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a b s t r a c t

COVID-19 is responsible for the deaths of millions of people around the world. The scientific
community has devoted its knowledge to finding ways that reduce the impact and understand the
pandemic. In this work, the focus is on analyzing electronic health records for one of the largest public
healthcare systems globally, the Brazilian public healthcare system called Sistema Único de Saúde (SUS).
SUS collected more than 42 million flu records in a year of the pandemic and made this data publicly
available. It is crucial, in this context, to apply analysis techniques that can lead to the optimization
of the health care resources in SUS. We propose QDS-COVID, a visual analytics prototype for creating
insights over SUS records. The prototype relies on a state-of-the-art datacube structure that supports
slicing and dicing exploration of charts and Choropleth maps for all states and municipalities in Brazil.
A set of analysis questions drives the development of the prototype and the construction of case studies
that demonstrate the potential of the approach. The results include comparisons against other studies
and feedback from a medical expert.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

The COVID-19 pandemic has caused the death of millions of
eople worldwide. In Brazil, the number of deaths surpassed
40,000 as of May 2022. Healthcare systems are essential in the
ight against the pandemic, such as the Sistema Único de Saúde
SUS) [1], which corresponds to the Brazilian unified health-
are system. SUS made large amounts of health data publicly
vailable. The data contains records of patient admissions in
edical institutions in Brazil. Due to the COVID-19 pandemic, the
razilian Ministry of Health implemented a platform for mon-
toring COVID-19 records. These records have an essential role
n understanding the impacts of COVID-19 in Brazil, a country
ith continental proportions, a large population, and one of the
ountries hit the hardest by the pandemic.
The analysis of SUS data is challenging as it is composed of mil-

ions of electronic health records (EHRs), containing a broad spec-
rum of patient demographics, symptoms, and risk factors [2].
n this work, we propose QDS-COVID, a visual analytics system
or the interactive exploration of millions of SUS records associ-
ted with COVID-19. The prototype relies on the computational
ower offered by the Quantile Datacube Structure (QDS) [3],
hich allows filtering in different data dimensions and creating

∗ Corresponding author.
E-mail address: comba@inf.ufrgs.br (J.L.D. Comba).
ttps://doi.org/10.1016/j.asoc.2022.109093
568-4946/© 2022 Elsevier B.V. All rights reserved.
charts combined with maps to show information for states and
municipalities. Application scenarios of the prototype include
highlighting findings drawn from the data, comparisons against
studies over the same data, and feedback from a medical expert
who used the prototype independently.

2. Related work

This section summarizes related work, including analytics sys-
tems for healthcare data. Since a big concern is the size of the SUS
data, the review also includes data structures that support aggre-
gate analytics and interactive exploration of big data. The section
ends with recent efforts to analyze and visualize COVID-19 data.

2.1. Healthcare analytics systems

Visualization in healthcare has a broad range of applications
designed for patients, doctors, companies, and public policies.
Gotz and Borland [4] divides the range of applications into four
primary focuses: (a) patient-centered point-of-care applications
that provide information from a single patient to clinicians;
(b) patient-facing applications that allow managing patient med-
ical histories and treatments; (c) population management ap-
plications that devise suitable health programs; and (d) health
outcomes that find risk factors over geographic regions. West
et al. [5] and Plaisant et al. [6] explore Electronic Health Records

https://doi.org/10.1016/j.asoc.2022.109093
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2022.109093&domain=pdf
mailto:comba@inf.ufrgs.br
https://doi.org/10.1016/j.asoc.2022.109093
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EHR) using visualization tools. They mention that the EHR size
nd complexity are the main challenges in finding meaningful
atterns and analyzing data. Ola and Sedig have a sequence of
apers that describe visualization techniques applied to EHRs.
he first paper [7] discusses the visualization of multiple aspects
n demographic, geographic, chronological, and summaries of
ealthcare data. The second work, HealthConfection [8], analyzes
isk factors and causes of mortality. The third paper points out
he importance of human-data interaction through visualization
rameworks to understand healthcare data [9].

