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Abstract: Melatonin acts as a multifunctional molecule that takes part in various physiological pro-
cesses, especially in the protection against abiotic stresses, such as salinity, drought, heat, cold, heavy
metals, etc. These stresses typically elicit reactive oxygen species (ROS) accumulation. Excessive ROS
induce oxidative stress and decrease crop growth and productivity. Significant advances in mela-
tonin initiate a complex antioxidant system that modulates ROS homeostasis in plants. Numerous
evidences further reveal that melatonin often cooperates with other signaling molecules, such as
ROS, nitric oxide (NO), and hydrogen sulfide (H2S). The interaction among melatonin, NO, H2S, and
ROS orchestrates the responses to abiotic stresses via signaling networks, thus conferring the plant
tolerance. In this review, we summarize the roles of melatonin in establishing redox homeostasis
through the antioxidant system and the current progress of complex interactions among melatonin,
NO, H2S, and ROS in higher plant responses to abiotic stresses. We further highlight the vital role of
respiratory burst oxidase homologs (RBOHs) during these processes. The complicated integration
that occurs between ROS and melatonin in plants is also discussed.

Keywords: reactive oxygen species; nitric oxide; hydrogen sulfide; melatonin; RBOHs; signaling
networks; abiotic stress

1. Introduction

In nature, many plants are constantly challenged by various abiotic environmental
conditions, such as salinity, cold, heat, drought, heavy metals, and nutrient deficiencies.
These stresses have important impacts on crop growth, development, and productivity [1].
Abiotic stresses affect multiple aspects of plant physiology and cause widespread damages
to cellular processes [2]. Plants have evolved complex regulatory pathways to sense and
respond to these stresses in a timely manner [3]. In general, abiotic stress often causes
oxidative stress and cell damage through inducing excess reactive oxygen species (ROS)
generation, such as superoxide anion (O2

•–), hydrogen peroxide (H2O2), hydroxyl radi-
cal (·OH), and singlet oxygen (1O2) [4–6]. Plants have evolved sophisticated antioxidant
mechanisms to modulate ROS homeostasis in response to oxidative stress [4,5]. For ex-
ample, plants recruit abundant enzymatic and non-enzymatic antioxidants. Among these,
superoxide dismutase (SOD), guaiacol peroxidase (POD), catalase (CAT), ascorbate peroxi-
dase (APX), thioredoxins (TRX), peroxiredoxins (PRX), glutathione peroxidase (GPX), and
glutathione reductase (GR) comprise the enzymatic antioxidant system to regulate ROS
accumulation [7,8]. Non-enzymatic antioxidants, such as ascorbic acid (ASC), glutathione
(GSH), tocopherol (vitamin E), and flavonoids, are also responsible for keeping ROS bal-
anced at a basal non-toxic level [7,8]. The ascorbate-glutathione cycle (AsA-GSH cycle) is
regarded as an important part of the redox hub [5].
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Melatonin (N-acetyl-5-methoxytryptamine), known as phytomelatonin, is a modu-
latory agent of plant growth and stress responses, such as lateral root growth, salinity,
drought, heat, heavy metals, and defense against UV-B irradiation and bacterial pathogen
infection [9–17]. Interestingly, endogenous melatonin levels are increased rapidly by the
induction of synthetic genes under the above unfavorable conditions in plants [11,12,14,15].
Melatonin acts as an antioxidant in the control of ROS levels via regulating redox enzymes
(including SOD, POD, CAT, APX, GR, etc.) and metabolites (including ASC, GSH, flavonoid,
anthocyanins, etc.) [11,12,17–20]. Several studies have revealed that melatonin regulates
the primary and secondary metabolism via mediating the master factors of metabolic
processes [10,19–22].

