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Blood glucose levels exceeding 8 mM are shown to increase glucose levels in airway surface in cystic fibrosis (CF).
Moreover, high levels of endobronchial glucose are proposed to increase the growth of common CF bacteria and feed
the neutrophil-driven inflammation. In the infected airways, glucose may be metabolized by glycolysis to lactate by
both bacteria and neutrophils. Therefore, we aimed to investigate whether increased blood glucose may fuel the gly-
colytic pathways of the lung inflammation by determining sputum glucose and lactate during an oral glucose tolerance
test (OGTT). Sputum from 27 CF patients was collected during an OGTT. Sputum was collected at fasting and one
and two hours following the intake of 75 g of glucose. Only participants able to expectorate more than one sputum
sample were included. Glucose levels in venous blood and lactate and glucose content in sputum were analyzed using a
regular blood gas analyzer. We collected 62 sputum samples: 20 at baseline, 22 after 1 h, and 20 after 2 h. Lactate and
glucose were detectable in 30 (48.4%) and 43 (69.4%) sputum samples, respectively. The sputum lactate increased sig-
nificantly at 2 h in the OGTT (p = 0.024), but sputum glucose was not changed. As expected, plasma glucose level sig-
nificantly increased during the OGTT (p < 0.001). In CF patients, sputum lactate increased during an OGTT, while the
sputum glucose did not reflect the increased plasma glucose. The increase in sputum lactate suggests that glucose spills
over from plasma to sputum where glucose may enhance the inflammation by fueling the anaerobic metabolism in neu-
trophils or bacteria.
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INTRODUCTION

Cystic fibrosis (CF) is a deadly autosomal genetic
disease affecting 70,000–100,000 people worldwide
[1,2]. CF is caused by variations in the cystic fibro-
sis transmembrane conductance regulator (CFTR)
gene, which was first described in 1989 by Riordan
et al. [3]. Most CF patients are experiencing recur-
rent and chronic lung infections, which constitutes
major lethal complications [4,5]. In addition, many
CF patients develop impaired glucose tolerance or

cystic fibrosis-related diabetes (CFRD) [6,7]. CFRD
is a comorbidity characterized by elevated levels of
blood glucose caused by a delayed and insufficient
insulin secretion [8–10]. In CF, increased plasma
glucose is correlated with an accelerated decline in
lung function [11], but the underlying mechanism
has so far not been fully explained. It has, however,
been proposed that increased plasma glucose may
reach the endobronchial zones, where the glucose
could serve at nutrients for pathogens [12]. In addi-
tion to promoting growth of pathogens, we specu-
lated that the increased plasma glucose may
reinforce lung inflammation by serving as substrate
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for glycolysis in the endobronchial neutrophils,
which are directly correlated to decreased lung
function [13]. Since the product of glycolysis by
neutrophils is lactate [14], which is related to the
lung function in CF patients [15], we tested whether
the increasing levels of plasma glucose during an
oral glucose tolerance test (OGTT) may increase
the levels of lactate in expectorated sputum samples
from CF patients.

METHODS

CF patients (>18 years) were enrolled from the adult
department at the Copenhagen CF Centre during a cross-
sectional study in 2017. From 27 patients, we collected a
total of 81 blood samples and 62 non-induced sputum
samples during an OGTT with the intake of 75 g of glu-
cose. We collected 20 sputum samples at baseline (fasting),
22 samples after 1 h, and 20 samples after 2 h. Plasma
glucose in venous blood samples was analyzed with a
Cobas 8000, c702 module. The supernatant from the spu-
tum samples was isolated after centrifugation (15 min,
21,000 g, 4 °C) (Heraeus Fresco 21, Thermo Fisher,
Copenhagen, Denmark) and stored at �80°C before ana-
lyzing. The content of lactate and glucose in sputum
supernatants was analyzed using a regular blood gas ana-
lyzer (BGA) (ABL90 FLEX, Radiometer, Copenhagen,
Denmark). Sputum samples with insufficient amount of
material were excluded. The glycemic states of the patients
were determined according to recent recommendations
[16].

Statement of ethics

The study was approved by the Regional Committee on
Health Research Ethics (Region H: H16037693), and all
enrolled patients signed a consent form.

Statistics

Data were tested for normality and compared by one-way
ANOVA test followed by Bonferroni’s multiple compar-
isons correction using Graphpad prism 9 (GraphPad Soft-
ware Inc., La Jolla, CA, USA). p < 0.05 was considered
significant.