Several papers discuss the relationship between visual ana-
ytics and healthcare data [6,10–13]. VisOHC [14] visualizes in-
ividual conversation threads from Online Health Communities
OHCs) through histograms, word clouds, t-distributed Stochastic
eighbor Embedding (t-SNE) [15] to visualize similar threads, and
he use of divergent/sequential colors for sentiment analysis. That
tudy indicates that visual analytics help explore healthcare data
nd find patterns visually. Other techniques follow a server-side
pproach that processes large and complex healthcare datasets
o explore, analyze, and understand data using Geovisual tech-
iques [16]. In addition to processing and visualizing healthcare
ata, this approach emphasizes the strong relationship of health-
are data with socio-economic, demographic, and environmental
ata of spatial regions under analysis. Frequence [17] is a visual-
zation tool to explore and understand patterns of temporal event
equences implementing a sequence mining algorithm to handle
eal-world data requirements (such as multiple levels of detail,
emporal context, concurrency, etc.). Care Pathway Explorer [18]
xtracts and visualizes the EHRs of patients to obtain sequences
f medical events like diagnoses and treatments to contrast the
orrelation with the patient’s outcome.
Big data analytics is also an essential issue for analyzing

ealthcare data [19,20]. Wang et al. [19] conducted a study of
ig data applications in healthcare. Galleta et al. [20] present
n architecture for remote patient monitoring using big data
isualization services for healthcare systems. QDS-COVID com-
lements these ideas by providing an infrastructure that supports
he interactive visual exploration of millions of electronic health
ecords (EHRs).

.2. Data structures for aggregated analytics

A fundamental problem in modern visual data analysis is how
o build data exploration environments that support the interac-
ive exploration of large datasets. This problem has two opposing
acets. From one side, the ever-growing complexity and size of
atasets requires complex navigation and visual summarization
apabilities. On the other hand, human perception and cognition
ose a challenge on how long the data handling and rendering
oop can last. Even minor delays on the scale of half a second can
egatively impact the visual data exploration process [21]. As a
esult, there are limitations to the analysis that one can hope to
erform interactively.
Business Intelligence (BI) is the ability to extract and prepare

ata to run queries (e.g., slicing, dicing, pivoting, and aggregation)
nd create management reports and data visualizations to present
nalytical results. Such BI systems can be hard to implement,
requently requiring months to complete and a large number
f highly trained IT professionals. Healthcare systems often rely
n efficient approaches for computing aggregated analytics. The
eminal paper by Gray [22] introduces the concept of datacubes.
datacube is defined as the combination of all possible aggre-

ations of attributes for a given relation and their summarized
umerical metrics, e.g., count, maximum, average, etc.. Modern
terations of datacubes structures combine (i) the ability to query
with instant results, (ii) low memory usage, and (iii) advanced
2

data analysis and modeling techniques, leveraging the opportu-
nities of interactive visualization tools of large datasets running
in personal computers with mainstream specifications. A dat-
acube does not replace a relational database but they are fre-
quently used in conjunction to overcome the relational database
performance limitations.

The first approach to connect visualization techniques and
datacubes in an interactive fashion was imMens [23]. ImMens
speed up computations in data aggregation operations using
GPUs. Nanocubes [24] uses a hierarchical representation to en-
code pre-computed aggregations. The Hashedcubes [25] improves
upon Nanocubes by providing a simpler data structure while also
handling datasets that were an order of magnitude larger than
the datasets supported by Nanocubes. The Quantile Datacubes
Structure (QDS) [3] is an improved version of HashedCubes. QDS
supports the storage of multi-dimensional data (spatial, temporal,
and categorical) in arrays, following nested sorting in each dimen-
sion. QDS has a multi-level index that keeps, for each dimension,
a list of intervals of array indexes (called pivots) that delimit a
consecutive region in the array. Fig. 1 shows an example of a QDS
structure for a dataset composed of three dimensions (city, age,
and gender).

In QDS, aggregated values are not limited to averages as it
can store distributions within different quantiles. For instance, in-
stead of indexing the average of a numerical attribute, QDS stores
its quantiles to support aggregation computations on the fly, such
as the average, quantile, maximum, or minimum. Quantile query
computation relies on a compressed representation of a distribu-
tion function based on a non-parametric distribution modeling
technique called t-digest [26]. QDS stores such a representation
as a payload that uses merging distribution functions to support
on the fly aggregations. In this work, QDS is the chosen data
structure for supporting data exploration.

