
et al., 2010). ILK-associated c-Src mediates a dynamic actin
polymerization by interacting with and phosphorylating cofilin
during adhesion of normal rat intestinal epithelial cells, but not
suspended cells (Kim et al., 2008).

The Role of ILK in Non-cancer Diseases
ILK has been revealed to contribute to different non-cancer
diseases. The most important related to cancer development
is inflammation. ILK KO in epithelial cells of the mouse
intestine displays a reduction in inflammation of the colon
(colitis) and inflammation-induced cancer (CAC) (Assi et al.,
2008, Assi et al., 2011b). Moreover, previous studies from
our laboratory have shown that myeloid-ILK deficiency
reduced intestinal inflammation in experimental colitis by
regulating neutrophil infiltration and cytokine production
(Ahmed et al., 2017). ILK is also required for mediating
LPS-induced inflammatory gene expression in endothelial
cells (Hortelano et al., 2010). ILK inhibition in endothelial
cells reduces leucocyte adhesion and migration in Trans-
endothelial migration assays (Hortelano et al., 2010). Also, ILK
deletion in a mouse model prevents angiotensin II-induced
inflammation via reducing macrophages and lymphocytes
infiltration as well as proinflammatory secretions of the
kidney (Alique et al., 2014). These studies suggest that
ILK plays an essential role in different cell types mediating
inflammatory induction.

Furthermore, ILK contributes to other diseases. For example,
ILK inhibition in polycystic kidney disease in mouse models
has shown a reduction in fibrosis cyst growth with improved
renal function and survival (Raman et al., 2017). ILK also
plays a role in cardiac hypertrophy as indicated by that high
expression in human cardiac hypertrophic ventricles (Lu et al.,
2006). ILK inhibition attenuated the induced hypertrophy (Lu
et al., 2006). In contrast, ILK overexpression has been implicated
in myocardial infraction, a disease that leads to heart failure
resulted from myocardial cell death (Zhang and Guo, 2018).
Transplanting cardiac stem cells overexpressing ILK restores cell
death and cardiac function in a mouse model of this disease
(Zhang and Guo, 2018). Furthermore, the mouse Alzheimer’s
disease model displays a decrease in ILK expression, whereas
its overexpression rescues hippocampal neurogenesis and defects
in memory via the downstream signaling pathway, Akt/GSK3β

(Xu X.F. et al., 2018).

The Role of ILK in Cancer
ILK has been proposed to play a critical role in cancers. It has been
established for about two decades that ILK overexpression and
dysregulation are associated with development and progression
of different cancers, including CRC (Marotta et al., 2003;
Hannigan et al., 2005; Koul et al., 2005; Bravou et al., 2006;
Edwards et al., 2008; Assi and Salh, 2011; Assi et al., 2011a;
Matsui et al., 2012; Sikkema et al., 2014; Yan et al., 2014;
Tsoumas et al., 2018). ILK is implicated in tumorigenesis (Zheng
et al., 2019), since its knockdown in hepatocellular carcinoma
cells as well as ovarian cancer cells impairs tumor growth in
mouse model (Chan et al., 2011; Li et al., 2013). Also, its

overexpression is associated with a poor survival rate of cancer
patients (Graff et al., 2001; Ahmed et al., 2003; Dai et al.,
2003). For instance, the expression of ILK in human tissues
from primary colorectal carcinomas and lymph node metastases
examined by immunohistochemistry (IHC) reveal expression
levels as very low, high and significantly higher in normal
tissue, primary tumor and lymph node metastases, respectively
(Bravou et al., 2003, 2006).

ILK is involved in regulation of epithelial-mesenchymal
transition (EMT), an important cellular process regulating
migration, invasion and chemoresistance in CRC (Bravou et al.,
2006; Assi et al., 2008; Yan et al., 2014; Tsoumas et al., 2018).
Artificial overexpression of ILK in the SW480 CRC cell line
elevates EMT-related proteins, as well as inducing invasive
and migratory activities (Yan et al., 2014). This is in accord
with IHC examination of human colorectal carcinoma tissues,
which showed that the expression of EMT-related proteins
was positively correlated with ILK expression (Bravou et al.,
2006). Chemoresistant CRC cell lines showed a sensitivity to
chemotherapy and downregulation of EMT markers following
ILK inhibition (Tsoumas et al., 2018).

Furthermore, ILK overexpression has a central role in
apoptotic resistance. ILK knockout in HT29 CRC cells under
hypoxia conditions induces apoptosis, as well as decreases
invasive activity (Xiao et al., 2014). In gastric carcinoma
SGC7901/ DDP cells, overexpression of ILK induces multidrug
resistance mediated by Akt phosphorylation (Song et al., 2012).

Therefore, while the function of ILK is diverse in different
contexts, nonetheless, based on the above studies, ILK is
implicated in normal and disease contexts via utilizing its
critical function to mediate or regulate several cellular processes
including cell shape, adhesion and tissue integrity, as well as
cell growth, invasion and migration. Such cellular processes are
regulated by dynamic actin organization which is well known
to be regulated by ILK. In addition, ILK is implicated as an
important molecule in different compartments such as epithelial,
endothelial and inflammatory cells to mediate cellular processes
regulation and inflammatory response.

ILK Mediates Regulation of Different
Cellular Processes in CRC via Cross-Talk
With Different Cell Signaling Pathways
ILK interacts with different critical signaling pathways (Zheng
et al., 2019) regulating important cellular processes that have an
implication in inflammation and cancer. The signaling pathways
that interact with ILK in the CRC context are summarized in
Figure 2. From this, it is obvious that upregulation of ILK is
associated with dysregulation of the PI3K-Akt-GSK3β signaling
pathway as revealed in human CRC tissues (Zhang et al., 2019),
and that pathway is well known to be mediated via ILK (Figure 1;
Delcommenne et al., 1998). But other pathways are also involved.