Moreover, any deviation from ROS balance can be thought of as a reaction to ROS
signaling [8,23]. Numerous studies have revealed that ROS signaling plays a dual role,
and is also beneficial to plants at specific cellular compartments during the abiotic stress
process [8,23]. Multiple enzymatic systems, such as POD and plasma membrane-bound
NADPH oxidase, generate ROS [24]. The respiratory burst oxidase homolog (RBOH)
NADPH oxidases are the primary source of ROS production at the apoplast [25]. Superoxide
is generated by NADPH oxidase and dismutated to H2O2 [26]. It has been observed that
AtrbohD and AtrbohF can regulate sodium (Na) and potassium (K) transport, thus limiting
Na concentrations and enhancing salinity tolerance [27,28]. AtrbohF also plays a vital role
in mediating cadmium (Cd) uptake, chelation, and translocation [29]. Moreover, the ROS
wave is required for a plant’s high light, cold, and heat tolerance as well [30–32].

To date, several papers have confirmed the crosstalk between melatonin and signaling
molecules, such as nitric oxide (NO), hydrogen sulfide (H2S), and hydrogen gas (H2);
therefore, the present paper does not elucidate it in detail [9,10,18,19,33–35]. Here, we
systematically review the updated literature on the crosstalk between melatonin and ROS
in plants upon abiotic stresses, highlight the role of RBOHs, and give perspectives for
future research.

2. Melatonin Acts as an Antioxidant to Establish Redox Homeostasis through the
Antioxidant System in Plants under Abiotic Stresses

As a master regulator, melatonin plays an important role in plant tolerance to abiotic
stresses, such as salinity, cold, heat, drought, and heavy metals [9–17]. Our previous review
systematically summarized the melatonin biosynthesis and catabolism in plants [19]. We
also showed that Cd stress strongly induced melatonin accumulation via regulating the
expression of genes encoding tryptophan decarboxylase (TDC), tryptamine 5-hydroxylase
(T5H), N-acetylserotonin methyltransferase (ASMT), caffeic acid O-methyltransferase (COMT),
and serotonin N-acetyltransferase (SNAT, also called arylakylamine N-acetyltransferase
(AANAT)) [21]. Moreover, salinity stress up-regulated the expression SNAT genes and
improved melatonin levels in Arabidopsis and Brassica napus [35,36]. In cucumber, cold treat-
ment induced the expression of TDC, T5H, SNAT, and COMT genes, and thus enhanced
melatonin levels [37]. Heat stress also improved the transcripts of T5H and ASMT genes and
melatonin levels in tomato seedlings [38]. Similarly, drought stress up-regulated the expres-
sion of TDC1, T5H, AANAT2, and ASMT1 in Malus hupehensis and maize plants [39]. These
studies mainly found that melatonin levels were significantly induced via up-regulating
the transcriptional level of melatonin biosynthesis genes in response to abiotic stress in
plants. Interestingly, MzASMT9 protein levels were enhanced by salinity stress in leaves of
Malus zumi [40]. Moreover, abiotic stress also tightly regulated the activities of melatonin
biosynthesis enzymes, such as T5H, TDC, SNAT, and ASMT enzymes [41,42]. For example,
high temperature elevated SNAT and ASMT activity, and increased melatonin levels in
rice seedlings [41]. Salinity stress induced serotonin accumulation and N-acetylserotonin
O-methyltransferase (HIOMT) activity in vascular bundles and the cortex, leading to
melatonin accumulation in sunflower (Helianthus annuus) plants [42].

In general, these stresses caused endogenous melatonin accumulation, indicating that
melatonin might be involved in a plant’s tolerance to abiotic stress. A series of studies
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found that the application of exogenous melatonin increased the level of endogenous
melatonin, thereby improving plant tolerance to abiotic stress [20,21,36,43,44]. For example,
the endogenous melatonin content was increased in maize by application of exogenous
melatonin upon both control and Al stress conditions [43]. Moreover, this increase signifi-
cantly mitigated Al-induced oxidative stress [43]. Similar results were found in the role
of exogenous melatonin application in the alleviation of Cd-induced growth inhibition of
mallow (Malva parviflora) plants [20]. Pharmacological studies also revealed that exogenous
melatonin application improved resistance to salinity and drought stresses via the modu-
lation of photosynthesis and starch/sucrose metabolism in soybean [21]. The application
of melatonin partly counteracted salinity-induced seedling growth inhibition in rapeseed
(Brassica napus L.) [36]. The role of exogenous melatonin in reducing the severity induced
by heat stress in wheat seedlings was also evaluated [44].