2.3. Analysis and visualization of COVID-19 data

Understanding COVID-19 led to works that study the different
facets of the data associated with the pandemic [2,27]. Visualiza-
tion techniques have been a fundamental part of this process with
interactive dashboards [28,29] since the early days of the pan-
demic. Other examples include the visualization of graphs such as
the networks in contact tracing and fact-checking or simulation of
the spread of cough particles [30]. A recent survey describes the
several types of crisis visualizations used in COVID-19 data [31].

3. Design considerations of QDS-COVID

The experience of a previous project in collaboration with
the Ministry of Health was essential for us to outline prelim-
inary driving questions for exploring SUS data. In our earlier
interactions, the technicians from the Ministry of Health outlined
the main problems of analyzing SUS data: (i) evaluation of data
quality and finding data inconsistencies; and (ii) the volume of
the data, which made interactive exploration not possible. The
only support available was for individual queries through web
forms, thus limiting analysis and insights about the data. The
addition of a window that could display the geographical borders
of states and municipalities, assigning colors to regions on the
map, was one of the main requests posed by the technicians. Due
to privacy concerns, the prototype developed was only available
for internal use in the Ministry of Health.

The availability of public COVID-19 data from the Ministry
of Health made it possible to revisit the previous project in a
short period. The system design explores EHRs that monitor the
evolution of the pandemic and learn how different regions and
demographic groups were affected by COVID-19. It follows a
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Fig. 1. Example of the multi-level index implemented in QDS.
ethodology for clinical data analysis that uses the visualization
f patterns for supporting clinical decisions and creating insights
nto the healthcare data [32]. To support the exploration, the
equirement questions were revised with the help of a medical
xpert with a master’s in computer science, an ideal background
f an expert to help in the design of the analysis questions. One
f the main issues raised by the medical expert was the need
o understand the disease and how it relates to the patient’s
onditions and symptoms in different parts of Brazil. A set of
nalysis questions were identified after interactions with the
edical doctor. The resulting list of six questions (A1–A6) is as

ollows:

• A1. Identify data inconsistencies or errors: Since the pan-
demic began, SUS modified the forms used to input COVID-
19 data, leading to inconsistencies and errors in records
through time. Identifying inconsistencies helps improve data
acquisition protocols and data quality;

• A2. Explore the geographical distribution of the health
records: Due to Brazil’s continental proportions, climate
characteristics, and ethnic distribution, it is expected that
the pandemic is not going to be uniform across the coun-
try. The requirement is to identify how COVID-19 affects
different states and municipalities;

• A3. Explore the patient’s demographic background: Since
the early stages of the pandemic, it was known that some
demographic groups were more affected by COVID-19 than
others, especially concerning age. The requirement is to
support the analysis of the health records for different age
groups.

• A4. Explore patient’s existing conditions: One factor in
COVID-19 mortality are prior health conditions. Cardiac dis-
eases and diabetes are among the top risk factors for COVID-
19. The requirement is to investigate which health condi-
tions are affecting patients in Brazil;

• A5. Explore symptoms reported by the patients: It is
important to support the exploration of the variations of
symptoms that patients have reported, such as cough, fever,
headache, sore throat, and asymptomatic, among others, as
well as how the symptoms manifest across the country;
3

• A6. The analysis should be performed considering the
temporal aspect of the data: The COVID-19 pandemic has
been a complex temporal process, which presents different
patterns over time. Therefore, the tool needs to allow the
analyst to study particular periods such as months, seasons
of the year, or specific intervals corresponding to pandemic
waves.

To effectively support the analyses described above, the system
has to satisfy the following three (P1–P3) technical requirements:

• P1. Support interactive exploration of health records:
To be effective, the system has to support interactive vi-
sualizations of a dataset containing tens to hundreds of
millions of records. This requires an infrastructure that can
answer queries with low latency and acceptable storage
requirements;

• P2. Support for slice and dice operations that filter sce-
narios in categorical, temporal, and spatial dimensions:
The exploration has to enable the user to perform interactive
filtering on the different dimensions of the data as well as
summarize the data in different levels of detail such as states
and cities;

• P3. Web-browser interface: to support collaborative analy-
sis over the web, the prototype must run from the browser.

4. Materials and methods

This section describes the dataset and pre-processing opera-
tions required to process the data in our system.

