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Abstract

Quantum mechanical (QM) calculations have been used to predict the binding affinity of a set of ligands towards HIV-1 RT
associated RNase H (RNH). The QM based chelation calculations show improved binding affinity prediction for the inhibitors
compared to using an empirical scoring function. Furthermore, full protein fragment molecular orbital (FMO) calculations
were conducted and subsequently analysed for individual residue stabilization/destabilization energy contributions to the
overall binding affinity in order to better understand the true and false predictions. After a successful assessment of the
methods based on the use of a training set of molecules, QM based chelation calculations were used as filter in virtual
screening of compounds in the ZINC database. By this, we find, compared to regular docking, QM based chelation
calculations to significantly reduce the large number of false positives. Thus, the computational models tested in this study
could be useful as high throughput filters for searching HIV-1 RNase H active-site molecules in the virtual screening process.
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Introduction

Predicting binding affinities as well as ranking several ligands

with respect to each other is still a major challenge in computer-

aided drug design, in particular in lead identification/optimization

processes [1,2]. For this, various biophysical methods have been

used to accurately measure the binding affinity of various protein-

ligand complexes [3]. However, these methods are generally too

time consuming, expensive or inefficient to handle a large number

of compounds. On the other hand, computational methods offer

prediction of binding affinities at various levels of sophistication.

These includes for example highly accurate ab initio free energy

calculations (methods in this class are accuarate and computa-

tionally expensive) [4] or docking-based high efficient scoring

functions (methods in this class are less accuarate but computa-

tionally inexpensive) such as force field (D-score) or empirical

(Glide Score) scoring function as highlighted in a recent review [5].

From a virtual screening point of view, it is highly relevant to

develop an affinity prediction method which is capable of both fast

and relatively accurate screening of a large number of compounds

[6]. The majority of the current scoring functions have been

designed for virtual screening purposes. This means the aim is to

distinguish binders from non-binders and not ranking of actives

[5,7–9].

Many drugs or inhibitors potentially bind with metal ions in the

catalytic site of enzymes or receptors in order to exhibit their

therapeutic effect, e.g., enzymes containing magnesium ions such

as HIV-1 integrase and RNase H. Thus, a good scoring function

needs to be able to accurately predict the metal-inhibitor

interaction which impacts the overall binding affinity of the

compounds. Although such metal-binding term is included in the

scoring function e.g., in the Glide Score [8], the metal term

considers only the anionic or highly polar interactions, therefore,

ranking of actives might not appropriately be achieved [10].

It has previously been reported that magnesium ions in the

HIV-1 reverse transcriptase associated ribonuclease H (RNase H

or RNH) play an essential role in the binding and positioning of

the RNA:DNA duplex (natural substrate) during digestion in the

viral genome reverse transcription process [11,12]. Inhibition of

this enzyme by chelation of magnesium ions (active site binder) is

indeed considered as an attractive drug target for AIDS therapy

[11,13–16].

Due to the importance of this chelation term in the overall

binding affinity, we have here attempted to improve the binding

affinity prediction through the use of quantum mechanical (QM)

based calculation by primarily considering the chelation mecha-

nism of inhibitors with the catalytically active magnesium ions.

This could be useful as a high-throughput filter in virtual screening

processes. Considering this chelation mechanism, two kinds of

questions can be addressed using QM guided docking experi-

ments: (1) can we improve the ranking of individual compounds

based on the use of a scoring function? (2) can we improve the

classification of binders and non-binder based on the scoring

function using the chelation calculation? In order to address the

above questions, we have tested docking simulations together with

QM calculations based on both Møller–Plesset perturbation
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therory (MP2) and density functional theory (DFT) on a relatively

large dataset. This dataset was retrieved from the literature and

the PubChem database. In addition to addressing the above

questions, we also used the QM based chelation calculation in the

virtual screening process in order to validate the method. These

calculations could be useful in order to reduce the number of false

positives (i.e. inactive compounds being predicted as active

compounds by the computational model).

Computational Materials and Methods

Binding free energy calculation
The binding of a ligand to a protein can be described by

equation 1 below and the corresponding change in free energy/the

binding energy (DGBind) can thus be calculated as the difference

between the free energies of the complex and ligand/protein (Eq.