Recently, several general genetic studies have been conducted in plants [10–12,35,45–47].
In these studies, it was demonstrated that both the TDC-silenced mutant and COMT1-
silenced mutant showed a lower level of melatonin in tomato plants [10]. In Arabidopsis,
we found that the atsnat mutant showed a low content of melatonin, and appeared hy-
persensitive to salinity stress in comparison with the wild-type seedlings [12,35]. It was
also observed that both atsnat-1 and atsnat-1 showed sensitivity to high levels of light [46].
The transgenic Arabidopsis seedlings overexpressing alfalfa SNAT enhanced melatonin
accumulation and exhibited more resistance to Cd stress than wild-type plants [11]. In
tomato plants, overexpressing AANAT or HIOMT enhanced melatonin accumulation and
improved drought tolerance [45]. Heterologous expression of HIOMT in apple leaves
showed higher melatonin levels and improved salinity stress tolerance [46]. Nevertheless,
there is still much to be learned about the post-translational modulation of melatonin
biosynthesis genes and the regulation of related proteins, which should be further studied
in the future.

Abiotic stresses cause endogenous ROS (mainly O2
•–, H2O2, and MDA) accumulation

in plants, which generates in different various organelles including chloroplast, peroxisome,
mitochondria, and the cell membrane during abiotic stresses (Figure 1) [4]. For example,
O2

•– acts as the by-product of oxygen reduction by the electron transport chain (ETC) in
chloroplast and mitochondria [48,49]. They also generate by photorespiration and fatty
acid oxidation in peroxisome [50,51]. Then, H2O2 is produced from O2

•– by the activity of
SOD or glycolate oxidases. Furthermore, NADPH oxidases, cell-wall-bound peroxidases
(POX), and polyamine oxidases (PAO) result in ROS generation in the cell membrane, cell
wall, and apoplast, respectively [4,52]. As toxic byproducts, ROS could cause damages to
the RNA, DNA, and proteins of plants (oxidative stress situations) [8].

Melatonin acts as a potential antioxidant against abiotic stresses in plants. Afterwards,
melatonin enhances the tolerance via up- or down-regulating downstream regulating el-
ements within the physiological environments of various plants (Figure 1, Table 1). The
increased melatonin decreases O2