4.1. The COVID-19 SUS dataset

Due to the COVID-19 pandemic, the Brazilian Ministry of
Health implemented a platform called e-SUS Notifica to report
flu syndrome cases. It consists of publicly available records con-
taining patient information, clinical and epidemiological data.1
Governmental entities validate and check the consistency of

1 https://opendatasus.saude.gov.br/dataset?tags=covid.

https://opendatasus.saude.gov.br/dataset?tags=covid
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Fig. 2. The client–server architecture of QDS-COVID. It uses the QDS data structure as the data back-end. The front-end provides different visualizations implemented
as multiple coordinated views.
submissions to the platform. Data collection started in March
2020, the month of the first case of COVID-19 in Brazil. Data is
available in a CSV format, with an individual file for each state
in Brazil. Data for all the 26 states and the federal district were
downloaded on April 1st, 2021. The raw dataset has 42.9 million
records. Demographics and geographical boundaries of states and
municipalities used in maps came from the Brazilian Institute of
Geography and Statistics (IBGE).2

4.2. Data pre-processing

Data pre-processing involves exploring, cleaning, and treating
data used in the QDS data structure. This is crucial since data are
often subject to errors, such as ill-formatted fields, incomplete or
inconsistent information, noise, and outliers. The reason for these
errors involve several factors, such as the use of multiple versions
of the systems that collect the data, lack of standards, lack of data
consistency procedures, or lack of knowledge when entering data.

The cleaning process removes the outliers and selects fields
(dimensions) related to the analysis tasks described in Section 3.
When possible, dimensions are represented in categorical for-
mat, where values are discretized into a fixed number of cate-
gories. For example, data for spatial regions such as states and
municipalities are stored as categorical dimensions. Categori-
cal dimensions simplify the check for inconsistencies or lack of
standardization, such as invalid data. Temporal and numerical
dimensions are treated as strings since it simplifies checking the
format used. In addition, data statistics (minimum, maximum,
mean, median, quantiles, and number of nulls) are represented
using graphs such as histograms and boxplots. These statistics
help us choose the dimensions and identify data errors. The
resulting dimensions are listed in Table 1. After pre-processing,
the individual CSV files are combined into a single CSV file which
is the input used to populate the QDS data structure.

4.3. QDS-COVID system architecture

The design of the system is summarized in Fig. 2. QDS-COVID
is implemented using a client–server architecture [33]. The server

2 https://portaldemapas.ibge.gov.br/.
4

is responsible for supporting the data back-end and running an
HTTP server to handle the web application. The client is re-
sponsible for providing interactive visualization capabilities to
explore the data resulting from the queries to the back-end. It is
important to note that the current version of the prototype was
designed to address the requirements listed in Section 3. How-
ever, system design is flexible to accommodate new requirements
such as addition of data or other visualizations. For example,
treemaps were used in a related project to visualize a hierarchy of
disease codes. Another example is the visualization of distribution
functions of numeric attributes of the data. Both examples show
that the prototype can be more sophisticated.

The prototype is currently available online.3 There is also a
video demonstrating the system in action.4

4.3.1. Data back-end: QDS cubes
Since the pre-processed data has millions of multivariate and

spatiotemporal records, there is a need for an efficient data han-
dling solution that satisfies requirements P1 and P2. The QDS [3]
was chosen to store the dataset since it provides the querying
performance needed for interactive exploration under the storage
budget of personal computers. QDS stores tabular data containing
many records, each composed of fields that can describe spatial,
numerical, categorical, and temporal data. To prepare the data
for QDS, the dimensions of the cube need first to be defined.
In the COVID-19 SUS dataset, two categorical dimensions may
have more than one value for each record (patient conditions
and symptoms). To compute aggregations for conditions or symp-
toms individually, it is necessary to create a separate record for
each condition or symptom found. To simplify this process, three
different cubes are used. The first cube contains only records
(without symptoms or conditions). The other two cubes contain a
single record for each condition or symptom. Although there are
up to 13 possible conditions, 38 million of the 42 million records
have no conditions. On the other hand, there are only 88K records
with no symptoms and some with up to 10 symptoms. For this
reason, the conditions cube is much smaller than the symptoms
cube (Table 2).