2) all in aqueous solution.

PAqzLAq<PLAq ðEq:1Þ

DGBind~G(PL)Aq{G(P)AqzG(L)Aq ðEq:2Þ

Many scoring functions based on statistical or empirical

methods are today used to approximate this binding energy,

e.g., empirical scoring functions such as the proprietary Glide

Score (Eq. 3) which is based on ChemScore [17] which describes

the interactions between the atoms of the protein and ligand

through a parameterized expression:

Glidescore~0:065 � EvdW z0:130 � ECoulzELipo

zEHBondzEMetalzEBuryPzERotBzESite

ðEq:3Þ

Here, each term describes different types of interactions that are

possible between a protein and a ligand. The terms are a van der

Waals (vdW) energy or contact term, a Coulomb (Coul)

interaction energy describing electrostatic interactions, the Lipo

term that accounts for lipophilic interactions, the HBond term that

Figure 1. 2D chemical structures of RNH inhibitors and QM/MM components. A. Compounds used in this study; B. The components of the
QM and MM region for geometry optimization are shown.
doi:10.1371/journal.pone.0098659.g001

Table 1. Different chelation energy calculation scenarios used in this study.

Scenarios Energy calculation method Geometry optimization method QM component in geometry optimization Time

1a MP2 or B3LYP No 2 Mg2+, Inhibitor ,10 min or 1–3 min

2b FMO-MP2 B3LYP (QM); OPLS-2005 (MM) 2 Mg2+, Inhibitor ,4 hrs.

3b FMO-MP2 B3LYP (QM); OPLS-2005 (MM) 2 Mg2+, Inhibitor, D498, D443, E478, D549, H539 ,4 hrs.

aTime is for energy evaluation on 8 CPU cores.
bTime is for FMO-MP2 energy evaluation on 80 CPU cores.
doi:10.1371/journal.pone.0098659.t001
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governs hydrogen bond interactions, the Metal term that governs

ligand-metal interactions, the BuryP term that penalizes buried

polar groups, the RotB term that gives a penalty for freezing

rotatable bonds and finally Site term that takes care of polar

interactions in the active site, respectively.

The great advantage of scoring functions is the computational

efficiency in terms of predicting correct binding poses as well as

their ability to be relatively good at discriminating the binders

from non-binders. However, the ranking of binders is predicted

rather poorly using most of the scoring functions [10]. In the

present study, we use a refined Glide Score where we replace the

original metal term with a chelation energy term based on QM

calculations.

Preparation of Protein-Ligand Complexes
The ligands used in this study were obtained from our previous

study [18] (the compounds were retrieved from the literature or

the PubChem database). Both set of compounds (literature or

PubChem) were converted to 3D structures using OMEGA (a

conformation generating tool)[19]. By default OMEGA reports

multiple conformers for all compounds using the MMFF94S force

field, however, in the present study only a single i.e., the lowest

energy conformer, was used. Subsequently, all compounds were

preprocessed using the LigPrep module of the Schrödinger

package [20] (energy minimization and determination of proton-

ation states using the Epik tool).

A computational model of the HIV-1 RT associated RNase H

domain was built from an X-ray crystal structure (resolution of

1.4 Å) from the Protein Data Bank (PDB ID: 3QIO) [21].

Missing residues were added using the Swiss-Model [22].

Subsequently, the atomic coordinates of the protein was imported

into the Maestro module available in the Schrödinger package

[23] and the protein was further optimized (e.g., adding hydrogen

atoms, assigning correct bond orders, building di-sulfide bonds

and replacing crystal bound Mn2+ ions with catalytically active

Mg2+ ions) using the Protein Preparation Wizard [24]. The

docking experiment was performed as described in our previous

work [18]. Protein-ligand complexes of the compounds under

investigation (Figure 1) were obtained from Glide docking with

the SP scoring function [8] (Eq. 3). Glide provides three docking

precision modes, namely, XP (extra precision), SP (Standard

precision) and HTS (High-throughput screening) modes. Each

mode are used in slightly different context, e.g., the HTS mode is

used to screen a relatively large database (uses more restricted

conformational sampling), the SP mode uses a softer scoring

function that adapt at identifying ligands that have a reasonable

propensity to bind in the receptor, and the XP mode uses a

complete minimization, and scoring (and additional terms used

over SP, e.g., solvation) from large ensembles of docking poses

(requires more CPU time). Thus this mode is specially used for

top-ranked compounds in the virtual screening protocol. In this

study only the best ranked docking pose based on the SP mode

was considered. Subsequent each complex was exported as a pdb

file for the QM based calculations. Table 1 shows the different

chelation calculation scenarios that were considered in this study.