•– and H2O2 accumulation via the enhanced antioxidant
enzyme activities and antioxidant levels [9,10,18,19]. Some examples of the various roles
of melatonin in the regulation of redox homeostasis in plants under abiotic stresses are
illustrated in Table 1. Salinity stress is one of the serious threats to crop growth and de-
velopment. Many studies indicate that melatonin enhances tolerance to salinity stress in
various plant species, including Arabidopsis, Brassica napus, rice, wheat, tomato, cucumber,
Malus domestica, Limonium bicolor, sunflower, and olive [12,35,36,40,42,47,53–59]. Within
these studies, melatonin regulated ion homeostasis, especially Na+ and K+ homeostasis,
thus alleviating the salinity damage. Melatonin treatment up-regulated the expression
of SOS1, NHX1, and/or AKT1, and then maintained K+/Na+ homeostasis in Arabidopsis
and rice [12,35,36,53]. Moreover, to reestablish the redox homeostasis, melatonin also
enhanced the expression of genes encoding antioxidant enzymes (such as APX1, APX2,
CAT1, FSD1, CuZnSOD, and MnSOD), and improved the activities of APX, SOD, CAT,
POD, ∆1-pyrroline-5-carboxylate synthesis (P5CS), as well as the levels of antioxidants
(ASC, GSH, proline, and total soluble carbohydrates) [12,35,36,40,42,47,54–59] (Table 1).
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Similarly, it was well established that melatonin boosted the activities of many antioxidant
enzymes (including SOD, POD, APX, CAT, DHAR, GST, GR, MDHAR, and PPO) and
the levels of antioxidants (including ASC, DHA, GSH, proline, flavonoid, carotenoid, and
phenolic compounds), thus reducing ROS levels and improving tolerance to drought stress
in plants, such as maize, tomato, citrus, soybean, Malus, or kiwifruit plants [14,39,60–64]
(Table 1). Melatonin also acted as a priming agent to improve Medicago sativa tolerance
to drought stress via the nitro-oxidative homeostasis [65]. Both cold and heat stress can
induce ROS accumulation and alter the redox homeostasis. The increase in melatonin
alleviated the inhibition of germination and growth of plants, such as Arabidopsis, rice,
watermelon, Camellia sinensis, cucumber, tomato, soybean, Chrysanthemum, Actinidia deli-
ciosa, etc. [15,37,38,44,66–77] (Table 1). Similar to salinity and drought stresses, cold or heat
stress induced severe oxidative stress, and melatonin increased APX, SOD, CAT, POD, GPX,
GR, Gly I, and Gly II activity, as well as GSH, ASC, proline, flavonoid, and proline contents.
Furthermore, melatonin treatment positively modulated ZAT10 and ZAT12, which encode
transcriptional regulators of ROS-related antioxidant genes [66]. Several studies suggested
that heat shock proteins (HSPs) were also involved in melatonin-regulated heat tolerance in
plants, such as Arabidopsis, tomato, and kiwifruit [74,76,77]. In addition, heavy metal pollu-
tants were shown to induce serious stress and toxicity in plants. Melatonin protects plants
upon heavy metal stress, such as Cd, aluminum (Al), lead (Pb), mercury (Hg), copper (Cu),
vanadium (V), and arsenic (As) [11,19,20,43,78–80] (Table 1). In these studies, melatonin
improved Cd-triggered redox imbalance through changes in Cu/ZnSOD genes, which are
regulated by miR398a and miR398b [11]. Seeds of red cabbage with melatonin pretreatment
conferred Cu tolerance by blocking the membrane peroxidation and DNA damages [78].
Treatment of exogenous melatonin or improvement of endogenous melatonin by over-
expressing the melatonin synthetic-related genes stimulated the activities of antioxidant
enzymes (including APX, SOD, CAT, POD, GPX, GR, and PAL) and increased antioxi-
dant levels (including DHA, GSH, proline, flavonoid, and anthocyanins), thus inhibiting
ROS production in plants, such as tomato, Nicotiana tabacum L., rice, maize, wheat, Azolla
imbricata, and watermelon seedlings under the stress of heavy metals [11,19,20,43,78–80]
(Table 1). Melatonin also improved the efficiency of PSII and regulated amino acids, sugar
alcohols, and carotenoids metabolism to enhance plant tolerance to abiotic stress (Figure 1).

Table 1. Some examples of the roles of melatonin in regulating redox homeostasis in plants under
abiotic stresses.

Abiotic
Stressors

Impact on Oxidative Stress Markers and Antioxidative Defense Systems
(Enzymes and Related Genes) Plant Species References

Salinity
stress

H2O2, O2
•–, MDA, ·OH, and EL;

APX, SOD, CAT, POD, ∆1-pyrroline-5-carboxylate synthetase, ASC, GSH, proline,
and total soluble carbohydrates;

APX1, APX2, CAT1, FSD1, CuZnSOD, and MnSOD

Arabidopsis, Brassica
napus, Malus domestica,
olive, tomato, wheat,

cucumber, rice,
Limonium bicolor

[12,35,36,40,42,
47,53–59]

Drought
stress

H2O2, MDA, O2
•–, and EL;

APX, SOD, CAT, POD, DHAR, GST, GR, MDHAR, PPO, ASC, DHA, GSH, proline,
flavonoid, carotenoid, and phenolic compounds;

Cu/ZnSOD, Fe/MnSOD, APX, CAT, GR, POD, GST, DHAR, and MDHAR

maize, tomato, citrus,
soybean, kiwifruit,

Malus
[14,39,60–65]