3 http://www.qdsvis.tk/qdscovid/.
4 https://tinyurl.com/2tfd2ue7.

https://portaldemapas.ibge.gov.br/
http://www.qdsvis.tk/qdscovid/
https://tinyurl.com/2tfd2ue7


J.C.C. Ipenza, N.M.L. Romero, M. Loreto et al. Applied Soft Computing 124 (2022) 109093

i
l
a
t
m
d
o

5

c
i
c

Table 1
Dimensions of the COVID-19 SUS dataset.
Dimension Patient data Epidemiological clinical data

Health professional Age Sex Symptoms date Notification date Conditions Symptoms Test status Test type Test result
Type Categorical Categorical Categorical Temporal Temporal Categorical Categorical Categorical Categorical Categorical

N 2 19 2 – – 10 11 5 7 4

Dimension Case closure data Location data

Evolution Final classification IBGE state IBGE municipality
Type Categorical Categorical Categorical Categorical

N 8 7 28 5603
Fig. 3. QDS-COVID interface components: (A) dataset selection, (B) charts, (C) map and statistics, and (D) filters.
Table 2
Information stored in QDS cubes.
Dataset Objects Memory Time Pivots Schema

Records 42.9M 3.1GB 8 min 17 s 72.8M
health professional (2), sex (2), condition count (3), symptom count (5), test result (4),
test status (5), test type (7), final classification (7), evolution (8), age (19), IBGE state (27),
IBGE municipality (5603), start date of symptoms (temporal), notification date (temporal)

Symptoms 94.3M 6.8GB 17 min 28 s 159.8M
health professional (2), sex (2), symptom (11), test result (4), test status (5), test type (7),
final classification (7), evolution (8), age (19), IBGE state (27), IBGE municipality (5603),
start date of symptoms (temporal), notification date (temporal)

Conditions 5M 432MB 1 min 16 s 11M

health professional (2), sex (2), condition (10), test result (4), test status (5), test type (7),
final classification (7), evolution (8), age (19), IBGE state (27), IBGE municipality (5603),
start date of symptoms (temporal),
notification date (temporal)
c
t
i
p
f
T

4.3.2. Visual analytics interface
The visualization components in QDS-COVID are summarized

n Fig. 3.Widely used visual representations such as bar charts,
ine charts, and maps are used to represent categorical, temporal,
nd spatial data, respectively. The QDS-COVID interface handles
wo spatial data types: latitude and longitude coordinates or
unicipalities and states. Components are implemented as coor-
inated views that can be interactively filtered on the dimensions
f the data.

. Results

The QDS-COVID prototype is a tool for performing exploratory
linical data analysis of the COVID-19 data. The interactive visual
nterface with support to coordinate views and multiple filtering
apabilities offers flexible ways to identify and explore interesting
5

patterns and scenarios. This section illustrates scenarios that were
discovered while using QDS-COVID. The analysis questions A1–
A6 posed in Section 3 drove the exploration process. A video
demonstrating the system in action is available.5 as well as the
web-based prototype.6

Example 1 (A1, A2). Fig. 4 illustrates the different ways to color-
ode the map of Brazil using the boundaries of the 26 states or
he 5,602 municipalities. For simplicity, when referring to states
n Brazil, their two-letter acronym is used. While Brazil is highly
opulated along the coast and in the southwest, the total records
or COVID-19 were higher in the southern states (e.g., RS and SC).
he density map uses dark shades of red to reveal outlier states

5 https://tinyurl.com/2tfd2ue7.
6 http://www.qdsvis.tk/qdscovid/.

https://tinyurl.com/2tfd2ue7
http://www.qdsvis.tk/qdscovid/
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Fig. 4. States or municipalities can be color-coded by the total number of records, population, density (ratio of records by population), prevailing symptom, and
revailing condition.
uch as SC and RR. While the density of records per population
s 20.7% in Brazil, SC and RR have a density of 57.2% and 46.0%,
espectively. The prevailing condition is cardiac disease, followed
y diabetes. While, until August 2020, the prevailing symptoms
ere not in listed in the form and thus were classified as ‘‘others’’,

rom September 2020 onwards, the most frequent symptoms
ere cough, fever, and headache.

There are situations that reveal limitations or inconsistencies
n data. For example, the records map for PR shows fewer records
only 125K) than for states with a similar population count, such
s RS, which has 3.8M records. Such a difference might be because
he data does not include information from states or municipali-
ies that use their own notification systems for COVID-19. While
he percentage of records associated with female/male is slightly
arger for females (51.79%,48.21%) when the entire country is
onsidered, there are states with many more male records, such
s SC (28.09%, 71.91%) and ES (0.04%,94.96%).

xample 2 (A2). Comparing the maps with number of records
Fig. 5 left) and density (Fig. 5 right) one can also identify low
opulated areas with a high number of records (high-density
alue). We can see that RS has a large number of records in
he center and southwest, while the density of records is higher
owards the northeast.