Epithelial-Mesenchymal Transition (EMT)
The EMT cellular process in cancer is regulated by diverse
signaling pathways that have been implicated as being regulated
either directly by ILK or indirectly via ILK downstream signaling
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FIGURE 2 | ILK mediates regulation of different cellular processes in CRC via cross-talk with different intracellular signaling pathways. ILK is a central mediator of
signaling cascades that regulate a range of cellular processes that are vital to the progression of CRC. ILK coordinates the connection of integrins, RTK and TLR4
with downstream signaling pathways, resulting in the regulation of processes such as adhesion, morphology, EMT, stemness, invasion, migration, proliferation,
angiogenesis, inflammation, drug resistance and differentiation. Dotted lines indicate that this is yet to be shown in CRC.

pathways. For instance, ILK overexpression in human CRC is
associated with high expression of EMT markers, including ZEB,
Snail, β-catenin and low expression of E-cadherin (Tsoumas et al.,
2018). Similarly, in vitro ILK upregulation in SW480 colorectal
cancer cells promotes upregulation of Snail, slug, vimentin and
MMP9, subsequently increasing proliferative, migratory and
invasive activities (Assi et al., 2008; Yan et al., 2014; Shen et al.,
2016). Furthermore, activation of the Akt-FKHR pathway is
correlated with ILK overexpression in primary human CRC
tissues and is associated with nuclear β-catenin expression
and downregulation of E-cadherin, indicating EMT induction
(Bravou et al., 2006). Also, ILK inhibition in colon cancer cells
reduces tumor growth in mouse models and in vitro cell lines
via reducing β-catenin nuclear expression and increasing GSK3β

activity by phosphorylation reduction, resulting in β-catenin
degradation (Tan et al., 2001). Snail expression is also suppressed
whereas E-cadherin expression is induced by ILK inhibition
(Tan et al., 2001). Additionally, the PI3K/Akt/mammalian target
of rapamycin (mTOR) pathway is highly activated in colon
cancer stem cells and inhibiting this pathway reduces stem cell
proliferation or spheroid formation; the stemness is reduced
as indicated by decreasing expression of Lgr5, a cancer stem
cell marker (Chen et al., 2015). This marker, as well as ZEB,
was found to be colocalized with ILK in human CRC tissues
by immunofluorescence (Tsoumas et al., 2018). Furthermore,
in breast cancer cells, an ILK-Rictor complex regulates TGF-
β function for EMT induction and this complex is absent in

normal cells (Serrano et al., 2012). Whether this plays a role
in CRC or is cell type- or tissue context-dependent has yet
to be determined. A microRNA, MiR-542-3p, is downregulated
in human CRC cancers and introducing this microRNA into
HCT116 and SW620 CRC cells changes the morphology of the
cells and reduces cell adhesion, as well as suppressing invasion
via downregulation of the ILK/FAK/c-Src pathway (Oneyama
et al., 2012). Therefore, ILK interacts directly or indirectly with
different proteins to regulate stemness and EMT, implicating a
role for ILK in cancer progression and metastasis.

Angiogenesis and Inflammation
Tumor angiogenesis and inflammation are important factors
in cancer progression. Although there are few studies in
colon cancer showing direct angiogenesis induction by ILK,
one report has revealed that ILK overexpression regulates
mesenchymal stem cell survival and angiogenesis via Akt and
mTOR phosphorylation and VEGF expression (Zeng et al., 2017).
Another study showed that ILK overexpression in melanoma
cells promotes angiogenesis of endothelial cells by activating the
NF-κB/IL-6 signaling pathway in vitro and in vivo (Wani et al.,
2011). NF-κB and IL-6 and other inflammatory cytokines are
also induced by ILK in experimental colitis and colorectal cancer
(Yan et al., 2014; Ahmed et al., 2017). Furthermore, a study has
reported that the Akt-mTOR signaling pathway which is known
to be regulated by ILK (Zeng et al., 2017) is also involved in
angiogenesis in colon cancer. For example, Cryptotanshinone,
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which is derived from Salvia miltiorrhiza Bunge, suppresses CT26
colon cancer cell angiogenesis via inhibiting the PI3K/Akt/mTOR
signaling pathway, nuclear hypoxia inducible factor-1α (HIF-
1α), VEGF and VEGFR gene activation (Zhang et al., 2018).
Different inflammatory proteins are also suppressed in colon
cancer tissues, including interleukin-4 (IL-4), IL-6, IL-18, TNF-α,
and interferon gamma (IFN-γ) (Zhang et al., 2018).

As discussed above, inflammation is one of the highest risk
factors for CRC. ILK has a key role in inflammation by regulating
the production of TNF-α via NF-κB activation (Ahmed et al.,
2014, 2017; Yan et al., 2014; Krenn et al., 2016). The cell wall of
H. pylori, which is highly associated with chronic inflammation
and gastric cancers, contains LPS, which activates TLR4 and
the downstream NF-κB signaling pathway, thereby inducing the
production of pro-inflammatory mediators including TNF-α,
IL-1β, IL-8, and others (Sandborn and Hanauer, 1999; Pålsson-
Mcdermott and O’Neill, 2004). Our laboratory has found that
LPS induces ILK-dependent phosphorylation of Akt and GSK3β,
as well as phosphorylation of NF-κB p65 at Ser536 and TNF-
α production in gastric cancer cells (Ahmed et al., 2014).
ILK inhibition blocks the LPS-induced phosphorylation of Akt,
GSK3β, and NF-κB p65 phosphorylation, as well as TNF-α
production (Ahmed et al., 2014). A similar study showed that
ILK mediates LPS activation and is required for inflammatory
induction in endothelial cells (Hortelano et al., 2010). This study
found that ILK inhibition in these cells reduced LPS-induced
adhesion molecules, ICAM-1 and VCAM-1. This subsequently
decreased the adhesion and trans-endothelial migration of
monocytes and lymphocytes in vitro (Hortelano et al., 2010).