Cold stress
H2O2, O2

•–, MDA, and EL;
APX, SOD, CAT, POD, GR, GSH, ASC, proline, polyamine;

APX, CAT, SOD, GR, ZAT10, and ZAT12

Arabidopsis,
watermelon, Camellia

sinensis, rice, cucumber,
tomato

[15,37,66–70]

Heat stress

H2O2, O2
•–, MDA, and EL;

APX, SOD, CAT, POD, GPX, GR, Gly I, Gly II, GSH, ASC, proline, flavonoid,
proline, polyamine, and carotenoid;

APX, CAT, SOD, POD, HsfA2, and Hsp90

rice, soybean, maize,
Chrysanthemum,

Actinidia deliciosa
[38,44,71–77]
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Table 1. Cont.

Abiotic
Stressors

Impact on Oxidative Stress Markers and Antioxidative Defense Systems
(Enzymes and Related Genes) Plant Species References

Heavy
metals
stress

H2O2, O2
•–, MDA, and EL;

APX, SOD, CAT, POD, GPX, GR, PAL, ASC, DHA, GSH, proline, flavonoid,
anthocyanins

APX, CAT, POD, SOD, GR, GSH1, PCS

Tomato, Nicotiana
tabacum L., Brassica

napus L., rice, maize,
wheat, alfalfa, Azolla

imbricata, watermelon

[11,19,20,43,78–80]

H2O2, hydrogen peroxide; O2
•–, superoxide anion; MDA, malondialdehyde; ·OH, hydroxyl radical; EL, elec-

trolytic leakage; APX, ascorbate peroxidase; SOD, superoxide dismutase; CAT, catalase; POD, guaiacol peroxidase;
DHAR, dehydroascorbate reductase; GST, glutathione S-transferase; GR, glutathione reductase; MDHAR, mon-
odehydroascorbate reductase, PPO, polyphenol oxidase; ACS, ascorbate; GSH, reduced glutathione; DHA,
dehydroascorbate; GPX, glutathione peroxidase; ZAT, ROS-related responsive elements; Gly, glyoxalase; HsfA,
heat-shock factor; HSP, heat-shock protein; PAL, phenylalanine ammonia-lyase.
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cucumber, Malus domestica, Limonium bicolor, sunflower, and olive [12,35,36,40,42,47,53–
59]. Within these studies, melatonin regulated ion homeostasis, especially Na+ and K+ ho-
meostasis, thus alleviating the salinity damage. Melatonin treatment up-regulated the ex-
pression of SOS1, NHX1, and/or AKT1, and then maintained K+/Na+ homeostasis in Ara-
bidopsis and rice [12,35,36,53]. Moreover, to reestablish the redox homeostasis, melatonin 

Figure 1. The relationship between melatonin and ROS in plant responses to abiotic stresses. Abiotic
stresses, such as salinity, heat, cold, drought, and heavy metals, induce melatonin (Mel) and ROS
(mainly O2

•–, H2O2, and MDA) accumulation. ROS generates in excess in chloroplast, peroxisome,
mitochondria, the cell membrane, and apoplast. Melatonin further regulates the activity of several
antioxidant enzymes and the contents of antioxidants. Moreover, melatonin modulates the RBOH
involved in H2O2 accumulation, and thereby acts as a signaling molecule to regulate gene expression
in the nucleus. It is also suggested that ROS interact with melatonin to form AFMK via IDO enzyme.
Melatonin regulates the amino acid biosynthesis, sugar alcohols, and carotenoids to alleviate abiotic
stresses. Mel, melatonin; PS, photosystem; mETC, the electron transport chain in mitochondria; ROS,
reactive oxygen species; O2