In SC, while the number of records is higher in the northeast,
e observe municipalities with higher density in the west. The
order between states has similar high-density values.

xample 3 (A3). As observed in Example 1, SC and RR have high-

density values for the entire period. In Fig. 6 the density changes

6

when filtering the analysis for each of the 19 age groups and
displaying the top three states in each group. SC is the leading
state in all age groups, which stresses the impact of COVID-19 in
this state. RR ranks in second place in all age groups until age 70.
RS is the third most frequent state in this ranking, particularly in
higher age groups. Both RS and SC have a large elderly population.
RN and RO also appear in this ranking for older and younger age
groups, respectively.

Example 4 (A3, A4). In this example, a comparison reveals the
prevailing conditions against the different age groups. Fig. 7
shows the age-group histograms for each condition. Cardiac dis-
ease is the top condition and accounts for 37.8% of conditions. It
has a nearly symmetric shape distribution, peaking at the 56–
60 age group. Diabetes is the second most frequent condition,
similar to cardiac diseases but slowly increasing until 50 years
old. Respiratory diseases peak at the 21–25 age group, decreasing
shape as age increases. Obesity has a steady and fast growth after
16 years old, reaching a peak at 36–40, and a slight decrease for
the following age groups. Pregnancy, as expected, has a narrow
distribution from 16 to 45 years old, with peaks around 21–
25 and 26–30. Immunosuppression has a linear increase from
11 years old to 56–60, where it reaches a peak and starts to
decrease at a faster pace for older age groups.

Example 5 (A4, A6). Fig. 8 displays the prevailing conditions from
June 2020 to March 2021 on the border of RS and SC. Cardiac
disease is consistently the top condition. There are, however, no-
ticeable changes for the other conditions. To better illustrate the
differences in time associated with conditions, the figure shows
the timeline for each condition. Cardiac diseases, diabetes, and
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Fig. 5. Records and density maps for the states of RS and SC.
Fig. 6. Top-3 states for each age group by density.
espiratory diseases are the top three conditions, and the timeline
or each follows the overall distribution. Respiratory diseases
ere more prevailing from June to September, corresponding to
he winter season. There is a peak in kidney diseases in July
020. Pregnancy increases in the north of RS from September
021 and keeps elevated until March 2021. Another condition to
ay attention to is obesity. The obesity plot shows low values
ntil August because it was not part of the form before. After
ugust, obesity conditions reach high values in the wave by
ebruary/March 2021.

xample 6 (A3, A4, A6). While exploring the municipalities on the
border of RS and SC, some municipalities revealed short periods of
intense record activity, such as Caxias do Sul (RS). Fig. 9 shows the
records during two high record periods of 45 days in winter 2020
(3,401 records) and summer 2021 (3,128 records). The number of
records in these two periods accounts for nearly 38% of all records
in the entire year. The first observation is that the histogram
7

of age groups changes in the summer, with fewer people in
the age groups 51–90 but with more people from 16–50, with
peaks in 36–40 and 21–25. Cardiac diseases are still the prevailing
condition. Respiratory problems decrease in the summer, while
there is an increase in conditions such as immunosuppression and
obesity. The obesity condition calls for attention since it moved
from not appearing to accounting for 10% of all conditions.

Example 7 (A5, A6). During the exploration process, the changes
in symptoms were inspected throughout the year in different
states of Brazil. For example, many states in the northeast of
Brazil in October of 2020 had asymptomatic as the prevailing
condition. To further remove patients who tested negative for
COVID-19, a filter was defined to only select records with pos-
itive test results. Such a filter reduced the number of records
overall, but the number of asymptomatic records remained large.
Fig. 10 illustrates the changes in prevailing symptoms for several
municipalities across northeast Brazil. From June to July 2020,
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Fig. 7. Age distribution for the top six conditions.
he list of symptoms in the form had only five options (cough,
ever, sore throat, dyspnea, and others). The form changed late
n August to include additional symptoms (obesity, headache,
unny nose, gustatory disease, olfactory disease, and shortness of
reath), which caused a reduction in records associated with the
thers category from September. In particular, headaches made
he top-3 symptom list from November until March 2021. The
olor difference in the maps illustrates a significant variability in
he top symptoms across the different municipalities.