Here, scenario 1 is defined as MP2 (Møller–Plesset perturbation

method) based chelation calculations with coordinates taken

directly from the docking pose. In these calculations we include

only the Mg2+ ions and the inhibitor. This makes the chelation

energy calculation fast to evaluate. In scenario 2, a QM/MM

geometry optimization is performed on the whole system. We

include only the two Mg2+ ions and the inhibitor in the QM

region and the rest of the protein is treated with MM.

Subsequently, the optimized structure was used for an energy

calculation using the Fragment Molecular Orbital (FMO) method

(see below for details). In scenario 3, like in scenario 2, a QM/

MM geometry optimization is performed. In addition to the two

Mg2+ ions and the inhibitor, several key residues were added to

the QM region (see below). The rest of the protein was treated

with MM. Finally FMO single point energy calculations were

performed on these geometry-optimized structures.

Simple chelation model based on MP2 calculations
In principle it is possible to calculate the binding free energies

using ab initio methods, however, calculation of the free energy is

difficult and even intractable for large systems. Thus, an

approximation is often invoked where only the energy (not free

energy) is calculated (Eq.4) and the temperature is assumed to be 0

K:

DE~EComplex{EProtein{ELigand ðEq:4Þ

The simplest possible model (scenario 1) to describe the binding

of the ligand is to describe only the chelation process between the

magnesium ions and the ligand in solution (as an approximation to

Table 2. Summary of experimental and calculated energies of binding of HIV-1 RNase H inhibitors.

Compound name pIC50 Glide Score (SP) (kcal/mol) Chelation energy (kcal/mol) Modified score# (kcal/mol)

Scenario 1 Scenario 2 Scenario 3

Hiosquninone-20 (HIQ20) 7.21 29.7 2164.8 2198.2 2184.4 2172.8

Pyrimidinolol-6 (PYD6) 6.76 26.6 2124.5 2181.5 2155.4 2132.1

Beta-Thujaplicinol (BTP) 6.67 29.9 2123.1 2170.9 2163.3 2130.9

Hiosquninone-22 (HIQ22) 6.63 27.9 2116.7 2191.4 2157.5 2125.2

Naphthyridine-1 (NPH1) 6.36 29.7 2105.2 2137.8 2114.9 2112.9

Naphthyridine-2 (NPH2) 6.17 28.5 2104.2 2146.1 2121.8 2110.8

Pyrimidinol-8 (PYD8) 6.09 27.8 282.8 2137.6 2123.0 288.6

Note: Scenario 1: Chelation energies obtained from MP2 calculations, Scenario 2: Chelation energies obtained from FMO-MP2 calculation with geometry optimization
using QM/MM DFT-B3LYP, Scenario 3: Chelation energies obtained from FMO-MP2 calculation with geometry optimization using QM/MM DFT-B3LYP employing in
extended QM region. #Modified score is derived from the equation 8 (see text for detail).
doi:10.1371/journal.pone.0098659.t002
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a protein environment) yielding the following approximation to eq.

4

DE~EComplex{2 � E(Mg2z){ELigand ðEq:5Þ

For this scenario, only the atomic coordinates of the best-ranked

docking poses and magnesium ions are extracted and used. All

calculations in this scenario were carried out in Gaussian09 [25]

using either MP2 or B3LYP [26,27] and the 6-31G(d) basis set.