•–, superoxide anion; H2O2, hydrogen peroxide; SOD, superoxide dismu-
tase; APX, ascorbate peroxidase; POD, guaiacol peroxidase; CAT, catalase; GR, glutathione reductase;
DHAR, dehydroascorbate reductase; GPX, glutathione peroxidase; Trx, thioredoxins; Prx, peroxire-
doxins; P5CS, pyrroline-5-carboxylate synthetase; PROD, proline dehydrogenase; IDO, indoleamine
2,3-dioxygenase; PAO, polyamine oxidase; ASC, ascorbic acid; DHA, dehydroascorbate; GSH, re-
duced glutathione; GSSG, oxidized glutathione; AFMK, N1-acetyl-N2-formyl-5-methoxykynuramine;
RBOH, respiratory burst oxidase.
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3. Plant Abiotic Stress Tolerance Is Mediated by the Crosstalk between Melatonin and
Signal Molecules (NO, H2S, and ROS)

Melatonin was shown to be a crucial regulator occupying extensive roles in many
physiological and biochemical processes throughout plant life, especially plant responses
to abiotic stress [9,10,19]. Furthermore, melatonin was shown to function with other sig-
nal molecules in order to manipulate environmental damages, such as NO, H2S, ROS,
and H2 [9,10,18,19,33–35]. The latest reviews systematically revealed the inter-relationship
between melatonin and gasotransmitters (including NO, CO, H2S, CH4, and H2) in resis-
tance to plant abiotic stress [10,81–83]. For example, melatonin altered the endogenous
NO accumulation, and reduced reactive nitrogen species (RNS) (ONOO–, and peroxyni-
trous acid), which was generated by stress [81,82]. Nevertheless, melatonin regulated
the expression of the nitric oxide synthase (NOS) gene, and triggered endogenous NO
accumulation [84]. Ample evidence manifested that NO acted as the downstream sig-
nal of melatonin to regulate plant tolerance to salinity, drought, heat, cold, Cd, and Al
stresses [33,34,36,85–88]. Zhao et al. found that melatonin enhanced rapeseed seedling
tolerance via NO signaling against salinity stress, and similar results were obtained for
sunflower seedlings as well [36,85]. Melatonin down-regulated the NO accumulation, thus
promoting soybean tolerance to drought stress [86]. Moreover, positive and antagonistic
interactions between melatonin and NO might exist in plant responses to stress caused by
heavy metals [19,87,88].

It was also shown that H2S plays a vital role in enhancing plant tolerance to abiotic
stress and alleviating its detrimental effects [89–92]. Melatonin increased the activities of
the H2S-produced enzymes (D-cysteine desulfhydrase (DCD), L-cysteine desulfhydrase
(LCD)), thus improving H2S accumulation [93–95]. Further, application of hypotaurine
(HT, H2S scavenger) reversed the contribution of melatonin in alleviation of the salinity
and heat damages by reestablishing the redox homeostasis in tomato, cucumber, and wheat
seedlings [44,94,95]. Kaya et al. found that the interactive effect of NO and H2S improved
the wheat’s resistance to Cd stress via enhancing the antioxidative defense system and
reducing the damage induced by oxidative stress [96]. Moreover, the H2S and NO jointly
were involved in melatonin-regulated salinity tolerance in cucumbers [95]. They were
also involved in melatonin-mediated resistance to iron deficiency and salinity stress in
pepper seedlings [97]. Until now, the interactions among melatonin, NO, and H2S in plant
responses to abiotic stress were not largely explored.

In recent years, apart from NO and H2S, great efforts were made in studies conducted
on ROS-directed plant abiotic stress responses [4–8]. In this review, Section 2 shows that
ROS are inevitably produced by adverse environmental conditions, and thereby signifi-
cantly cause damages to the structural and functional integrity of the whole plant seedling.
More importantly, ROS instantly produced in chloroplast, peroxisome, mitochondria, and
cell membrane organelles often modulate signaling pathways when maintained at a mod-
erate concentration [4–8]. Recent studies have further shed new light on the role of ROS
in melatonin-regulated tolerance to abiotic stresses in plants. In early responses to cold
stress, melatonin was found to stimulate H2O2 accumulation in watermelon [98]. Chen et al.
found that endogenous melatonin rapidly induced ROS accumulation under short-term
salinity treatment in Arabidopsis [12]. Then, ROS triggered SOS-mediated Na+ efflux and
intensified the increased antioxidant defense [12]. Similarly, melatonin triggered an ROS
burst that enhanced the expression of K+ uptake transporters to enable K+ retention under
salinity stress in rice [53]. H2O2 scavengers negated the effects of melatonin-mitigated
abiotic stress, such as drought, heat, and cold stress in tomato plants [99]. Collectively,
these studies preliminarily revealed that ROS signaling acts downstream of melatonin in
alleviation of abiotic stress in plants.