The transcription factor Signal transducer and activator of
transcription 3 (STAT3) may be regulated by ILK or Akt in
inflammatory and cancer contexts. Our laboratory has shown
that myeloid-ILK-deficient cells in an experimental colitis model
exhibited reduced activation of NF-κB and PI3K signaling
pathway, but elevated STAT3 activation and proliferation of
intestinal epithelium (Ahmed et al., 2017). Consequently, the
production of inflammatory cytokines was suppressed, including
TNF-α, IL-6, and IL-1β (Ahmed et al., 2017). In contrast,
ILK may regulate STAT3 indirectly via its dependent pathway,
PI3K/Akt, in cancer. In SW480 CRC cells, overexpression of
miR-199a decreased the expression of pPI3K, pAkt, p-JAK1,
and p-STAT3, which subsequently suppressed proliferation,
migration and invasion, but induced apoptosis (Zhu et al.,
2018). Thus, these two unrelated observations in different cellular
systems suggest that ILK may indirectly regulate Stat3 in a
context-dependent manner.

Cell Death
Mitochondrial dysfunction has an important role in cancer
progression and resistance to apoptosis by altering metabolism
(Hsu et al., 2016). Hypoxia induces the expression of ILK along
with HIF-1α in CRC HT29 cells and induces survival and
invasion (Xiao et al., 2014). Interestingly, mitochondrial integrity
is protected from apoptosis in this condition via ILK. In contrast,
ILK knockout (KO) under hypoxic conditions induces apoptosis
by decreasing Bcl-2 expression and increasing Caspase-3 activity,
besides suppressing proliferation and invasion (Xiao et al., 2014).

This suggests that ILK could have an influence on mitochondrial
function in CRC. Human CRC tissues have high levels of glucose
transporter 1 (Glut1), which regulates energy metabolism, and
in CRC HCT116 cells Glut1 induces proliferation and apoptotic
resistance via activation of PI3K, Akt, mTOR, TGF-β1, and Bcl-2
expression, and inactivation of PTEN, Bax, cleaved caspase-3,
and cleaved PARP (Wu et al., 2018). Silencing Glut1 in CRC
HCT116 cells inhibited the activation of these signaling pathways
and their functional consequences (Wu et al., 2018). A more
recent study has shown that the Akt inhibitor SC66 induced
apoptosis in CRC via the Akt/GSK3β/Bax axis in vitro and in vivo
(Liu et al., 2019).

Although there are insufficient studies linking ILK and MAPK
(p38, Erk1/2, and JNK) signaling in colon cancer, some studies
have demonstrated such an interaction in different cell types.
For example, in gastric cancer cells, ILK silencing inhibited
drug resistance via pAkt and pErk suppression (Song et al.,
2012). Furthermore, a study in osteosarcoma cells found that
ILK inhibition led to suppression of p38 and Erk1/2 but not
JNK, and this was implicated in the cellular proliferation and
differentiation (Wang et al., 2014). In addition to these studies, in
a CRC context, suppression of pAkt induces cell death in SW620
colon cancer cells via activation of MAPK p38, and that in turn
mediates the expression of senescent marker p21 and autophagic
marker LC3 (Nagappan et al., 2017). Moreover, Twist-induced
EMT in breast cancer cells is associated with upregulation
of ILK, FAK, PI3K/Akt, and Erk, but downregulation of p53
(Yang et al., 2016).

Therefore, ILK has numerous interactions with different
cell signaling pathways and also mediates communications
among these pathways, indicating its unique function and
potential to be a therapeutic target and modulate the TME and
suppress tumor growth.

Tumor Microenvironment (TME)
The tumor microenvironment is an area surrounding a tumor
that has different cellular components and factors that support
tumor growth and progression (Figure 3). TME components
include immune cells, fibroblasts, induced senescent cells,
vasculatures, soluble factors, and ECM. TMEs are induced
and modified by interaction with tumor cells to favor tumor
progression and metastasis. The interaction between tumor cells
and different TME components can be either direct via cell-cell
interaction or autocrine via interacting with different cytokines,
chemokines, growth factors, and enzymes. Different factors in the
TME, such as induced senescent cells and their SASP secretions
and recruited immune cells are implicated in cancer growth
and progression via different cellular and molecular mechanisms.
These factors will be discussed in the following sections and a
possible role for ILK in these factors’ regulation.

Cellular Senescence and Its Contribution
to Cancer Progression and Therapy
Cellular Senescence
Senescence was identified more than five decades ago as an
arrest of the cell cycle in cultured fibroblasts due to limited
proliferative capacity (Hayflick and Moorhead, 1961). It is
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FIGURE 3 | Tumor microenvironment. The tumor microenvironment is the local area surrounding a tumor and is infiltrated with different cellular components and
factors. TMEs are induced and modified by interaction with tumor cells to promote tumor progression and metastasis.

currently recognized as a process that is induced in cells when
they become aged and/or when they are exposed to different types
of stress, including DNA damage, telomere uncapping, oxidative
stress, oncogene activation, lack of nutrients and growth factors,
and others (Ben-Porath and Weinberg, 2005). The cells are
reprogrammed to block their proliferation to prevent future cell
generations from damage (Ingram Jane et al., 2010). However,
they are still active in metabolism and transcription and they
are able to produce different chemokines, cytokines, growth
factors, and matrix remodeling enzymes, which is termed SASP
(Lasry and Ben-Neriah, 2015).

There are different morphological and molecular phenotypes
for induced senescent cells. Microscopically, senescent cells
exhibit a size enlargement and flattened shape (Chien et al.,
2011; Frey et al., 2018). The nucleus is prominent and
enlarged and displays senescence-associated heterochromatin
foci (SAHF) by DAPI staining under a microscope (Chien
et al., 2011; Frey et al., 2018). High activity of senescence
associated-beta galactosidase (SA-β-gal) is a characteristic of
senescent cells at pH 6 using specific histochemical staining
(Duminuco et al., 2015). Molecularly, senescent cells show an
upregulation of tumor suppressor gene p53 and cyclin-dependent
kinase suppressors such as p21 and p16 (Chien et al., 2011;
Frey et al., 2018). The proliferative marker Ki67 is absent in
senescent cells (Xue et al., 2011). They also upregulate negative
regulators of apoptosis such as Bcl 2 (Saleh et al., 2020b).

