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ABSTRACT Salmonella enterica serovar Javiana is a major Salmonella serovar that causes
human Salmonella infection in the United States. The complete genomic sequences of
9 S. Javiana isolates collected from food, environmental, and kratom sources in the
United States were determined by hybrid assembly using Nanopore long-read sequenc-
ing and MiSeq short-read sequencing.

S almonella serovar Javiana is a predominant Salmonella enterica serovar in the
United States, accounting for ;6% of all Salmonella enterica outbreaks in 2016 (1).

Javiana infections have been traced back to a wide variety of food sources, such as
tomato (2, 3), cheese (4), melons (5, 6), and herbs (7). Additionally, Javiana was one of
the main serovars responsible for Salmonella enterica outbreaks in the medicinal herb
kratom (8). Javiana is one of the few nontyphoidal Salmonella serovars harboring the
genes encoding the Typhi cytolethal distending toxin (pltA, pltB, and cdtB), which
causes G2/M cell cycle arrest when injected into host cells (9, 10). Here, we report the
complete genomic sequences of 9 Salmonella enterica Javiana isolates collected from
food, environmental, and kratom sources in the United States. These genomes will aid
in a better understanding of Javiana phylogeny.

All sequenced isolates were previously collected by the FDA except for CFSAN023356
and CFSAN023357, which were both obtained from the Minnesota Department of
Health (Table 1). Isolates CFSAN086751 and CFSAN078221 were obtained from Kratom
following FDA-BAM protocols (8). Isolates CFSAN038580, CFSAN055400, CFSAN038591,
CFSAN048049, and CFSAN008899 were obtained using modified FDA-BAM protocols
(11). These isolates were then grown overnight in tryptic soy broth (TSB) at 35°C and
genomic DNA was extracted using the Maxwell RSC cultured cell DNA kit (Promega,
Madison, WI) following the manufacturer’s protocols. Short-read sequencing libraries
were constructed from 100 ng of genomic DNA using the Illumina DNA prep (M) tag-
mentation kit and were sequenced on a MiSeq sequencer using MiSeq v3 kit with
2 � 250-bp paired-end chemistry (Illumina, San Diego, CA). The resulting reads were
trimmed using Trimmomatic v0.36 and the SeqSero2 pipeline was used to confirm the
serovar designation of the isolates (12, 13). The same DNA used for the MiSeq library
prep was also used to construct libraries for Nanopore sequencing using the rapid bar-
coding sequencing kit (SQK-RBK004). The sequencing library was run in a FLO-MIN106
flow cell (R9.4.1) using a MinION Mk1C for either 48 or 72 h with live base calling using
default settings (MinKNOW Core v4.3.12 and Guppy v5.0.16).

The complete genomic sequences for the 9 isolates were constructed using Unicycler
to perform a hybrid assembly of the Nanopore and MiSeq data (14). Nanopore reads
shorter than 5 kb were not used for constructing the hybrid assembly. The resulting
assemblies were circularized and oriented to start at the dnaA gene. Separate assemblies
were constructed from the Nanopore reads alone using Flye v2.9 (15) and compared to
the Unicycler assemblies to ensure the two assemblies were in agreement. The hybrid
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assemblies were uploaded to NCBI and annotated using the NCBI Prokaryotic Genome
Annotation Pipeline (PGAP) v5.3 (16). Three of the sequenced isolates had accompanying
plasmid sequences: CFSAN048049, CFSAN008899, and CFSAN023357. The plasmids from
CFSAN048049 and CFSAN008899 are identical ;68-kb plasmids containing ccdAB and
hicAB type II toxin-antitoxin systems. The ;6.2 kb plasmid sequence from CFSAN023357
contains genes conferring tetracycline resistance [tet(A) and tetR].

Data availability. Accession numbers for all chromosome and plasmid sequences
are listed in Table 1.
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