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Abstract: Parameterisation of kinetic models plays a central role in computational systems biology. Besides the lack of
experimental data of high enough quality, some of the biggest challenges here are identification issues. Model parameters can
be structurally non-identifiable because of functional relationships. Noise in measured data is usually considered to be a
nuisance for parameter estimation. However, it turns out that intrinsic fluctuations in particle numbers can make parameters
identifiable that were previously non-identifiable. The authors present a method to identify model parameters that are
structurally non-identifiable in a deterministic framework. The method takes time course recordings of biochemical systems in
steady state or transient state as input. Often a functional relationship between parameters presents itself by a one-dimensional
manifold in parameter space containing parameter sets of optimal goodness. Although the system’s behaviour cannot be
distinguished on this manifold in a deterministic framework it might be distinguishable in a stochastic modelling framework.
Their method exploits this by using an objective function that includes a measure for fluctuations in particle numbers. They
show on three example models, immigration-death, gene expression and Epo-EpoReceptor interaction, that this resolves the
non-identifiability even in the case of measurement noise with known amplitude. The method is applied to partially observed
recordings of biochemical systems with measurement noise. It is simple to implement and it is usually very fast to compute.
This optimisation can be realised in a classical or Bayesian fashion.
1 Introduction

Mathematical models of biochemical networks are an
indispensable tool in systems biology [1, 2]. They allow us
to effectively explore the dynamic behaviour of biochemical
reaction networks, thereby, helping greatly with
understanding these systems. Even though there are many
biological data already available, such as the ones produced
by high-throughput genomic or proteomic measurement
techniques and, increasingly, single-cell recordings [3],
there is still a lack of knowledge about most kinetic
reaction parameters. These are, however, needed when
setting up mathematical models. In practice, unknown
parameters are estimated using measured data, for instance,
time courses of chemical species’ concentrations in a lab
experiment. The parameters in the model are then changed
using different approaches such that the simulation is as
close to the behaviour of the real system as possible.
Often, systems of ordinary differential equations (ODEs)

are used to describe the dynamic processes involved, for
example, conversions of chemical substances into each
other. In this deterministic framework, problems of
non-identifiability can arise. This means that different sets
of parameters can fit the experimental data equally well and
estimators are not able to find one unique optimal value for
each parameter. The type of non-identifiability we focus on
in this paper is called structural non-identifiability [4]. Here,
there are functional relationships between parameters,
meaning that if one parameter value is changed one or
several other parameter values can be changed also such
that the same system behaviour is retained.
In addition to non-identifiability issues, noise in

experimental measurements creates yet another challenge
for parameter estimation. With noise we mean variability of
recorded values that is due to causes we do not – or cannot
– account or correct for. Examples are fluctuations in the
measurement device and in the environment, or differences
in size, geometry or protein content of the single cells
measured. This noise can make parameter estimation
difficult because it adds uncertainty to the measurements.
However, there also exists a different type of noise, namely

fluctuations in molecular numbers because of stochastic
timings of single discrete reaction events in a biochemical
system. This type of noise is called intrinsic noise to
distinguish it from other types of noise that are subsumed
under the term extrinsic noise [5]. Intrinsic noise cannot be
separated from the dynamics of the biochemical system and
its amplitude and characteristics are dependent on elementary
reaction steps. Therefore these intrinsic fluctuations can reveal
more information about the underlying processes than
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averaged or smoothed recordings.While extrinsic noise reduces
the information we have about a system, intrinsic noise can
actually increase it. For example, even if a system is in a
steady state it can still show fluctuations because of intrinsic
stochasticity. These fluctuations act as continued perturbations
to the system and can render the reactivity of the system
visible. Progress in experimental techniques allows to
measure these fluctuations in small numbers of molecules in
single cells [6]. On the computational side, simulation of
intrinsic noise was pioneered by Gillespie [7] and now a large
variety of different simulation algorithms is available [8].
We suggest a simple but practical method to make use of

intrinsic fluctuations for identifying model parameters. It is
based on an objective function comparing experimental data
to simulated data. This method can employ different measures
to quantify fluctuations and we study one measure based on
differences between consecutive measurements and one based
on autocorrelations. While the autocorrelation-based measure
did not perform well in our test cases, using the
differences-based measure allowed us to identify previously
(structurally) non-identifiable parameters in an
immigration-death model, a gene expression model [9] and a
model of erythropoietin and Epo receptor interaction [10].
Our method is particularly useful when perturbation
experiments cannot easily be made as it allows to identify
model parameters from steady state recordings alone,
although it is not restricted to steady states.
A related study also makes use of intrinsic fluctuations to

estimate parameters [11]. Other methods involve stochastic
gradient descent [12], Bayesian techniques [13] or a finite
state projection for the solution of the chemical master
equation [14]. However, for large systems these
computations become very time consuming. Our method
focuses on systems that are structurally non-identifiable
with deterministic ODE modelling because of a
one-dimensional (1D) functional relationship of two or
more parameters. Using the information about this
non-identifiability in combination with a measure for
intrinsic fluctuations allows for a very fast estimation
procedure. Correlation-based measures have also been used
in the context of network topology inference, for example,
using partial correlation coefficients [15], and for the
detection of activity in regulatory links of genes [16].
Furthermore, we consider it an important property of the

method presented here that it can be easily implemented in
software, thus making the method accessible for a wide
range of potential users. In fact, starting from an existing
stochastic simulator [17] the method was implemented in
only a few lines of Mathematica [18] code.
This paper is structured in Section 2 that explains the

modelling framework and where the differences-based as
well as autocorrelation-based methods are introduced.
Section 3 shows the performance of the proposed methods
for an immigration-death model, a gene expression model
studied in [9] and a model of erythropoietin and Epo
receptor interaction developed by Raue et al. [10]. Finally,
the results are discussed in Section 4.