[28–30] In this simple model where the entire protein is neglected,

we have chosen to describe the chelation as taking place in solution

with a dielectric constant of e= 78.4 (water). This is modeled using

the conductor like polarizable continuum model (C-PCM) [31–

33]. In all calculations with C-PCM, we used a van der Waal

radius of 1.5 Å for the Mg2+ ions. All radii were scaled by a factor

1.2 during the generation of the cavity. By changing the dielectric

constant to 4 one can simulate better the similar process taking

place in the protein, however, we found that this did not change

the internal ranking of any of the tested compounds. Calculating

the binding energy takes approximately 10 minutes per ligand

using this simple chelation model. The simple approach outlined

in scenario 1 above has some drawbacks although being a viable

and feasible strategy for thousands of compounds: It lacks the

direct inclusion of the protein which could have great influence on

the ligand binding.

QM/MM optimizations and all-protein calculations
To refine on scenario 1, we consider in scenario 2 geometry

optimization of the protein-ligand complexes using the Qsite

module (version 5.0) [34] of the Schrödinger suite. Here, the

magnesium ions and inhibitors were considered in the QM region

(optimized with B3LYP and the 6-31G(d) basis set). The rest of the

protein was considered in the MM region (optimized using the

OPLS-2005 force field) as shown in Figure 1B. In scenario 3, the

inhibitors, the magnesium ions and five key residues (D443, E478,

D498, D549 and H539) were considered in the QM region, as

residues such as D443, E478, D498 and D549 are coordinated

directly with the two Mg2+ ions which are necessary for substrate

binding during the HIV reverse transcription process and

furthermore the H539 residue has been shown to be essential

for the ligand binding [18]. In both these scenarios, the geometry-

optimized structures are used for the FMO calculations.

In the FMO method [35], the entire system is divided into

several fragments and their energies are evaluated in the presence

of all other fragments. This is known as the one-body FMO

method (FMO1). Usually, a single fragment consists of a single

protein residue. To further enhance the quality of the calculation

and include important QM effects, all pairs of fragments are

evaluated in the presence of the rest of the fragments. This is

known as the two-body FMO method (FMO2). The total energy

for an FMO2 calculation is given as (6)

Figure 2. Correlation between observed pIC50 and predicted binding energy based on the Glide scores (A), scenario 1 (B), scenario
2 and 3 (C), and modified Chelation Score (D).
doi:10.1371/journal.pone.0098659.g002
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E~
XN

I
EIz

XN

IwJ
DEIJ ðEq:6Þ

where EI is the energy of a monomer in the electrostatic potential

of all other monomers. DEIJ is the interaction energy of fragment I

and J evaluated as (7)

DEIJ~EIJ{EI{EJ ðEq:7Þ

To prepare the input files for FMO in GAMESS [36], we used

FragIt [37], which is an automated tool to help with the

fragmentation procedure. It is based on chemically driven simple

rules about where to do the fragmentation. We used one residue

per fragment throughout with the exception of D443, E478 and

D549, which were combined into one single fragment with the two

magnesium ions for a total fragment charge of +1.

This was done in order to increase the accuracy of the

calculation. In FMO2, charge-transfer is described only between

pairs of fragments, but the close proximity of the negatively

charged residues and the positively charged magnesium ions will

give rise to complex many-body interactions that FMO2 will fail to

capture. By including these residues into one single fragment, these

interactions are accounted for but with an added computational

cost. We have chosen not to include D498 or H530 due to the

computational scaling involved. Covalent bonds between frag-

ments were treated using the Adaptive Frozen Orbital scheme

[38]. All fragment calculations used MP2 [39], the 6-31G(d) basis

set and C-PCM [40] to treat the effect of solvation with a dielectric

constant of e= 78.4.

Results and Discussion

Prediction of binding affinity by the simple metal
reactivity model

Docking methods have been used successfully in two scenarios;

one is accurate prediction of ligand binding poses, and another is

to retrieve active compounds from a set of compounds. The latter

is frequently being used in virtual screening processes.

Docking methods could also be used for ranking compounds,

however, the correlation between scoring functions and experi-

mental values for binding free energies is rather poor. One reason

for this is the lack of protein flexibility in the majority of the

docking simulations. In this investigation, we compare our simple

metal reactivity model and FMO based chelation energy

calculations with scoring functions e.g., the Glide Scores (SP and

XP scores). We have randomly selected a set of seven RNase H

inhibitors with known activity (IC50) for this study (Figure 1A). A

summary of chelation energies calculated from the different

scenarios is provided in Table 2.