Dual Role of Senescence in Cancer
In early studies, senescence was thought to have an anti-
tumor impact. Besides arresting cell growth, SASPs secreted by
senescent cells recruit immune cells eliminating the senescent
cells suppressing tumorigenesis (Wen et al., 2007; Burton and
Stolzing, 2018). This cellular process is induced in preclinical
cancer models including CRC by numerous drugs and is
referred to as TIS (Bojko et al., 2019; Saleh et al., 2020a). This
type of senescence induction has been considered as an anti-
cancer therapy (Lleonart et al., 2009). The main arguments
for senescence being anti-cancer is loss of cellular proliferation
(Schosserer et al., 2017).

However, during last two decades it has been recognized that
hallmarks of senescence are more complex and not only involve
growth arrest as described above but also have an ability to
drive cancer development and progression (Krtolica et al., 2001;
Coppé et al., 2008; Schosserer et al., 2017; Hernandez-Segura
et al., 2018). Senescent cells that promote cancer progression
and recurrence are found in the tumor invasive front (Demaria
et al., 2017; Young Hwa et al., 2017). This reflects a dual
function of senescence in cancer (Figure 4). The function of
senescence depends on context, genetic background and duration
of accumulation (Wen et al., 2007; Krizhanovsky et al., 2008;
Eggert et al., 2016; Burton and Stolzing, 2018). SASP as a
critical factor in senescence can be modified, this blocks immune
cell-mediated elimination of senescent cells, and subsequently
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FIGURE 4 | The dual role of cellular senescence. Senescent cells are induced in the TME by different stimuli. These cells stop proliferating but maintain active
metabolism and transcription. They produce different SASP secretions that reflect the dual role of senescence. They can produce particular SASP secretions to
recruit immune cells such as NK and T cells for clearance and suppression of tumorigenesis. However, modification of SASP secretions blocks the elimination of
senescent cells by immune cells, and subsequently they can have a negative influence in the tissue microenvironment by supporting cancer growth and recruiting
immunosuppressive cells such as MDSCs and Treg cells.

has a negative influence in the tissue microenvironment by
rescuing cancer growth (Toso et al., 2014; Greten and Eggert,
2017; Schosserer et al., 2017). Therefore, senescence is complex
and failure of immune cells to eliminate senescent cells after
induction will promote cancer growth and progression.

Several reports have revealed that a subset of senescent cancer
cells can escape from senescence (Wang et al., 2011, 2013;
Saleh et al., 2020a). For instance, therapy-induced senescent
H1299 non-small cell lung carcinoma cells have been captured
by time-lapse live-cell imaging and by a senescence colony assay
showing an escape from senescence and a return to replication
(Wang et al., 2011, 2013). Similarly, CRC HCT116 cells were
treated with doxorubicin until senescence was induced and
SASP VEGF and IL8 were upregulated (Was et al., 2017).
Doxorubicin was then removed and the HCT116 cells exhibited
an escape from cell senescence and resumption of proliferation
(Was et al., 2017). Therefore, the accumulation of senescent
cells over time will affect the TME and will exhibit an escape
from senescence or growth arrest. It has been shown that

there are numerous senolytic drugs eliminating senescent cells
that might be beneficial to prevent the harmful effects of
senescence accumulation.

Senolytic drugs as adjuvant therapy in cancer are a
promising approach to prevent deleterious senescence. These
drugs selectively kill senescent non-proliferating cells. There
are senolytic drugs that have been approved by FDA for
purposes other than senolysis (Saleh et al., 2020a). Senolytics
such as dastinib + quercetin and fisetin have shown a delay
cancer progression and also death from age-related diseases
in mouse models (Xu M. et al., 2018; Yousefzadeh et al.,
2018; Kirkland and Tchkonia, 2020). The use of the senolytic
drug ABT-263 following traditional senescent-inducing therapy
improved tumor suppression for an extended period in a
mouse model (Saleh et al., 2020b). However, there are possible
challenges. For example, doxorubicin-induced senescent CRC
HCT116 cells treated with bafilomycin A1, an autophagic
inhibitor, showed a delay in the growth for a few days, but cell
growth recovered (Was et al., 2017). The autophagic modulator
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has been thought to have a senolytic effect (Fuhrmann-
Stroissnigg et al., 2017). In this study, the induced senescent
HCT116 cells treated with bafilomycin A1 were implanted into
NOD/SCID mice and exhibited greater tumor growth compared
with doxorubicin-induced senescent HCT116 cells (Was et al.,
2017). VEGF, an important SASP component, was found to be
upregulated in vitro and in vivo, and could be responsible for cells
escaping from senescence and supporting tumor growth (Was
et al., 2017). Therefore, senolytic drugs might be beneficial but
SASPs and signaling pathways involved in SASPs regulation must
also be taken in consideration.

The Heterogeneity of SASPs and Their Derivation
The SASP secretions in senescence have been studied intensively.
They are derived from stromal cells and there are reports that
showed senescent epithelial cancer cells can also secrete SASPs
(Coppé et al., 2008; Bojko et al., 2019; Saleh et al., 2020a; Wang
et al., 2020). SASPs are secreted by different cell types including
fibroblasts, vasculature smooth muscle cells, bone, and also
from tumor-associated but unidentified cell types (Saleh et al.,
2020a; Wang et al., 2020). Epithelial-derived cancer cells also can
produce SASPs after senescence induction. For example, HCT116
CRC cells induced with doxorubicin secrete IL8 and VEGF
(Was et al., 2017). Whereas 1205Lu melanoma cells induced
with Palbociclib secrete IL6, IL8, and CXCL1 (Yoshida et al.,
2016). Additionally, HepG2 liver cancer cells induced with 5-
aza-2′-deoxycytidine secrete ICAM-1, IL1ra, and IL8 (Venturelli
et al., 2013). Also, different cancer cell lines including HCT116
CRC, MDA-MB-231 breast cancer and A549 lung carcinoma cells
treated with different chemotherapeutic agents secrete IL8 and
VEGF (Bojko et al., 2019). MCF-7 breast cancer and SH-SY-
5Y neuroblastoma cells secrete VEGF but did not secrete IL-8
(Bojko et al., 2019). The chemotherapeutic agents that induced
senescence in these cell lines include doxorubicin, irinotecan,
oxaliplatin, methotrexate, 5-fluorouracil and paclitaxel (Bojko
et al., 2019). Also, ovarian cancer cell lines including OV1369
(R2), OV90, OV4453, and OV1946 induced with Olaparib
secrete IL6 and IL8 (Fleury et al., 2019). The SASPs secreted
from senescent cancer cells mentioned in these studies are
inflammatory mediators suggesting that senescent cancer cells
mimic inflammatory cells in their signaling and impact on tumor
growth and progression (Lasry et al., 2017).