2 Methods

As an example, consider a reaction system describing an
immigration-death process

Ø −−�u1 X

X −−�u2X Ø

(1)
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where X is a biochemical species, Ø denotes a constant source
or sink (empty set of substrates or products in a reaction) and
θ1 and θ2 are kinetic parameters. In the framework of
deterministic modelling we can set up an ODE for this
system, with x the amount of species X

dx

dt
= u1 − u2x, x(0) = x0

In general, we obtain an initial value problem that for most
realistic biochemical models needs to be numerically
integrated. For this simple example, however, the solution
is straightforward. Setting the initial value x0 = u1

u2
it follows

that dx
dt = 0 and, therefore, x(u1,u2)(t) =

u1
u2
, independently of

time t, that is, the system is in a steady state. This steady
state is stable and it is the only one for this system. This
means that for each value of the quotient of θ1 and θ2 the
system shows a certain asymptotic behaviour, which stays
the same as long as the kinetic parameters are only changed
by the same factor. This property is not unique to the
immigration-death system. Such functional relationships
between parameters, quotients or more complicated types,
also frequently appear in more realistic models. In the
context of parameter estimation for biological systems
this is referred to as structural non-identifiability, a non-
identifiability that cannot be resolved even if perfect data is
available. This is in contrast to so-called practical
non-identifiabilities that are due to lack of data,
measurement noise and so on [4].
An alternative for the modelling of networks of chemical

reactions is a stochastic approach. This includes, inter alia,
continuous-time Markov jump processes [19] and stochastic
differential equations (Langevin equations). A very popular
simulation algorithm for these types of models was
developed by Gillespie [7]. For a review of different
stochastic simulation algorithms see Pahle [8]. If the
deterministic or stochastic approach is most appropriate
depends on properties of the specific model [20]. However,
in the limit of very large particle numbers and volumes,
such that the concentrations are kept the same, the solutions
of the stochastic and the deterministic approaches converge
[21].
Using the stochastic approach the immigration-death

system can be modelled with a master equation [22] and
single instances of the system’s behaviour can be computed
using a stochastic simulation algorithm such as the
Gillespie algorithm [7]. Fig. 1 shows three time courses of
the model with different parameter sets that have the same
quotient but with very different behaviour. This illustrates
that if stochastic trajectories are available instead of just a
deterministic steady state it becomes possible to estimate
not only the quotient but also the absolute values of both
parameters.
In the following, we will assume that the system is

non-identifiable (in the deterministic framework) on a 1D
subset Θ of the parameter space because of a functional
relationship ρ between one and the remaining parameters.
This leads to an identical system behaviour of the ODE
model for all parameter sets on this 1D subset. With f the
deterministic solution

f(u1,r(u1))
(t) = f(u′1,r(u

′
1))
(t), with u1, u

′
1 [ Q (2)

The functional relationship ρ is either known a priori or it can
be estimated, for example, by fixing θ1 – which makes the
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Fig. 1 Stochastic realisations of the immigration-death model

a This figure illustrates that although the parameters are structurally non-identifiable in the deterministic framework taking into account intrinsic stochasticity they
become identifiable
Simulated with the Direct Method [7] in the software Copasi (Version 4.9.43) [17] starting at x0 = 10 from t = 0 to time t = 50 with parameter values:
Panel a (θ1, θ2) = (0.1, 0.02)

b Panel b (θ1, θ2) = (25, 2.5)
c Panel c (θ1, θ2) = (500, 50)
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system identifiable – and then estimating the other
parameters, that is, ρ(θ1). The full functional relationship ρ
can then be approximated by performing a scan over a
range of values for θ1 in the subset Θ and using an
interpolation scheme. This calculation can be carried out in
existing software, such as Copasi [17].
The strategy for identifying θ1 is to consider random

fluctuations not only as a result of extrinsic fluctuations
(measurement noise etc.) but also to be caused by
inseparable intrinsic stochasticity that can be modelled with
Markov jump processes. This intrinsic stochasticity can
provide valuable information about the underlying dynamic
process, whereas extrinsic stochasticity only decreases the
amount of information that can be extracted from
measurements.
We suggest to define a 1D non-identifiability, as described

above, as ‘stochastically resolvable’ if

(1) Equation (2) holds in the deterministic (ODE) model
for a ρ on a parameter subset Θ.

(2) ∃θ* such that ∀θ∈Θ\θ*:E(F(θ*)) < E(F(θ)), where
E(F(θ)) is the expectation of a suitable objective
function F.