RESULTS

Demographics

Twenty-seven CF patients were included in the
study and the median age (range) was 33 years (18–
54). Eleven patients (41%) were female. The med-
ian percent predicted forced expiratory volume in
one second (FEV1%) (range) was 56% (14–104),
and the median percent predicted forced vital
capacity (FVC%) (range) was 86% (47–108).
Twenty-five of the patients (93%) had chronic lung

infection, and Pseudomonas aeruginosa was the
most prevalent pathogen (Table 1).

Levels of glucose and lactate

As expected, glucose levels in plasma increased
after one and two hours of the OGTT (p < 0.001)
(Fig. 1A). Using the blood gas analyzer, glucose
was detectable in 28 (45%) of the sputum samples,
whereas lactate could be determined in 41 (66%) of
the sputum samples. The sputum glucose level did
not change during the OGTT (Fig. 1B). However,
the concentration of sputum lactate increased sig-
nificantly between fasting and 2 h after glucose
exposure (p = 0.023) (Fig. 1C). The number of
samples at all time points was stable throughout
the experiment indicating that the fraction of incon-
clusive samples did not change. In addition, we
were not able to relate the levels of lactate to any
of the detected pathogens in the sputum samples
(data not shown).

To compare the effects of the glycemic states on
sputum lactate and plasma glucose, the patients
were stratified in cystic fibrosis–related diabetes
(CFRD), impaired glucose tolerance (IGT), indeter-
minate glucose tolerance (INDET) and normal glu-
cose tolerance (NGT) (Fig. 2). The plasma glucose
was significantly higher in CFRD patients at 2 h
(p < 0.05), but no significant differences in the
levels of sputum lactate or glucose between the gly-
cemic states were observed at any time point.

Table 1. Baseline characteristics in the CF study
population

Characteristics
Participants, n (%) 27 (100)
Age (years), median (range) 33 (18–54)
Female, n (%) 11 (41)

Chronic lung infection, n (%) 25 (93)
Pseudomonas aeruginosa 13 (48)
Staphylococcus aureus 5 (19)
Other pathogens 11 (41)

Lung function (%)
FEV1, median (range) 56 (14–104)
FVC, median (range) 86 (47–108)

Glucose tolerance, n (%)
Normal1 7 (29)
Indeterminate glucose tolerance2 4 (15)
Impaired glucose tolerance1 7 (29)
Cystic fibrosis-related diabetes1 9 (33)

Normal <7.8, impaired glucose tolerance ≥7.8, and <11.1
and cystic fibrosis-related diabetes >11.1.
1Glucose tolerance is based on 2-h plasma glucose (mM)
in an OGTT.
2Indeterminate glucose tolerance: 1-h plasma glucose
(mM) >11.0 but 2-h <7.8 in an OGTT.
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DISCUSSION AND CONCLUSIONS

To our knowledge, increased levels of endo-
bronchial lactate during an OGTT in CF patients
have not been reported before. Increased levels of
lactate during addition of glucose are suggestive of
glucose being oxidized by glycolytic conversion to
lactate, which is the process providing more than
85% of the adenosine triphosphate needed for the
vital neutrophil host defense activities such as
phagocytosis [14]. The neutrophils in sputum from
chronically infected CF patients are actively
engaged in bactericidal activities as evidenced by
the ongoing production of reactive oxidative species

and nitric oxide [17,18], and accordingly, the level
of lactate correlates to the density of neutrophils in
sputum from chronically infected CF patients [19].
Moreover, the presence of glucose may enhance
inflammatory activities, such as the release of
NETs, and the secretion of lactate by activated
neutrophils [20]. The entry route of lactate into the
sputum could not be determined in the present
study, but we propose that glucose leaves the blood
and enters the endobronchial space before being
converted into lactate. This proposition is based on
the modest increase in the low levels of blood lac-
tate during OGTT in individuals without CF [21]
and CF patients having lower levels of lactate in

Fig. 1. Glucose levels in plasma and sputum and lactate levels in sputum during fasting and 1 and 2 h after oral intake of
glucose. The number of samples in A was 27 at baseline, 26 at 1 h, and 27 at 2 h. The number of samples in B was 9 at
baseline, 11 at 1 h, and 8 at 2 h. The number of samples in C was 14 at baseline, 15 at 1 h, and 13 at 2 h. The means are
marked by black lines. Data were analyzed using one-way ANOVA test followed by Bonferroni’s multiple comparisons
correction. p < 0.05 was considered significant.