The SASP is heterogeneous and there are dominant pro-
inflammatory components. The SIR or different distinct
inflammatory molecules which partially related to SASP can
switch the role toward tumor promotion (Pribluda et al., 2015;
Kim et al., 2016). Targeting the SIR by anti-inflammatory agents
affects CRC tumor growth (Pribluda et al., 2015). It has been
reported that NF-κB p65 is activated in senescent cells and is
considered as a master control of SASP in CRC as well as in
many cancers (Chien et al., 2011; Pazolli et al., 2012; Bernal
et al., 2014; Strzeszewska et al., 2018). The NF-κB activates
SASPs and is involved in chemoresistance (Musiani et al., 2020).
The NF-κB signaling pathway cross-talks with IL-6 and IL-1β

activity in the intestinal epithelium (Liu et al., 2003; Wang et al.,
2003). Such pro-inflammatory cytokines are implicated in both
inflammation and EMT in the TME (Coppé et al., 2008, 2010;

Pribluda et al., 2015; Eggert et al., 2016). Thus, inflammatory
molecules secreted by senescent cells are likely involved in
the complexity of senescence. These inflammatory molecules
or mediators mimic secretions in TME and this suggests that
targeting inflammatory response could prevent the harmful
effects of senescence.

Signaling pathways that are implicated in inflammation and
tumors can be targeted to modulate inflammatory response in
senescence. For example, a study in Pten-null senescent prostate
tumors has shown that SASP components can be reprogrammed
by targeting Stat3 (Toso et al., 2014). A range of secretions were
inhibited, including CXCL2, G-CSF, GM-CSF, M-CSF, C5a, IL-6,
IL-10, and IL-13, whereas some secretions remained high, such
as MCP-1 (CCL2), BCL, ICAM-1, CXCL10 (Toso et al., 2014).
Subsequently, this influenced infiltration of different immune
cells, including myeloid-derived suppressor cells (MDSCs), T
cells and natural killer cells (NK cells), and induced an anti-
tumor response (Toso et al., 2014). However, the nature of all
secretory molecules associated with SASPs is complex and yet to
be revealed, and this is essential in order to decipher their roles in
the recruitment of immune cells to the TME.

A Role for Senescence in
Immunosuppressive TME via SASP
Secretions
Immune Microenvironment
As there is a strong link between senescence and immunity
(Coppé et al., 2010; Eggert et al., 2016), it is essential to
understand immune cells and their functions in CRC and
other solid tumors. The immune microenvironment comprises
different cells derived from both the innate and adaptive immune
systems (Grivennikov et al., 2010). The innate immune cells
include tumor-associated macrophages (TAMs), MDSCs, mast
cells (MCs), dendritic cells (DCs), neutrophils, and NK cells
(Grivennikov et al., 2010). The adaptive immune cells are T cells
and B cell subsets (Quante et al., 2013). The immune cells that are
affected in the TME that mediate immune evasion are mainly T
regulatory cells (Treg), MDSCs and TAMs or M2 macrophage.
A high number of Treg cells in colorectal cancer is correlated
with poorer prognosis (Takuro et al., 2016). The high level of
expression of Treg cells is associated with suppression of the
anti-CRC tumor immune response driven by CD4 T cells (Betts
et al., 2012). Similarly, colonic MDSCs suppress cytotoxic CD8 T
cell killing of colonic epithelial tumor cells (Katoh et al., 2013).
Also, M2 macrophages promote growth and progression in CRC
cells and is correlated with poor prognosis in CRC patients
(Liu et al., 2020).

Senescence Mediating Immune Evasion
A role for senescence in immune evasion has recently been
uncovered (Muñoz et al., 2019). Senescent cells express high
NKG2D ligands such as MICA and MICB and these molecules
can be recognized by the NKG2D receptor of NK cells to
mediate cytotoxicity independent of p53 and p16 expression.
However, a subset of senescent cells are still able to avoid
immune recognition via shedding NKG2D ligands from their
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surfaces (Muñoz et al., 2019). MMPs were upregulated in the
persistent senescent cells and involved in shedding the NKG2D
ligands. Targeting the MMPs significantly enhanced NK cells
killing against senescent cells (Muñoz et al., 2019). MMP is
a SASP component that is highly secreted by senescent cells
(Xu et al., 2019). Moreover, cellular senescence induced by
chemotherapeutic agents stimulates PD-L1-mediating immune
evasion (Xu et al., 2019). Normal stromal prostate cells treated
with chemotherapeutic agents became senescent and upregulate
senescence markers and secrete SASP molecules including AREG
(Xu et al., 2019). This stromal molecule induced proliferation,
invasion, and migration in prostate cancer cells. In addition,
AREG stimulated PD-L1 expression in recipient prostate cancer
cells (Xu et al., 2019). This provides evidence for a negative role
for senescence secretions in immunosuppressive TME.