(3) A suitable objective function F is one that quantifies
properties of the intrinsic fluctuations both in the
experimental data and stochastic simulations, and
that represents the distance between these two
quantifications.

Please note that this definition does not readily provide a
criterion that can be used a priori to decide whether a
non-identifiability is stochastically resolvable or not.
However, if a particular choice of an objective function
leads to a unique minimum on the subset Θ we can a
posteriori definitely say that there is a stochastically
resolvable non-identitiability present.
A suitable objective function can be of the form F(θ) =

(D(ν)−D(H(θ)))2. Here, D is a distance measure dependent
on the data ν quantifying the fluctuations in the system.
H is simulation results of a stochastic model dependent on
parameter set θ. The average of the distance measure over
M simulations will be close to the expectation for large M.
For the construction of such an objective function F it is

important to take into account the limitations of
experimental data, for example, measurement errors, small
number of data points and large inter-sample distances. This
66
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last point means that not every single reaction event in the
system can be observed. Modern measurement techniques
[6] can provide molecule numbers on single-cell level that
can be analysed with our method.
In the following, we describe two different simple choices

for distance measures D. However, the mathematical
framework is not dependent on the specific version of the
distance measure D and other functions can also be used.

2.1 Differences-based measure

Although the deterministic (ODE) model of the system shows
identical behaviour for each set of parameters on the subset Θ,
Fig. 1 illustrates that stochastic models can show dramatically
different behaviours for different parameter sets on the same
subset. Intuitively, the reactivity of the system, for example,
the average number of reactions per time, changes with
changing parameters. This leads to an approach that simply
uses the differences between values at subsequent time
points of a set of equally spaced measurements.
Now let ν’ = (ν’1,…, ν’n) denote the measurements at time

points t1, …, tn. To account for possible mean field dynamics
in the system the ODE dynamics f(t) is subtracted from the
measurements

(n1, . . . , nn) = (n′1 − f(t1), . . . , n
′
n − f(tn))

Then define

Ddiff (n) =
1

n− 1

∑n
i=2

ni − ni−1

∣∣ ∣∣
Let H’( j )(θ) = (H’(θ, t1), …, H’(θ, tn)) be the values of the jth
simulation and H( j )(θ) = (H(θ, t1), …, H(θ, tn)) be the values
of the jth simulation after subtraction of the mean field
dynamics. The fitness of a parameter set θ is then given by

Fdiff u, n( ) = (Ddiff (n)− 1
M

∑M
j=1

Ddiff (H (j)(u)))2 (3)

with M the number of simulations and θ = (θ1, ρ(θ1)) where ρ
(θ1) can be determined, given θ1, by the functional
relationship ρ. Hence for the situation described above the
parameter to be optimised is θ1. The resulting optimisation
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problem is

arg min
u1

Fdiff (u1, r(u1)), n
( )

The functional is extended for normally distributed,
homoscedastic measurement noise with zero mean by
enlarging the parameter vector from θ to ũ = (u, s) where
σ stands for the standard deviation of the measurement
error. A simulation H (ũ) then means

H(ũ) = (H(u, t1)+ N (0, s), . . . , H(u, tn)+ N (0, s))

With the variance σ unknown, the optimisation problem
becomes

arg min
(u1,s)

Fdiff (u1, r(u1), s), n
( )
2.2 Autocorrelation-based measure

The autocorrelation function R of a stationary stochastic
process xt with E[xt] = μ and variance var(xt) = σ2 > 0
depending on time lag Δ is defined as

R(D, xt) =
E xt − m

( )
xt+D − m
( )[ ]
s2

Given equally spaced univariate observations from a time
series x = (xt1 , . . . , xtn ), the autocorrelation can be
estimated with

R̂(k, x) = 1

(n− k)s2

∑n−k

i=1

(xti − m)(xti+k
− m)

where k represents the time lag, Δ = k(t1− t0). If the mean and
variance are unknown they can be replaced by the sample
estimates.
Assume that x is such that k̃ = min(k|R̂(k, x) , l) . 0

exists for a level l, meaning there is a time lag k̃ where the
autocorrelation function is below a user-defined threshold l
for the first time. Then define the level-specific
autocorrelation time as

Dact(l, x) = (t1 − t0) k̃ − 1+ l − R̂(k̃ − 1, x)

R̂(k̃, x)− R̂(k̃ − 1, x)

( )
This is the first crossing of l of the autocorrelation function
calculated with a linear interpolation between the last value
above and the first value below l. Although this definition
seems straightforward the term autocorrelation time has
apparently not been precisely defined in the literature [23].
However, in Gonze et al. 2002 [24], the concept of
autocorrelation time is used for the investigation of the
robustness of circadian rhythms.
Now let ν = (ν1, …, νn) denote the measurements at time

points t1, …, tn and H( j )(θ) = (H(θ, t1), …, H(θ, tn)) denote
the values of the jth simulation. Then the fitness using the
autocorrelation Fact of a parameter θ is given by