In Figure 2A we show the correlation between the Glide Score

and the experimental activity. As expected there is no correlation

between the docking score (both SP and XP scoring functions) and

the experimental activity (R2 = 0.04 for SP and 0.079 for XP).

However, when the QM based chelation is used (scenario 1,

Figure 2B), one can clearly see that the experimental activity nicely

correlates with the chelation energy with a coefficient of 0.90.

Before we discuss the binding energies obtained in scenario 2

using the FMO method, it is worthwhile to investigate the effect

that the geometry optimization of the ligand and magnesium ions

has on the protein-ligand complex. The position of the magnesium

ions and ligands were compared with the initial stages of docking,

and it is observed that upon QM/MM geometry optimization

there is a slight change in the position of the magnesium ions

(,0.120.2 Å) and ligands compared to the initial positions. In

some case, the position of the magnesium ions is closer to the

ligands than in the initial stage. The distance between the

magnesium ions is also slightly adjusted according to the position

of the negatively charged ligands and the distance between the two

magnesium ions are observed to be between 3.8 to 4.2 Å. The

binding free energy values from scenario 2 yield relatively lower

energies (2137 to 2198 kcal/mol) than scenario 1 (282 to 2

164 kcal/mol) i.e., a stronger binding is found in scenario 2. The

observed correlation between scenario 2 predictions and experi-

mental values is 0.80 (Figure 2C).

The chelation energy of compounds such as NPH1

(pIC50 = 6.36), NPH2 (pIC50 = 6.17) and PYD8 (pIC50 = 6.09) is

Figure 3. Residues contribution to Binding affinity. Residue energy contribution to the overall binding affinity from the FMO calculation (only
significant numbers are shown) is shown for representative compounds. All values are provided in kcal/mol.
doi:10.1371/journal.pone.0098659.g003

Inhibitor Ranking through QM Based Chelation Calculations

PLOS ONE | www.plosone.org 5 June 2014 | Volume 9 | Issue 6 | e98659



slightly higher and could not be differentiated by scenario 2

compared to scenario 1. Although there is slight structural

similarity between NHP1 and PYD8, the activities of these two

compounds are quite different. On the other hand scenario 1

predicts these compounds slightly better in the sense that the

compounds are ranked as they are ranked according to

experiment. The chelation energy of these compounds (in scenario

1) are as follows, NPH1 (2105.19 kcal/mol) . NPH2 (2

104.21 kcal/mol) . PYD8 (282.75 kcal/mol).

In scenario 3, we considered the effect of protein residues in the

QM/MM geometry optimizations; key residues D498, D443,

E478, D549, H539, 2 Mg2+ and the ligand were geometry

optimized with DFT-B3LYP (QM) and the rest of the protein

residues were optimized with MM (OPLS-2005) (see Figure 1B).

Subsequently, the optimized complexes for all ligands were

analyzed. The position of the key residues of the optimized

complex change significantly (average difference is ,0.1–0.3 Å)

from the initial positions. The optimized structures were used for

FMO calculations. The correlation between the chelation energy

from these optimized structures and experimentally observed

values are found to be 0. 86 (Figure 2C) which is higher than what

was found in scenario 2. It can be seen that when some of the

protein side chains are included in the geometry optimization, the

correlation between chelation energy and experimental activity is

improved. However this calculation is computationally very

expensive compared to scenario 2.

It is very clear that these residues also play an important role in

the positioning and reactivity of magnesium which favorably

interacts with the inhibitors. These residues have previously been

shown to play an essential role in the proper positioning of

DNA:RNA duplex and anchor of magnesium ions (also some

waters) in order to carry out the RNA removal from the hybrid

structure. Although results based as the model in scenario 3 were

improved significantly compared to scenario 2, scenario 1 is found

to perform faster as the scenario 1 only takes around 10 minutes

per ligand. However, scenario 2 and 3 takes the protein

interactions explicitly into account meaning that at the end of

the calculation, these methods produce energy contribution of

each residue to the overall energy of the protein-ligand interaction

energy. In principle, the interaction energy due to each residue

could be useful in order to differentiate the activity based on

favorable and unfavorable interactions of the residues (Figure 3).