Different secretions of cytokines and chemokines in the TME
also affect anti-tumor immunity. Sporadic CRC exhibits high
CXCR2 secretion, which has an important role in induction
of chronic inflammation and CAC development (Katoh et al.,
2013). This chemokine receptor recruits MDSCs, which in turn
suppress T cell functions (Katoh et al., 2013). Moreover, CCL2
expression contributes to progression of CRC and accumulation
of MDSCs (Chun et al., 2015). This chemokine ligand influences
the expression of reactive oxygen species (ROS) and inducible
nitric oxide synthase (iNOS) in MDSCs accumulating in
colorectal tumors and mediates T cell inactivation via T-cell
receptor complex modifications (Chun et al., 2015). Moreover,
CCL2 secreted from oncogene-induced senescent cells, another
type of senescence induction mediated by oncogene activation,
stimulates MDSCs and inhibits NK cells and promotes liver
tumor growth (Eggert et al., 2016). Although CCL2 in the above
studies displayed an immunosuppressive function, another study
in prostate cancer found that the immunosuppression was due to
different additional secretions accompanied with CCL2 secreted
by senescent cells and modulation of these secretions activated
the anti-tumor immunity while maintaining high CCL2 levels
(Toso et al., 2014). Therefore, a multifunctional role of each of
these secretions might be dependent on the context of the TME,
including different cytokine and chemokine secretions.

MDSCs are attracted to infiltrate CRC and other solid tumors
via production of different cytokines, including IL-17, IL-8, IL-6,
TNF-α, and GM-CSF (Chen et al., 2014; Wu et al., 2014). IL-6 is
considered one of the important cytokines in MDSC infiltration
and regulation, as indicated in a study that showed that IL-6
inhibition in tumor-bearing mice depletes MDSCs and increases
IFN-γ production by CD4+ and CD8+ T cells (Sumida et al.,
2012). It should also be noted that MDSCs communicate with
Tregs and can stimulate their development in vitro and in vivo
via IL-10 and TGF-β (Huang et al., 2006). IL-6 is one of the
abundant secretions of SASP as mentioned above besides the
other inflammatory mediators.

Immune checkpoints are vital factors mediating immune
evasion in the TME. CRC cells secrete several immune
checkpoint molecules that are associated with T cell inactivation,
including PD-L1, CTLA-4, and LAG-3 (Llosa et al., 2015).
Mismatch repair deficiency (MMR-D) microsatellite instability
high (MSI-H) colorectal carcinomas are characterized by high

lymphocyte infiltration (Smyrk et al., 2001). These types of
cancers are also characterized by a large number of mutations
that are associated with neoantigens (Segal et al., 2008; Fabrizio
et al., 2018; Sahin et al., 2019) that can be recognized by
infiltrating T cells (Dolcetti et al., 1999). Patients who have
these types of tumors respond to a PD-1 blockade and exhibit a
higher frequency of neoantigen-specific T cell clones (Le et al.,
2017). While MSI colorectal cancers are characterized by high
infiltration of immune cells (CTL and Th1 cells), they also express
high levels of several immune checkpoint molecules (Llosa et al.,
2015; Fabrizio et al., 2018; Sahin et al., 2019). These immune
checkpoints, such as PD-L1, block the activation of the immune
cells against the tumors and CD8 T cell proliferation is less when
they are close or in contact with PD-L1-expressing tumor cells
(Le et al., 2015; Marisa et al., 2017). The anti-tumor immune
cell activity interrupted by PD-L1 is suggested to be mediated by
activation of the Akt-mTOR signaling pathway (Lastwika et al.,
2016). This signaling pathway and PD-L1 expression have been
shown to be stimulated in prostate cancer cells via the senescent
stromal SASP AREG molecule (Xu et al., 2019).

Since senescence has been associated with inflammatory
secretions, it could contribute in mediating hot or inflamed
tumors, characteristic of MSI tumors (Yoshioka and Matsuno,
2020). These tumors show a better response to immunotherapy,
particularly immune checkpoint blockade. Turning cold
tumors to hot tumors by senescence induction combined with
immunotherapy could be a promising therapeutic approach
(Duan et al., 2020). CD95L displays a correlation with MSI colon
cancer (Raats et al., 2017). CD95L induced senescence in MSI
cancer cells is indicated by SA-β-gal upregulation, reduction in
Ki67 and other senescent markers. CD95L also induces SASP
secretions particularly inflammatory molecules (Raats et al.,
2017). On the other hand, microsatellite stable (MSS) tumors
have fewer neoantigens, lower immune checkpoints expression
and immune infiltration, and acquire resistance to immune
checkpoint inhibitors (Sahin et al., 2019). In contrast to the
above studies suggesting a correlation between senescence and
MSI tumors, a recent study has reported that MSS CRC tissues
displaying senescent epithelial cell accumulation are associated
with low immune cell infiltration (Choi et al., 2021). For instance,
p16 positive tissues showed a low density of intratumoral CD8 T
cells infiltration, whereas p16 negative tissues showed higher CD8
T cells infiltration. Senescent cells secreted CXCL12 inhibiting
CD8 T cell infiltration and CSF1 induced differentiation of
monocytes into M2 macrophages (Choi et al., 2021). In addition,
inhibiting these two SASP molecules enhanced the effect of an
immune checkpoint inhibitor (anti-PD-1) in allograft tumors
(Choi et al., 2021). Therefore, it could be better for future
studies to compare MSI with MSS in terms of their response to
senescence inducers as well as immune scoring in tumor tissues
from patients treated with a chemotherapy that is known to
induce senescence.

A Role for ILK in Senescent Cells and Immune Cells
ILK may play a role in cellular senescence in different contexts
including aging and cancer. It has been reported that ILK is
upregulated in tubular epithelial cells and fibroblasts isolated
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from old rats compared with young rats, with expression
positively correlated with SA-β-gal (Li et al., 2004; Chen et al.,
2006). Knockdown of ILK expression by siRNA in rat cardiac
fibroblasts prevented the phenotypes of senescence (Chen et al.,
2006). Also, overexpressing ILK in young and old rat cardiac
fibroblasts induced SA-β-gal (Chen et al., 2006). However, in
the cancer context, it is suggested that ILK may display an
opposite function. For example, cellular senescence markers like
SA-β-gal are induced in skin tumors and benign colon adenomas
by peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) via
repressing ILK and pAkt (Zhu et al., 2014). Also, in different
cancer models such as retinoblastoma and glioblastoma cell lines,
ILK inhibition by either QLT-0267 or ILK RNA interference
increases SA-β-gal in Rb-positive cells (Duminuco et al., 2015).
These studies are suggesting a regulatory function of ILK in
cellular senescence and that appears to be context dependent.
However, it has not been investigated whether ILK is directly
linked to senescent cancer cells or not. Also, the SASP secretions,
the hallmark of deleterious senescence, are absent.