Fact u, n( ) = Dact(n)−
1

M

∑M
j=1

Dact H (j)(u)
( )( )2
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with θ = (θ1, ρ(θ1)). The optimisation problem is again

arg min
u1

Fact((u1, r(u1)), n)

3 Results

3.1 Immigration-death process

First, we study the immigration-death process [see (1)]. This
is an instructive example but it also shows how the method
works in the neighbourhood of stable states in much more
complicated models. This is because the immigration-death
process resembles a linearisation around a stable steady
state and, therefore, the behaviour of this process
approximates the behaviour of more complicated processes
whenever fluctuations are sufficiently small. In other words,
the approximation is good when the linear noise
approximation is valid [25–29].
It is often experimentally difficult to observe transient

dynamics, primarily when cells cannot easily be
synchronised. It can be easier, however, to measure time
courses of cells that are in a stable state. This is a scenario
that our approach is particularly suited for. In Section 2, we
showed that the parameters of the immigration-death
process are structurally non-identifiable when modelled with
ODEs. This situation is not remedied even by investigating
cross-sectional properties of fluctuations, such as marginal
variance, as the variance is also only dependent on the
quotient of the kinetic parameters u1

u2
. To resolve this, we

apply our method, namely stochastic modelling in
combination with the calculations described in Section
2. The subset Θ of the parameter space is {(u1, u2)|u1u2 = a},
with a α > 0, and hence the function ρ takes the form
r(u1) = u1

a , or equivalently ρ(θ2) = θ2α.
The argumentation holds for the case that the initial value is

unknown if time course measurements are only taken from
the stable steady state period. Thus, the subset on which the
parameters are non-identifiable using ODE techniques is
{u|u1u2 = xs} with xs being the steady state of the system.
Therefore it is possible to determine the function ρ simply
by using the steady state: r(u1) = u1

xs , or equivalently ρ(θ2)
= θ2x

s. In more complicated systems the functional
relationship between parameters, that is, the manifold on
which parameters are non-identifiable, has to be found by
scanning one parameter and performing a series of
optimisations for a deterministic objective function that is
dependent on the remaining parameters in the set. For the
following analysis the function r(u1) = u1

xs is used.
The location of the system’s steady state can be estimated

from data simply with xs ≃ �n = 1
n

∑n
i=1 ni. However, if an

initial condition is known it should be used instead to
eliminate one source of uncertainty.

3.1.1 Differences-based measure: We generated a
realisation of the stochastic version of the immigration-
death model with parameters (θ1, θ2) = (1, 0.1) using the
Direct Method in Copasi (Version 4.9.43) [17] with 100
samples over a simulated time interval of 50 s. This time
course was regarded as input data ν on which we calculated
the differences-based measure Ddiff. The dashed line in
Fig. 2, panel a, represents the value of Ddiff(ν). We then
systematically scanned a range of values for parameter θ2,
computed 100 stochastic simulations for each value and
evaluated the objective function Ddiff on the simulated time
67
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courses. The 10%-quantile, mean, 90%-quantile of these 100
simulations are used to create linearly interpolated lines.
These are plotted in Fig. 2, panel a, as solid lines. The
intersection of the 10%-quantile and the 90%-quantile of
the simulations with the Ddiff value from the data are
marked with brackets. This represents a confidence interval
for the minimum of the objective function Fdiff (3). The
existence of such a minimum indicates that the previously
structurally non-identifiable parameter θ2 has become
identifiable, and the width of the interval shows how
accurately it can be identified.
The true value of θ2 (0.1) lies within the interval even

though we used a comparatively modest number of 100
observed data points. Also, the 10%-quantile, mean,
90%-quantile lines look ragged because we only used 100
simulations for their estimation. This could be improved by
increasing the number of simulations for each parameter
value. Finally, we did not assume the value of the steady
state to be known. Instead we used the sample mean of the
data as an estimate, �n = 10.5, while the true steady-state
value of the system was xs = 10. Nevertheless, using our
approach we could resolve the issue of structural
non-identifiability.
The differences-based objective function Fdiff can be

optimised, for example, with a black-box optimiser such as
the particle swarm algorithm [30], to obtain a point estimate
for θ2. For these calculations, we have used a particle
swarm algorithm implemented in Mathematica (Version
9.0.1.0) [18] with 10 particles, 25 generations and 200
simulations for the evaluation of the objective function. The
simulations are performed in Copasi (Version 4.9.43) [17]
called from a Python script. The range for the optimisation
is [0, 1]. For the data set underlying Fig. 2 and assuming
that the true steady-state value is unknown this yields an
estimate of (û1, û2) = (0.97, 0.092).
One important point that touches upon optimal

experimental design, is the choice of the inter-sample
distance, for example, how frequently the system is
measured. If the inter-sample distance is too large or the
reactivity, for example, the average number of reactions per
time unit in the system, is very high it might happen that
Fig. 2 Identification of the previously non-identifiable parameters of
function

a Values of the measure Ddiff (y-axis) against kinetic parameter θ2 (x-axis)
Panel a: a realisation of the stochastic immigration-death model with (θ1, θ2) = (1,
Dashed line represents the value of measure Ddiff calculated on this data. A range
stochastic time series for each value
Solid lines show estimates of the corresponding 10%-quantile, mean and 90%-qua
Intersection of the 10%-quantile and the 90%-quantile with the Ddiff value from th
This represents a confidence interval for the minimum of the objective function Fd

b Panel b: same calculation as in panel a but with a different sampling of the proc
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two succeeding observations are independent and the
autocorrelation time is smaller than the inter-sample interval.
In Fig. 2 (panel b), the autocorrelation time (4.5 s, level l =