Fig. 2. Glycemic states and glucose levels in plasma and sputum and lactate levels in sputum during fasting and 1 and 2 h
after oral intake of glucose. The patients were divided in cystic fibrosis-related diabetes (CFRD), impaired glucose toler-
ance (IGT), indeterminate glucose tolerance (INDET), and normal glucose tolerance (NGT). Data were analyzed using
one-way ANOVA test followed by Bonferroni’s multiple comparisons correction. p < 0.05 was considered significant.
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blood (1.3 � 0.4 mM) [22] than we found in spu-
tum (2.8 � 2.3 mM) (Fig. 1), which minimize pas-
sive diffusion of lactate from the blood to the
endobronchial mucus. The suggested glucose path-
way is also supported by the absence of apical
secretion of lactate by CF airway epithelial cells
when blood glucose rises [23] and by the leaking of
glucose through the paracellular junctions between
lung epithelial cells from the blood into the airway
surface liquid during inflammation [12]. The latter
is possibly driven in part by the concentration gra-
dient created by high glucose levels in blood and
low levels in sputum (Fig. 1). Furthermore, upon
arrival in the endobronchial mucus, glucose is
ingested by neutrophils as evidenced by the intracel-
lular accumulation of [18F] fluorodeoxyglucose
([18F] FDG) in endobronchial neutrophils after
intravenous supply of [18F] FDG [24]. Meanwhile,
glucose might also be converted to lactate during
the glycolysis in other active inflammatory cells
such as M1 macrophages and Th17 cells [25]. Apart
from the glycolytic conversion of glucose to lactate,
depletion of glucose in the sputum may potentially
also result from other metabolic pathways such as
the tricarboxylic acid cycle and the generation of
lipids [26]. Even though the mechanisms of lactate
removal and non-glycolytic consumption of glucose
are not within the primary scope of this study, we
speculate as for how long the levels of lactate will
increase in the sputum to evaluate the duration of
the potential inflammatory effects linked to
increased sputum lactate resulting from peaks of
plasma glucose.

It may be expected that parts of the sputum lac-
tate have microbial origin. However, several CF-
pathogens do not secrete lactate in significant
amounts except for S. aureus, that may secrete sub-
stantial amounts of lactate, but only at aerobic con-
ditions, which are rare in large parts of the CF
sputum [15,27]. In addition, the bacterial metabolic
activity is very low in the endobronchial secretions
of CF patients with chronic lung infection [28].
Finally, it has never been studied whether insulin
affects the endobronchial mucus in CF which could
potentially stimulate glucose uptake and glycolysis
in leukocytes during an OGTT [29].

The ability of the levels of plasma glucose during
an OGTT to serve as a determinant of the glycemic
state was confirmed for CFRD in the present study.
We were, however, unable to relate the levels of
sputum lactate to the glycemic states, which is pos-
sibly due to the limited number of sputum samples.
Thus, our study was not structured to adequately
address whether sputum lactate dynamics may pro-
vide additional information to the clinical relevance
of other glycemic stages, such as INDET, which

has recently been associated with beta-cell dysfunc-
tionalities resembling CFRD and IGT [30]. To
effectively assess the relation between sputum lac-
tate and glycemic stages in CF, we propose to
examine larger groups of patients and to detect lac-
tate using methods with a higher sensitivity.

A limitation of this study is that the blood gas
analyzer has never been validated for the purpose
of analyzing supernatant from sputum, where, for
example, glucose levels are below physiological
levels in blood. Moreover, we can only speculate
that the samples with inconclusive results were pre-
dominantly caused by the metabolite levels being
below the threshold of the device rather than insuf-
ficient sample volumes.

In conclusion, our results support the hypothesis
that high glucose levels may increase the levels of
lactate in expectorated sputum samples from CF
patients. This link may provide important informa-
tion for explaining the association of high blood
glucose with accelerated lung function decline by
increased neutrophil-mediated lung inflammation
resulting from endobronchial influx of glucose fuel-
ing glycolysis of the neutrophils. Consequently,
controlling the levels of blood glucose is important
for stabilizing the lung function of CF patients.
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