. Discussion

An intensive care physician evaluated the prototype with an
.Sc. in Computer Science. The use of maps to create quick

nsights by state or municipality was the preferred functionality.
he density maps that show records by population were also
ecessary to compare different locations. The expert also reported
indings using the tool independently, listed below.

SP has the most records, but SC is the state with the highest
ensity of records. RR is the state with the most healthcare pro-

essionals with positive tests by population, followed by RO and

8

RS. Patients submitted to a COVID-19 test had 64.5% negative and
35.5% positive results. In 2020, 5.39% of the positive tests were
from healthcare professionals, while in 2021, it reduced to 2.11%.
Since more than 50% of the outcomes is ‘‘N.A.’’, we cannot com-
pare mortality with other studies. In patients with positive tests,
the top symptoms were cough (18.8%), fever (15.5%), and sore
throat (12.1%); only 4.5% were asymptomatic. In patients with a
negative COVID test, the top symptoms were cough (16.5%), sore
throat (13.2%), and fever (11.3%), but 13.2% were asymptomatic.

The findings were also compared to existing studies. Lima et al.
[34] presented an analysis for state capitals between March 1st
and August 18th 2020. QDS-COVID reports 2.6M records, while
they found 2.42M. There are also differences in the distribu-
tion by sex: QDS-COVID found 46.9% of records for women and
53.1% for men, while they found 55.1% and 44.0%, respectively.
Considering the not available values (N.A) in the prototype, the
results match their reported values. Escobar et al. [35] showed
that in RO between 1st January and 20th August 2020, there
were 184M records with 27.0% of positive tests. Using these
filters in QDS-COVID, we found 195M records with 26.7% pos-
itive tests. Additionally, the results of death percentage by age
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Fig. 8. Monthly prevailing conditions for municipalities in RS and SC from June 2020 to March 2021: (top) map view with prevailing conditions for each municipality
(bottom) timeline charts for each condition.
Fig. 9. Records in Caxias do Sul (RS) for two periods of 45-days during the winter 2020 and summer 2021. The histograms reveal significant changes in the
distribution of the age groups and prevailing conditions.
groups are similar to the ones we obtained, despite in QDS-
COVID having five year ranges and their work having ten year
ranges. Marcolino et al. [36] presented clinical characteristics
from hospitalized patients from March to September 2020. The
most frequent conditions were hypertension (52.9%) (cardiac dis-
ease), diabetes (29.2%), and obesity (17.2%). QDS-COVID shows
that the most reported conditions were cardiac diseases (37.9%),
diabetes (24.5%), and respiratory diseases (17.8%).

7. Conclusion

In this work, we proposed QDS-COVID, a visual analytics pro-
totype to analyze millions of healthcare records made publicly
available in the Brazilian SUS. Interactive analysis of the SUS
data is challenging due to its size and complexity. The perfor-
mance requirements were satisfied using a datacube structure
called QDS [3] that supports interactive queries requested by
the user interface (despite the fragmentation of the dimensions
with many values). The prototype supports interactive analysis
over charts and maps for states and municipalities. The potential
of the prototype was demonstrated with use cases that bring
findings about COVID-19. Comparisons of results against other
works were given, as well as feedback from a medical expert.
Table 3 summarizes the main points of this work.
9

Table 3
Summary points.
Points already known:
The identification of spatiotemporal patterns of public healthcare records is
important to support changes in public policies that improve the quality of
healthcare systems such as the Brazilian SUS;

There is no publicly available system to analyze COVID-19 healthcare records
of the Brazilian SUS;

There is a need to understand the patterns that describe how COVID-19
affects different regions of Brazil and how such patterns change throughout
time.

Contributions:
QDSSUS, a publicly available web-based visual analytics prototype built upon
a customized data structure that stores millions of records and supports
interactive queries that allow interactive exploration of healthcare records;

Geographical exploration of millions of Brazilian SUS healthcare records
related to COVID-19 organized by admission records and patient symptoms
or conditions, with support to interactive filtering of different patient
demographics;

The authors discovered evolution spatiotemporal patterns in different
locations of Brazil along one year of COVID-19, such as the relation of patient
age groups and their corresponding dominant conditions or symptoms.
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Fig. 10. Monthly evolution of prevailing symptoms for patients who tested positive for COVID-19 in the northeast of Brazil.
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