0.6) is smaller than the inter-sample distance (25 s). Varying
the parameter, for example, from θ2 = 0.15 to θ2 = 0.3 still
changes the reactivity of the system but the distance-based
measure Ddiff does not record this because of the too large
inter-sample distance. If the inter-sample distance is
reduced, as in Fig. 2 (panel a) the autocorrelation time is
larger than the inter-sample distance (0.5 s) and the
parameter is identifiable.
On the other hand, if the average number of reactions per

time is very low (data not shown), almost no reaction
happens. A modest change of the parameter will lead to a
situation where still almost no reaction happens. Again the
value of Ddiff does not record the change of the parameter
and the parameter remains non-identifiable. An increase of
the inter-sample distance can resolve this problem.
Another important point is how measurement errors affect

the parameter estimation. In the following we study this
aspect for the differences-based measure using simulation
studies. The reason for performing simulation studies is that
each estimation obviously depends on the stochasticity in
the data. Hence, to reliably assess the performance of an
estimator it is necessary to carry out the estimation for
many different data sets and analyse the average behaviour
of the estimator. We would like to note that this does not
mean that many data sets are necessary for an estimation.
Each estimation is always performed with one single time
course.
Fifty stochastic data sets were generated from the

immigration-death model with the parameter set (θ1, θ2) =
(1, 0.1) and the initial value ν(0) = 10 using the Direct
Method [7] in the software Copasi (Version 4.9.43) [17],
each with 100 samples over a simulated time of 50 s.
Normally distributed measurement noise was added to each
observation with different standard deviations. The
differences-based functional is then used to estimate the
parameter θ2 from the noisy time series. The parameter θ2
is obtained using the function ρ with the mean �n as
the estimate for the steady-state value. Table 1 shows the
the immigration-death process with the differences-based objective

0.1) and 100 samples over 50 s was generated and used as input data
of values for parameter θ2 was scanned and Ddiff evaluated on 100 simulated

ntile
e data are marked with brackets
iff, for example, the estimate for θ2
ess (100 samples over 1400 s)
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Table 1 Statistics of estimation results with measurement
noise of known standard deviation

True parameter
value

Estimation
results

Average relative
error, %

exact measurements
θ1 1.0 1.03 19
θ2 0.1 0.103 13

noise with standard deviation 0.01
θ1 1.0 1.03 19
θ2 0.1 0.103 13

noise with standard deviation 0.1
θ1 1.0 1.03 22
θ2 0.1 0.102 15

noise with standard deviation 0.25
θ1 1.0 1.04 18
θ2 0.1 0.104 15

noise with standard deviation 0.5
θ1 1.0 1.03 23
θ2 0.1 0.103 20

noise with standard deviation 1.0
θ1 1.0 1.03 46
θ2 0.1 0.106 47

For each measurement noise scenario 50 data sets were
simulated using the Direct Method in Copasi (Version 4.9.43) [17]
with 100 samples, Δt = 0.5, (θ1, θ2) = (1, 0.1) and ν0 = 10. For each
of the 50 data sets the parameter is estimated using the
differences-based functional. For different noise levels the table
gives the true parameter value (column 2), the mean of the 50
estimation results (column 3) and the average relative error
(column 4).

www.ietdl.org
results under the assumption that the amplitude of the
measurement noise, σ2, is known. An additive error of
standard deviation 1 corresponds to a relative error of 10%
as the steady state of the system is 10. Our method can
estimate the previously non-identifiable parameter in these
data sets with measurement noise.
Table 2 shows that without knowledge of the standard

deviation of the measurement noise the estimation accuracy
decreases dramatically, in particular the estimation of the
measurement noise level is problematic. The optimisation is
again performed with a particle swarm algorithm with 20
particles and 100 iterations and 200 simulations for each
evaluation of the objective function on a range of ([0, 1],
[0.001, 1]).
A higher measurement noise leads to an increase in the

differences-based measure and can therefore compensate for
Table 2 Statistics of estimation results with measurement
noise of unknown standard deviation