SASP secretion is critical in the function of senescence,
and ILK or its downstream signaling partners including PTEN,
PI3K/Akt/mTOR, and NF-κB may have an effect on SASPs
regulation. PTEN is a negative regulator of ILK and Akt,
and its deficiency leads to activation of ILK and Akt (Persad
et al., 2000; Hähnel et al., 2008). It has been reported that
loss of PTEN induced cellular senescence in prostate cancer
in mice (Toso et al., 2014). While this was accompanied by
immunosuppressive SASP secretions, in contrast, there was also
upregulation of immunostimulatory SASPs. This subsequently
increased the infiltration of MDSCs, with the absence of CD4 T
cells, CD8 T cells, and NK cells (Toso et al., 2014). This study
also indicated that SASPs can be programmed by targeting Stat3,
resulting in the inhibition of immunosuppressive secretions while
maintaining immunostimulatory secretions. Consequently, this
led to a decrease in infiltrating MDSCs and an increase of CD4 T
cells, CD8 T cells, B cells, and NK cells (Toso et al., 2014). As NF-
κB is a master regulator for SASP activation, inhibiting it blocks
SASP and sensitizes cancer cells to chemotherapy (Musiani et al.,
2020). Our laboratory has reported that ILK inhibition in a
mouse model of colitis blocked NF-κB (IKK and p65) activation,
and suppressed TNF-α, IL-6, and IL-1β production as well as
infiltration of inflammatory cells (Ahmed et al., 2014, 2017).
Therefore, ILK may have an impact on SASP secretions in the
cancer context, possibly by regulating NF-κB.

The production of SASP obviously has a link with immune cell
recruitment and consequently it is essential to consider the role of
ILK and its partners in immune cell activation. Deleting PTEN in
CRC HCT116 cells leads to constant Akt activation, which in turn
increases cell resistance to cytotoxic T cells in vitro, as well as to
adoptively transferred murine splenocytes in vivo (Hähnel et al.,
2008). Moreover, pharmacological inhibition of Akt in cultured
melanoma-infiltrated lymphocytes enables their expansion with
transcriptional signature of memory T cells (Crompton et al.,
2015). Similarly, flow cytometry analyses of cells harvested from
mice spleens show that PI3K-Akt inhibition does not affect the
total number of CD4 T cells in comparison with non-treated
mice, whereas the balance between Foxp3+ Treg cells and CD8+

T cells is altered by increasing CD8+ T cells and decreasing
Foxp3+ Treg cells (Abu-Eid et al., 2014). When Akt is inhibited
that augments the T cell response to peptide vaccination by IFN-
γ secretion (Abu-Eid et al., 2014). Furthermore, ILK and MMP
have a clear link (Troussard et al., 2000), and MMP is one of SASP
molecules that has a role in immune evasion in senescent cells by
shedding NKG2D ligands to avoid NK cell killing (Muñoz et al.,
2019). The above reports suggest that ILK could be implicated in
regulating immune cell function in a cancer context.

ILK may also have a role in the expression of immune
checkpoint, which as discussed above is a barrier to anti-
tumor immunity. Different lung cancer cell lines and the CRC
HCT116 cell line express high levels of PD-L1, mediated by
activation of the Akt-mTOR pathway in vitro, in accord with a
finding in vivo in murine lung tumors (Lastwika et al., 2016).
Similarly, high activation of the PI3K/Akt/mTOR pathway in
colon cancer stem cells prepared from HT-29 spheroids is
induced by insulin and this is accompanied by high expression of
PD-L1 (Chen et al., 2019). A more recent study has revealed that
glioblastoma patients that lack a response to anti-PD-1 have high
PTEN mutations and Akt activation in comparison to patients
showing a better response (Zhao et al., 2019). A combination of
PD-1 blockade with Akt-mTOR inhibition reduced the tumor
growth, accompanied by a decrease in Foxp+ Treg cells and an
increase in CD3+ T cells, indicating immune activation (Zhao
et al., 2019). In addition to immunity enhancement, apoptosis
and senescence are induced by such a combination therapy
(Lastwika et al., 2016).

Taken together, the above studies indicate that ILK could
have an impact on regulating cellular senescence and SASP
secretion which has been established to be connected to immune
cell recruitment and activation in the TME. This regulation
could be mediated directly by ILK or indirectly via ILK
partners pathway such as PTEN, PI3K, Akt, mTOR, and NF-
κB. Targeting ILK could be an option to induce senescence
and regulate the inflammatory response in tumors. Moreover,
activating immune cells combined with targeting ILK also should
be taken in consideration to maintain and augment immune
responses against tumors.

TLR Stimulation Combined With
Targeting ILK in Cancer Context
Activating tumor-specific immunity has been a goal for decades,
invoking both the innate and adaptive immune systems. More
recently, since the description of TLRs and their agonists,
new strategies have been devised for targeting different cancers
(Li et al., 2014; Javaid and Choi, 2020). TLRs are a class of
pattern recognition receptors that have the capacity to recognize
and bind specific molecules (pathogen-associated molecular
patterns or PAMPS) released by pathogens, including bacteria
and viruses. They can also bind endogenous molecules (danger-
associated molecular patterns or DAMPs) released from stressed
or damaged cells (Apetoh et al., 2007; Chen and Nuñez, 2010).
PAMPs and DAMPS bind and activate TLRs to trigger innate
immune responses and subsequently to prime adaptive cellular
immunity (Hornung et al., 2002; Iwasaki and Medzhitov, 2004).
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While TLRs are expressed by different innate immune cells
including DCs and macrophages, other cells from both the innate
and adaptive system, as well as fibroblasts and epithelial cells, can
respond to TLR agonists (So and Ouchi, 2010; Dajon et al., 2017).
Interestingly, TLRs are also expressed in many tumors and their
role is context dependent and may be positive or negative, by
either suppressing or promoting cancer progression, respectively
(So and Ouchi, 2010).