Several articles have also shown the mechanisms underlying the complexity of ROS
with NO and/or H2S signaling in plant tolerance against abiotic stress [2–4,89,90,92].
Zeng et al. reviewed the crosstalk among melatonin, NO, and ROS in plant tolerance to
bacterial, fungal, and viral diseases [100]. This phenomenon was also shown to promote
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fruit ripening [9]. However, more advances should be made to provide new insights on
the understanding of the crosstalk among melatonin, NO, H2S, and ROS in plant abiotic
tolerance using genetic, pharmacological, genomic, and proteomic approaches.

4. The Roles of RBOH-Involved ROS Signaling in Melatonin-Modulated Plant Processes

ROS produced in several organs (the cell membrane, chloroplast, peroxisome, mito-
chondria, and apoplast) are implicated in signaling pathways (Figure 1). Respiratory burst
oxidase homolog (RBOH) proteins are the NADPH oxidases localized on the plasma mem-
brane [101]. They are the key proteins associated with the signal transduction event [101].
There is a C-terminal FAD/NADP(H)-binding domain, a N-terminal regulatory domain,
six transmembrane domains, and several potential phosphorylation sites in RBOHs [24,25].
The NADPH oxidases are modulated by phosphorylation and/or binding of calcium ions
at the cytosol, and then produce O2

•− at the apoplast (Figure 1). O2
•− is converted into

H2O2 via the action of SOD, or spontaneously [8,101]. Afterwards, H2O2 could enter
various types of cells and trigger different signaling responses. There are ten or eight RBOH
genes encoding NADPH oxidase in Arabidopsis or tomato, respectively [24,25]. In recent
years, many studies have shed light on ROS-directed plant growth and stress responses in
Arabidopsis and other crops. In this review, we emphasize the roles of RBOH-involved ROS
signaling in melatonin-mediated plant abiotic stress tolerance.

Recently, the roles of Rbohs were analyzed in Arabidopsis, tomato, tobacco, rice, cucum-
ber, alfalfa, etc. [12,53,102–106]. Most of these genes played important roles in resistance
to salinity, high/low temperature, heavy metals, and biological stress [12,53,102–106]. It
was reported that AtRbohC regulated the stability of SOS1 mRNA to improve salinity
tolerance [102]. AtrbohC, AtrbohD, and AtrbohF also inhibited calcium (Ca), zinc (Zn),
and iron (Fe) translocation [29]. SlRbohB-involved ROS signaling was required for toler-
ance to drought stress in tomatoes [103]. Meanwhile, RBOH1-produced H2O2 induced
the expression of downstream genes to enhance tomato’s resistance to cold, salinity, and
salinity–alkalinity stresses [104–106]. In tobacco, the NtRbohE-derived ROS signaling
pathway improved salinity tolerance [107]. Moreover, RBOH-mediated ROS production
was involved in lateral root growth, and AtRbohC promoted root hair budding in Ara-
bidopis [108,109]. AtrbohF-mediated H2O2 signaling acted as a key mediator in stomatal
closure in guard cells [110]. Hence, RBOHs-involved ROS signaling plays a vital role in
plant growth and abiotic stress tolerance.