True parameter
value

Estimation
results

Average relative
error, %

noise with standard deviation 0.01
θ2 0.1 0.083 27
σ 0.01 0.151 1409

50 data sets were simulated using the Direct Method in Copasi
(Version 4.9.43) [17] with 100 samples, Δt = 0.5, (θ1, θ2) = (1, 0.1)
and ν0 = 10. Measurement noise is added to the data. Then these
data sets are used to estimate parameter θ2 with the
differences-based functional. The standard deviation of the
measurement noise is assumed not to be known and must
therefore be estimated as well. The table shows the estimated
parameter (column 1), its true value (column 2) and the mean
(column 3) as well as the average relative error of the 50
estimates (column 4).
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a lower reactivity because of lower values of the kinetic
parameters. This is illustrated in Fig. 3. Strictly speaking,
this means that the parameters remain structurally
non-identifiable as there is no unique minimum of the
objective function. Nevertheless, the situation has improved
because the region where the parameters are
non-identifiable is now bounded. The parameter values have
to be larger than zero as they represent the reaction rates of
irreversible reactions. The valley in the landscape of
objective function values in Fig. 3 shows that even for the
case of zero measurement noise parameter θ1 cannot be
larger than about 1.5. If the amplitude of the measurement
noise is known the parameter becomes completely
identifiable again. This illustrates that information on the
amplitude of measurement noise can be very valuable,
although in many practical cases reliable values are
notoriously difficult to obtain.

3.1.2 Autocorrelation-based measure: We repeated
the analysis that is shown in Fig. 2 with the
autocorrelation-based measure instead of the
differences-based one. As can be seen in Fig. 4 in this case
the autocorrelation-based measure did not allow a
satisfactory identification of the parameters. The
10%-quantile line of the simulations crosses the line
calculated from the input data already at a very low value.
Therefore we cannot give a lower bound for the parameter
value that is considerably better than the physiological limit
at zero. Also, the 90%-quantile line crosses the line
calculated from the data only at relatively high values for
the parameter θ2 meaning that the upper bound is also only
a very loose one.
Owing to this poor performance of the

autocorrelation-based measure we focussed on using the
differences-based measure for analysing a more realistic
model in the next section.
Fig. 3 Higher measurement noise leads to an increase in the
differences-based measure

Differences-based objective function and estimation of noise level
One time series is simulated with 100 samples over 50 sec and ν0 = 10 for
(θ1, θ2) = (1, 0.1) without measurement noise
Differences-based objective function is then evaluated in dependence of
θ1 and σ
Function ρ is of the form r(u1) = u1

10
Dark colour stands for low objective function values, bright colour stands for
high objective function values
Plot shows a valley, in which the objective function value remains constant
for increasing σ and decreasing θ1

69
icle published by the IET under the Creative Commons Attribution

License (http://creativecommons.org/licenses/by/3.0/)



Table 3 Statistics of estimation results for the gene expression
model

True parameter
value

Estimation
results

Average relative
error, %

perturbation experiment
kr 20 20.5 26
steady-state data only
kr 20 20.1 19

Fifty data sets are stochastically simulated with 50 samples,
inter-sample interval Δt = 0.3 and parameters kr = 20, kp = 10, γr =
1.2, γp = 0.7. These data sets are used to obtain estimates for the
previously non-identifiable parameters kr and kp with the
differences-based functional in a range of [0.1, 100] for the
optimisation. The table shows the estimated parameter (column
1), its true value (column 2) and the mean of the estimations
(column 3) as well as the average relative error of the 50
estimates (column 4).

Fig. 4 Identification of the previously non-identifiable parameters
of the immigration-death process with the autocorrelation-based
objective function

A realisation with 100 samples over 50 s of the immigration-death model is
simulated with (θ1, θ2) = (1, 0.1)
This is regarded as input data ν
Dashed line represents the value of the autocorrelation-based measure Dact(ν)
For a range of values for parameter θ2 the autocorrelation-based objective
function is evaluated on 100 simulations with a level l = 0.6 that seemed to
be a robust choice
10%-quantile, mean and 90%-quantile of these 100 simulations for each
value are used to create linear interpolation lines for the 10%-quantile,
mean and 90%-quantile
These are plotted with solid lines
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3.2 Single gene expression model

Here, we apply our method to a model of gene expression that
was already studied in [9]. The model consists of four
reactions

Ø −−−�kr mRNA

mRNA −−−−−−−�
kpmRNA

Pro+mRNA

mRNA −−−−−−−�grmRNA
Ø

Pro −−−−−−−�
gpPro

Ø

with true parameter values kr = 20, kp = 10, γr = 1.2, γp = 0.7
and initial conditions mRNA(0) = mRNA0, Pro(0) = Pro0.
d

dt
Epo(t) = −konEpo(t)EpoR(t)+ konkDEpoEp

d

dt
EpoR(t) = −konEpo(t)EpoR(t)+ konkDEpoEp

d

dt
EpoEpoR(t) = konEpo(t)EpoR(t)− konkDEpoEpo

d

dt
EpoEpoRi(t) = keEpoEpoR(t)− kexEpoEpoRi(t)−

d

dt
Epoi(t) = kdiEpoEpoRi(t)

d

dt
Epoe(t) = kdeEpoEpoRi(t)
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The ODE interpretation reads as follows

d

dt
mRNA(t) = kr − gr mRNA(t)

d

dt
Pro(t) = kp mRNA(t)− gp Pro(t)

(4)

The deterministic steady state of the system is (mRNA, Pro)
= (16.7, 238.1). This corresponds to parameter set 3 in the
supplementary information of [9] with a slow protein
degradation rate γp and a low transcription/tran^slation
ratio. Using perturbation experiments and a parameter
estimation for deterministic systems such as least squares it
is possible to determine γr and γp plus a functional relation
between kr and kp. With this functional relationship and the
differences-based functional it is possible to estimate the
absolute value of kr and kp. This can be done with either
data from a perturbation experiment or data from a single
steady-state experiment (see Table 3).
Our method was therefore able to reliably estimate the

previously non-identifiable parameter kr even from single
measurements of the system in steady state and without
calculating more involved quantities like the Fisher
information and so on.