From a residue interaction energy analysis (Eq.7), it is found that

residues D498 and E546 in all cases shown unfavorable energy

contribution of +48 and +25 kcal/mol, respectively. This obser-

vation is interesting because it has previously been shown that any

inhibitor that binds favorably with D498 leads to unwanted side

effects due to its dual binding with human RNase H [41,42].

Residues such as H539 (,220 kcal/mol), R557 (,245 kcal/

mol), H2O17 and H2O24 possess very favorable interactions with

all ligands. Previous studies also suggest that H539 plays an

essential role in inhibitor binding [18]. In addition to H539 and

R557, residue E514 also contributes very favorable to the overall

binding energy. Residue R557 lies opposite to H539 and is

involved in hydrogen bonding with ligands such as HIQ20 (IC50

= 0.061 mM), a strong binder in the dataset (Figure 4). As shown in

our previous study [18] water molecules such as H2O17 and

H2O24 also frequently participate in hydrogen bonding networks

with a large number of inhibitors (13 out of 30 compounds). In

Figure 5, we also observed favorable contribution (,210 kcal/

mol) of these water molecules to the overall binding energy.

In addition to the MP2 based chelation energy calculations, we

used also the DFT-B3LYP method for chelation energy calcula-

tion in scenario 1 (i.e., two Mg2+ ions and inhibitor from the

docking pose), because this method is computationally less

expensive than MP2 based energy calculations. It is clear from

Figure 2B that the DFT-B3LYP based chelation energy nicely

correlates with the experimental activity with a correlation of 0.93.

Therefore, for the rest of the work described in this study, we use

in scenario 1 DFT-B3LYP based chelation energy calculation.

Figure 4. Binding mode of HIQ20 at RNH active site. Binding pose of HIQ20 at the RNase H catalytic site with important residues including
water molecules (cyan sphere) and magnesium ions (green sphere). Energy contribution due to each residue is shown in kcal/mol based on the FMO
calculation.
doi:10.1371/journal.pone.0098659.g004

Inhibitor Ranking through QM Based Chelation Calculations

PLOS ONE | www.plosone.org 6 June 2014 | Volume 9 | Issue 6 | e98659



Furthermore, we extended our analysis to refine the docking

score (Figure 2D) by replacing the metal term in the Glide Score

with the chelation term from scenario 1 to check if this helps in

ranking the compounds. It is clear from Figure 2D that the

correlation between experimental values and the refined Glide

Score is significantly improved (from 0.098 to 0.93). The time scale

for scenario 1 using DFT-B3LYP takes approximately 1–3 mins

per ligand and one can easily replace this chelation term (Chelation)

with the metal term of Glide Score for ranking the compounds,

and subsequently it could be used in virtual screening for

inhibition.

Glidescore~0:065 � EvdW z0:130 � ECoulzELipo

zEHBondzEChelationzEBuryPzERotBzESite

From the various scenarios studied, it is clearly observed that the

QM based chelation (scenario 1–3) indeed improves the inhibitor

ranking according to the experimental activities compared to using

the standard Glide Score (Eq. 3). Thus, scenario 1 could be useful

in either refining the Glide Score or as filter in the virtual

screening of RNH inhibition, as this calculation is computationally

efficient and relatively accurate. Moreover, this hypothesis could

also be applied to the virtual screening of HIV-1 integrase

inhibition as both enzymes share very similar inhibition mecha-

nism e.g., metal-mediated catalysis. The strength of our proposed

chelation score over the regular metal term in the Glide score is

that the chelation score is a binding energy that is calculated from

the energy difference between the bound and free confirmation of

the ligand and magnesium ions. The metal term in the Glide score

considers only the anionic or highly polar interactions between the

ligand and metal in the complex. Thus, the chelation score

captures all effects related to the chelation where as the metal term

(in Glide score) only considers very specific interactions.