Much more is now known about how RBOH genes are regulated in response to abiotic
stresses. Recent evidence suggests that ROS function as signaling molecules in relation to
hormone responses, and the mechanistic bases are complicated. Clearly, melatonin has
complex crosstalks with signaling molecules and other phytohormones [19,111]. In our
studies, melatonin-triggered lateral root formation was H2O2-dependent in alfalfa [13].
Further, melatonin induced PAO and RBOH-derived ROS accumulation to facilitate the lat-
eral root development in tomatoes [112,113]. The roles of PuRBOHF-dependent H2O2 were
also essential for melatonin-induced anthocyanin accumulation in red pear fruit [114,115].
Moreover, a RbohF-dependent ROS burst was required for melatonin-triggered salinity
tolerance in Arabidopsis and rice [12,53]. So far, the ways that most RBOHs function in
melatonin-regulated processes in response to abiotic stress are still elusive, and it should be
clarified in future studies.

5. How Melatonin Directs with the RBOH-Regulated ROS Signaling in Plant Tolerance
to Abiotic Stress

Several studies take the important stance that the transmembrane receptor of mela-
tonin (PMTR1/CAND2) is found in Arabidopsis, tobacco, alfalfa, and maize [116–119]. It is
also located in the plasma membrane, and can interact with G-protein α subunits, thereby
activating RBOHs to promote stomatal closure in Arabidopsis (Figure 2) [116,119]. Mela-
tonin inhibits endogenous NO accumulation and reduces the S-nitrosylation of RBOH to
activate the ROS signaling pathway [99]. ROS signaling induces the expression of defensive
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genes to enhance plant tolerance to oxidative stress [120,121]. However, whether or how the
interaction between PMTR1/CAND2 and G-protein α subunits directly regulates RBOHs
in plant response to abiotic stress remains to be deciphered.
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Figure 2. Probable integrative model of ROS with melatonin regulator in plant responses to abiotic
stress. Increasing evidence shows that melatonin induces NO generation and enhances RBOH activity
through denitrosylation, thereby activating ROS signaling in tomatoes (blue arrow). Interaction
between CAND2/PMTR1 (the melatonin receptor) and G-protein α subunits activates RBOHs,
resulting in stomatal closure (green arrow). The direct relationship between the melatonin and
RBOHs in plant tolerance to abiotic stress is still largely unknown (red arrow, yet largely unknown).
NO, nitric oxide; ROS, reactive oxygen species; RBOHs, respiratory burst oxidase homologs.

Recent data imply that melatonin connects with the multiple elements, including the
hormone and signaling molecules. Moreover, it was found that H2S modulates the post-
translational modification of protein cysteine residues in plants [122–124]. Our previous
review further suggested that ROS interacted with H2S by regulating transcriptional or
post-translational modifications in response to oxidative stress [125]. Therefore, interaction
of melatonin with ROS and H2S in regulating abiotic stress also has significant importance
and remains to be identified in future.

6. Conclusions and Perspectives

Much more is now known about the regulatory mechanism of melatonin-mediated
tolerance to abiotic stresses, especially the cooperation between melatonin and ROS, NO,
and/or H2S. To further promote this research in plants, our review summarizes the ROS-
involved regulatory roles and mechanisms of melatonin-mediated abiotic stress resistance.
Melatonin confers oxidative stress tolerance mainly through the reestablishment of redox
homeostasis. Moreover, ROS act as signaling molecules that regulate melatonin-modulated
protective effects. In particular, the vital role of RBOHs during these processes was shown.
However, there are still many questions that should be characterized to understand the
signal transduction pathway of melatonin in plants in response to abiotic stress. For
example, it is necessary to focus more attention on the signaling role of ROS produced by
photosystem II (PSII) and photorespiration in melatonin-alleviated abiotic stress in future
studies.

As melatonin is an important regulatory element of phytohormones, it collaborates
with multiple elements (such as the discovered signaling molecules NO, H2S, and ROS)
and hormones (such as auxin, ethylene, salicylic acid, gibberellin, and abscisic acid sig-
naling). Importantly, most studies do not provide solid in vivo evidence. Future studies
using related mutants produced by gene editing technology and plastid transformation
technology [126,127] should aim to illustrate how melatonin functions with these signaling
molecules in plants under stressful situations.
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