3.3 Epo receptor model

The third example is a model of erythropoietin (Epo) and Epo
receptor (EpoR) interaction due to Raue et al. [10] with the
following differential equations system (see (5))
oR(t)+ kexEpoEpoRi(t)

oR(t)+ ktBmax − ktEpoR(t)+ kexEpoEpoRi(t)

R(t)− keEpoEpoR(t)

kdiEpoEpoRi(t)− kdeEpoEpoRi(t)

(5)
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Table 4 Statistics of estimation results for the Epo receptor
model

True parameter
value

Estimation
results

Average relative
error, %

no noise
Bmax 170 170 9

noise with standard deviation 5
Bmax 170 171 10

noise with standard deviation 10
Bmax 170 175 12

noise with standard deviation 25
Bmax 170 191 36

noise with standard deviation 50
Bmax 170 352 132

relative noise 1%
Bmax 170 171 12

relative noise 5%
Bmax 170 333 126

Fifty data sets are stochastically simulated with 160 samples,
inter-sample interval Δt = 0.1 and the parameter set given in (6).
Measurement noise with known standard deviation is then
added to the data. These data sets are used to obtain estimates
for the previously non-identifiable parameter Bmax with the
differences-based functional in a range of [100, 1000] for the
optimisation. The table shows the estimated parameter (column
1), its true value (column 2) and the mean (column 3) as well as
the average relative error of the 50 estimates (column 4).

Fig. 5 Non-identifiable subset of the parameter space

This plot shows the non-identifiable subset of the parameter space in the Epo
receptor model
Bmax is fixed over a range of values and the parameter vector (kon, kD, scale
and Epo(0)) is optimised with a deterministic trajectory, calculated from the
ODE, as a reference

www.ietdl.org
The model describes the processes taking place at the receptor
level in Epo signalling. Epo binds to its receptor EpoR on
erythroid progenitor cells triggering cellular responses such
as proliferation or differentiation via downstream signalling
pathways, for example, the JAK2-STAT5 pathway, that are
not part of the model. The variables in the model represent
concentrations of extracellular Epo, EpoR, Epo and Epo
receptor complex (EpoEpoR), internalised complex
(EpoEpoRi), degraded internalised Epo (Epoi) and degraded
extracellular Epo (Epoe). Refer to [10, 31] for details about
the model.
Measurements were taken of

y1 = scale(Epo(t)+ Epoe(t))

and

y2 = scale× EpoEpoR(t)

with the conversion factor scale [10]. The model is
structurally non-identifiable [10]. However, by fixing one of
the non-identifiable parameters we observe that the subset
of the parameter space containing the non-identifiable
parameters is 1D. This means that the model becomes
identifiable if one parameter is fixed.
In the following, we assume that the true parameters are

as in (6).

To identify the relationship between the non-identifiable
parameters Bmax and (kon, kD, scale and Epo(0)) we first
(Bmax, kon, kD, scale,

(kt, ke, kex,

(EpoR(0), EpoEpoR(0), EpoEpoRi(0), Epoi(0),
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calculated a deterministic trajectory from the ODE model
(5) as a reference. Then we fixed Bmax over a range of
values and optimised (kon, kD, scale and Epo(0)) for each
value. Fig. 5 shows a plot of the resulting subset depending
on the parameters Bmax, scale and kD. As the subset is 1D
our method can be used to estimate the non-identifiable
parameters.
We stochastically simulated 50 time courses from the Epo

receptor model using the Direct Method in the software
Copasi (Version 4.9.43) [17]. These time courses are then
used as data to estimate the parameter Bmax using the
differences-based functional in (3). The optimisation was
performed with a particle swarm algorithm implemented in
Mathematica. Ten particles and 25 iterations were used and
200 simulations for each evaluation of the objective
function on a range of [100, 1000]. The means of the
estimation results are given in Table 4 together with their
relative error. The table shows that the previously
non-identifiable parameter becomes identifiable in cases of
small measurement noise. The other parameters kon, kD,
scale and Epo(0) can be calculated with the knowledge of
Bmax from the parameterised function.
If the magnitude of the measurement noise is not known,

our method makes the previously structurally
non-identifiable parameter set practically non-identifiable.
This means that the estimation will be better with more
data, effectively eliminating measurement errors. In fact, in
this specific case eliminating measurement errors by
measuring more data is not even necessary. Already
Epo(0)) = (170, 0.017, 13.2, 9.12, 300)

and

kdi, kde) = (0.17, 0.3, 0.087, 0.065, 0.15),

Epoe(0)) = (Bmax, 0, 0, 0, 0).