Classification of binders and non-binders by scoring
functions

In order to assess the applicability of the QM based chelation in

a virtual screening context, we used scenario 1 for classification of

binders and non-binders. Although most of the docking programs

are not developed for binding affinity predictions, the scoring

functions rank the tested compounds. Classifying if a compound is

a binder (i.e. inhibitor or active) or a non-binder (i.e., non-inhibitor

or inactive) to a given receptor is more difficult than screening for

some binders in a set of non-binders (non-inhibitors) as studied in

the enrichment analysis [43]. Here we try to classify binders and

non-binders according to their docking score (e.g., Glide Score). As

shown in our previous study [18] Glide Score with standard

precision (SP) is shown to be good in discriminating known actives

from inactive compounds. In addition, machine learning based

classifiers (i.e., random forest) performed reasonably well in

classifying inhibitors (71%) and non-inhibitors (73%) using 2D

descriptors (Mathews correlation coefficient = 0.44 and G-

mean = 0.73) for the test set.

A dataset of 1656 compounds (PubChem source) were

preprocessed and docked into the RNH binding site and

subsequently docking poses were scored using the Glide Score

(SP) [18]. The scoring values for the whole dataset ranges from 2

9.8 to 0.03 kcal/mol (the binder starts with 29.8 to 20.4 kcal/

mol and non-binder starts with 29.67 to 0.03 kcal/mol). The

scoring values of binder and non-binder were used to make a

distribution curve in order to check how well the scoring function

discriminates the binders and non-binders from each other

(Figure 5A). As can be seen from the plot there is no clear

discrimination based on the Glide Score, however, the significant

amount of binders have good scoring values. From a virtual

screening point of view reducing the number of false positive in the

early screening phase is major challenge. Therefore, we tried to

reduce the number of false-positives using the DFT-B3LYP based

chelation energy calculation as it showed good correlation with the

Figure 5. Distribution of binders and non-binders. A. Distribution
of binders and non-binders based on the docking scores; B. Calculated
chelation energy score; C. Modified Chelation Score.
doi:10.1371/journal.pone.0098659.g005
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observed activity for the small test set (Figure 2B). The chelation

energy of the binders and non-binders are used for making a

distribution curve Figure 5B, and subsequently we checked if there

is an improvement compared to scoring based classification

(Figure 5A). Although there are still a considerable number of false

positives, from the curve, one can clearly see that including the

chelation energy indeed play an important role in highlighting the

binders from the non-binders. The chelation energy for binders

lies between 2170 kcal/mol to +80 kcal/mol and for the non-

binders between 2125 kcal/mol and +80 kcal/mol. Looking at

the number of compounds which lie on the favorable energy scale,

a large number of the binders (.10%) have chelation energy

between 2170 to 280 kcal/mol and only a less number of non-

binders (,5%) have energies between these ranges, and more

importantly none of the non-binders have favorable energy ,2

125 kcal/mol.

In a successful virtual screening protocols, only less than 2% of

the top ranked compounds are usually considered for pharmaco-

logical testing [44–46]. In this context, the chelation energy

calculation could potentially be used to reduce a significant

number of false positives in the HIV-1 RNH inhibition screening.

However, it is emphasized here that chelation energy calculation

works only when the compounds screened for bind at the active

site and not allosteric mechanism based inhibitors. As we

discussed, there is a reduction in the number of the false positive

rate when involving the results based on the chelation energy

calculation and we tried to refine the Glide Score by replacing the

metal term with the calculated chelation energy. It is observed

from Figure 5C that there is a slight improvement in the

distribution of binders and non-binders as compared to

Figure 5B. However, compared to the scoring based distribution,

the refined scoring shows improved distribution and a significant

amount of false positives is eliminated.

Possible reasons for the false predictions of some of the

compounds in the Pubchem dataset may be that these compounds

bind at the allosteric site because the screening assay used in the

Pubchem bioassay compounds for this dataset was based on the

inhibition of HIV-1 RNH catalysis, meaning that inhibition

measurement includes both the allosteric and the active-site direct

inhibition mechanism. Another possible reason might be that the

Figure 6. Models to identification. A. Virtual screening workflow; B. 2D representation of Hits obtained from the virtual screening process is
shown with ZINC ID and chelation energy in kcal/mol.
doi:10.1371/journal.pone.0098659.g006
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inhibitors bind in a different conformation than the one that is

predicted by the docking simulations. Furthermore, the protein

conformation is considered to be rigid in the docking. It should

also be emphasized that ligand protonation states play a crucial

role in ranking of compounds.