Depending on ligand type, TLRs are located on either the
cell membrane (e.g., TLR1, 2, 4, 5, and 6) or on endosomal
membranes (e.g., TLR3, 7, 8, and 9). The cell membrane
TLRs bind proteins or lipids, whereas endosomal membrane
TLRs bind nucleic acids (Rakoff-Nahoum and Medzhitov,
2009). TLR signaling is initiated by ligand binding and signal
transduction through adaptor proteins, myeloid differentiation
primary response-88 (MyD88) and TIR-domain-containing
adapter-inducing interferon-β (TRIF) (Wang et al., 2018). All
TLRs activate MyD88 except TLR3, which interacts with TRIF.
Also, IL-1 receptor families signal via MyD88 (Wang et al., 2018).
These adaptors activate transcriptional factors NF-κB, activator
protein 1 (AP-1) and interferon regulatory factor 3 (IRF-3) (Piras
and Selvarajoo, 2014), mediating gene expression of cytokines
including TNF-α, IL-1β, IL-6, interferon gamma-induced protein
10 (IP-10) and IFN-γ (Piras and Selvarajoo, 2014).

As reviewed recently, stimulating TLRs combined with
chemotherapeutic agents, which are known induce senescence,
may suppress tumor growth and stimulate anti-tumor immunity
(Apetoh et al., 2007; Urban-Wojciuk et al., 2019). The TLR3
agonist poly I:C efficiently suppressed the growth of CT26 colon
tumors in mice and induced anti-tumor NK cells (Takemura
et al., 2015). Furthermore, another study has reported that TLR3,
4, and 7 expression in primary CRC cells and immune cells
enabled targeting with combined agonists, activating immune-
cell- directed killing of CRC cells in coculturing assays (Stier
et al., 2013). Also, in vivo the TLR agonists suppressed tumor
growth and the effect was improved by using a combination of
the agonists or together with chemotherapy (Stier et al., 2013).
Our laboratory has previously shown that combination of TLR
agonists is synergistically active against the C57Bl6 melanoma
model in mice (Whitmore et al., 2004).

In contrast, TLR activation induces inflammation and this
is implicated in carcinogenesis and cancer progression (Terzić
et al., 2010). The nature of TLR agonists and tumor type have
to be taken into consideration for designing cancer therapeutics
(Dajon et al., 2017). Damaged or senescent cells could release
DAMPS to activate TLRs activation (Hari et al., 2019), then
TLR activation such as TLR-2 may have a suppressive effect
on tumor growth (D’Agostini et al., 2005). However, this TLR
has been found to mediate SASP induction via activating a
master regulator of SASP, NF-κB (Piras and Selvarajoo, 2014).
Subsequently, this suggests that combining TLR stimulation with
targeting particular proteins implicated in cancer progression
and inflammation should also be considered. Targeting ILK may
present a therapeutic option in this regard. Since ILK mediates
activation of the TLR4/NF-κB/TNF-α signaling pathway by LPS
(a TLR4 agonist) in colitis (Ahmed et al., 2014), it is possible
that ILK could have an impact on regulating the activities of

FIGURE 5 | Proposed mechanisms for the promotion of tumor growth by ILK
via regulation of senescence and immunity. Inhibiting ILK could suppress and
regress CRC growth by three possible mechanisms that are dependent on
each other. In the first, ILK inhibition suppresses the activation of Akt,
maintaining immune cell activation and tumor cell killing. In the second
mechanism, ILK inhibition increases senescence induction via activating
p53/p21, thereby inhibiting tumor growth. The third possibility relies on ILK
inhibition and the consequent suppression of NF-κB activation, a master
regulator of SASP, reprogramming SASP secretion to induce immune
surveillance.

different TLRs in cancer. Therefore, targeting ILK combined with
TLRs stimulation and senescence induction could be a potentially
synergetic approach to regulate senescence positively, stimulate
innate immunity and ultimately suppress tumor growth.

CONCLUSION

Chronic inflammation as evidenced by IBD is a risk factor
initiating CAC or CRC. Inflammatory response recruits
inflammatory cell infiltration and that leads to tumor initiation.
Inflammation is also involved in all stages of cancer including
growth, invasion and metastasis. Chemotherapy or radiotherapy
treatment of tumors may prevent growth temporarily; however,
after a period, the tumors will regrow. Different bodies of
evidence show that arresting tumor growth is mediated by TIS.
However, because the induced senescent cells are still active in
metabolism and transcription, they will produce SASPs. There
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are pronounced heterogeneous inflammatory molecules in SASP,
the SIR, that have an impact on rescuing tumor growth again
and promote progression via different mechanisms including
growth arrest escape, immunosuppressive cell infiltration and
immune evasion. ILK has been implicated as a mediator in
both inflammation and tumor growth. ILK also has been
suggested to prevent senescence induction in the cancer context.
Nonetheless, the knowledge about the role of ILK in cellular
senescence and inflammatory response mediated by SASPs
remains incomplete. Targeting ILK in solid tumors such as CRC
could be effective in suppressing tumor growth via promoting
TIS, enabling recruitment of anti-tumor immune cells into the
TME thereby regulating SASP secretion (Figure 5). What is
necessary is further understanding of the function of ILK in

epithelial and inflammatory cells during a senescence induction
and investigation of the inflammatory senescence secretions and
their effect on tumor growth. Also, it is important to examine
the role of ILK in immune cell infiltration recruited following
senescence induction. Finally, TLR stimulation could be an
effective therapy combined with ILK inhibition and TIS for
triggering cytotoxic immunity and regressing tumor growth.
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