(6)
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Fig. 6 Knowing the magnitude of the measurement error makes
the system completely identifiable

Differences-based objective function in dependence on Bmax and noise level
One time course is stochastically simulated with 160 samples over 16 sec and
the parameters given in (6)
Differences-based objective function values are calculated in dependence of
Bmax and measurement noise standard deviation σ
Dark colour: low function value
Bright colour: high function value
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knowing just the magnitude of the error makes the system
completely identifiable (see Fig. 6).
If only univariate measurements of y1 are available the

estimation is still possible. For the scenario described in
Table 4 without measurement noise the mean of the
estimation from y1 alone is 169 for Bmax with an average
relative error of 11%. We used a particle swarm method to
find the optimum within the limits [100, 1000].
4 Discussion and conclusion

Deterministic models based on ODEs are often used in
systems biology to describe dynamic processes. Techniques
for the estimation of parameters in these systems are
highly developed [32, 33]. Nevertheless limitations in
measurement techniques or the structure of the model itself
can lead to identifiability problems, such as practical and
structural non-identifiabilities, respectively. This paper
presents a simple, yet practical, method for the
identification of model parameters making use of intrinsic
fluctuations. Two measures are introduced as objective
functions for parameter estimation. Both measures search
for a parameter set that produces intrinsic fluctuations fitting
best to the experimental data – in this study the input data
was also generated by simulation for a fairer comparison.
We tested our method on a simple immigration-death
system, on a model of gene expression and on a more
realistic model of Epo receptor signalling.
The autocorrelation-based method uses the autocorrelation

time of the system in its objective function. Its performance
was not as good as the difference-based measure (Fig. 4) on
the immigration-death model we tested it on, and so we did
not use it to analyse the more realistic models later on.
Nevertheless, it also yielded a confidence interval, albeit a
72
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fairly large one, for the previously non-identifiable
parameter. A possible reason for the weaker performance of
the autocorrelation-based method is the fact that the
calculation of an autocorrelation time for a time series with
limited length and sampling rate is not very accurate,
especially without prior knowledge about the underlying
dynamics.
Another complication that might arise with the

autocorrelation-based measure is in systems that are not
stationary and where, therefore, an autocorrelation cannot
be easily defined.
The differences-based measure, on the other hand, allowed

to fully identify the previously non-identifiable parameters
assuming that the amplitude of the measurement noise is
known. This assumption is also regularly made in related
studies (see, e.g. [4]). Even if the measurement noise is
unknown, our method can be very useful. In the
immigration-death system it was able to change a structural
non-identifiability into a practical non-identifiability. This
means that there was no single optimum in the estimation,
but an interval of values could be given with equally good fits.
Compared with other methods that also make use of

intrinsic fluctuations [12–14] the presented method is
computationally fast because the optimisation problem is
1D as information on the structure of the non-identifiability
manifold is used. This functional relationship can be
estimated by performing estimation procedures on a
deterministic ODE model of the system fixing one of the
non-identifiable parameters over a range of different values
and recording the estimation results of the remaining
parameters. An interpolation over these discrete values
yields the relationship.
Our method is particularly suitable to study time courses of

noisy steady states. This is especially important, for example,
when it is difficult to measure initial concentrations, when the
cells cannot be synchronised or when the system cannot easily
be perturbed. We would like to emphasise that it is not
necessary to have dense measurements in the sense that
every single reaction event has to be measured in order to
account for the stochasticity.
In this paper, we exclusively used equally spaced

measurements. An extension to non-equally spaced
measurements should be possible with the introduction of
weights.
The (equally spaced) time step between measurements has

to be both smaller than the autocorrelation time of the system
(Fig. 2) and long enough that a number of reactions takes
place in between. An experimental setup not chosen
carefully enough might lead to an almost or completely flat
landscape and therefore not allow resolving
non-identifiabilities. This question of optimal measurement
intervals and how they can be determined for our method
falls under the broader category of optimal experimental
design and should be investigated in future studies.
Further research could also provide a correction term to

correct for a possible bias introduced by high measurement
noise. In the case of the Epo receptor signalling model with
measurement noise we observed such a bias. Studying the
size of the bias depending on the measurement noise it
should be possible to introduce a correction term.
The autocorrelation-based method had a poorer

performance on the immigration-death system compared
with the differences-based measure. It might be interesting
to find out if this is a general property or if there are
systems where the autocorrelation-based measure performs
better.
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Systems with 1D non-identifiabilities, which we focused

on in this paper, are certainly of practical relevance [10].
For systems that have a non-identifiability that is more than
1D this might become resolvable if multivariate recordings
are available.
Finally, it could be useful to have a criterion that, a priori,

indicates whether a non-identifiability is stochastically
resolvable or not. It seems plausible that the validity of the
linear noise approximation is a necessary condition as in
systems, which do not satisfy it, other effects than the
reactivity might influence the differences-based functional.
However, there exist methods that can provide correction
terms in cases where the linear noise approximation fails
[28, 29], for example, in systems that have highly
non-linear kinetics and very low particle numbers.
Integrating these methods with our approach is possible and
might even allow the treatment of systems where a simple
linear noise approximation is problematic. In any case, after
the calculations described in this paper have been carried
out it can be determined whether the non-identifiability
could be removed.
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