Furthermore, the partial atomic charges of the ligands play an

important role in the docking. Since, RNH contains two

catalytically active magnesium ions in the binding site, if any

compounds have a negative charge (e.g., carboxylate ions) then the

docking algorithm predicts the ligands to bind strongly with the

positive charged magnesium ions with a favorable docking score.

Case study: Chelation energy calculation based virtual
screening of RNase H inhibition

In order to assess the chelation calculation as a useful approach

for virtual screening, we further tested the chelation calculation

(scenario 1) with the ZINC Pharmer as a compound source [47].

The overall workflow of the virtual screening is shown in

Figure 6A. Based on the previous study [18], we defined a five-

point pharmacophore query for compound filtration in the ZINC

Pharmer web tool, which results in 16905 compounds. After

ligand preprocessing steps such as the 3D conformation generation

(using the OMEGA tool from the OpenEye suite)[19], prediction

of protonation states (using the Epik tool from the Schrodinger

suite) and drug-like filter (using the FILTER program from the

OpenEye [48]) all the compounds were docked into the RNH

active site using Glide SP. Out of 3659 docked compounds, only

517 compounds had high docking scores (less than 26.00 kcal/

mol), which were then manually checked with ADMET (absorp-

tion, distribution, metabolism, excretion and toxicity) filtration

(properties generated from the QuickProp tool from the

Schrodinger suite)[49] which results in 107 compounds. This set

of compounds was used for the chelation calculation (using

scenario 1). Of the 107 compounds, only six compounds had

favorable chelation energy (a chelation energy less than zero kcal/

mol) (Figure 6B). Hits such as ZINC72194123 (common name

Baicalein) and ZINC03871633 have favorable docking score (,2

7.00 kcal/mol) and chelation energy (,0 kcal/mol). The binding

mode of these compounds revealed that both compounds are

strongly coordinated with magnesium ions and hydrogen bond/p
with His539. The overall structural features of these hits are very

similar to the known RNH inhibitors as the majority of inhibitors

possess a three-oxygen pharmcophore that strongly binds with

magnesium ions, e.g. pyrimidinone, diketo, tropolone, N-hydro-

xyimide, diones [16]. The binding mode of the top hits is shown in

Figure 7. In addition, from the literature we found that, Baicalein

(a flavonoid compound) originally was isolated from Chinese

herbal medicine (Scutellaria baicalensis Georgi) and potentially inhibits

HIV-1 replication through various inhibition mechanisms e.g.,

integrase (possess similar binding site as RNH)[50], reverse

transcriptase [51] and HIV-1 env [52] inhibitors. More impor-

tantly, Baicalein has not yet been reported as a RNH inhibitor,

however, it has been reported as a nonspecific reverse transcriptase

inhibitor. Therefore, we believe that Baicalein reverse transcrip-

tase inhibition activity may be due to the effect of RNH inhibition

and not polymerase inhibition, as this compound strongly binds

with magnesium ions as it is binds with intergase enzyme as shown

before [50].

Figure 7. Comparison of Binding mode. Binding mode of ZINC72194123 (blue) and ZINC03871633 (yellow) is shown in ball and stick model with
bound ligand (green). Important residues are highlighted, including magnesium ions (green sphere) and water molecules (cyan sphere).
doi:10.1371/journal.pone.0098659.g007
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From this virtual screening, it is noted that the simple chelation

calculation (scenario 1) in addition to the docking experiments

potentially eliminates the false positives and significantly improves

the virtual screening success rate especially for HIV-1 reverse

transcriptase associated RNase H inhibition.

Conclusions

In the present investigation we have developed a high-

throughput filter based on chelation energy calculations using a

QM based method. The compounds are ranked based on

chelation energy calculations, which outperform the ranking

based on the use of a conventional scoring function. Overall,

these results show that the simple chelation model (scenario 1) is a

very promising method for predicting the binding affinity of a set

of known ligands, although it needs to be validated on a larger set

of known inhibitors. A drawback of this model is that it can only be

used for HIV-1 RNH active site directed binders, (e.g., not for

allosteric inhibitors) and rely on the accuracy of the docking pose.

We are currently performing work to see if this simple/optimized

chelation models could be further improved with large dataset of

RNase H active site binders and also try applying this protocol to

other metal containing proteins.
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