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A B S T R A C T   

Objectives: To assess the additive prognostic value of MR-based radiomics in predicting progression-free survival 
(PFS) in patients with nasopharyngeal carcinoma (NPC) 
Methods: Patients newly diagnosed with non-metastatic NPC between June 2006 and October 2019 were 
retrospectively included and randomly grouped into training and test cohorts (7:3 ratio). Radiomic features 
(n=213) were extracted from T2-weighted and contrast-enhanced T1-weighted MRI. The patients were staged 
according to the 8th edition of American Joint Committee on Cancer Staging Manual. The least absolute 
shrinkage and selection operator was used to select the relevant radiomic features. Univariate and multivariate 
Cox proportional hazards analyses were conducted for PFS, yielding three different survival models (clinical, 
stage, and radiomic). The integrated time-dependent area under the curve (iAUC) for PFS was calculated and 
compared among different combinations of survival models, and the analysis of variance was used to compare 
the survival models. The prognostic performance of all models was validated using a test set with integrated Brier 
scores. 
Results: This study included 81 patients (training cohort=57; test cohort=24), and the mean PFS was 57.5 ± 43.6 
months. In the training cohort, the prognostic performances of survival models improved significantly with the 
addition of radiomics to the clinical (iAUC, 0.72–0.80; p=0.04), stage (iAUC, 0.70–0.79; p=0.001), and com-
bined models (iAUC, 0.76–0.81; p<0.001). In the test cohort, the radiomics and combined survival models were 
robustly validated for their ability to predict PFS. 
Conclusion: Integration of MR-based radiomic features with clinical and stage variables improved the prediction 
PFS in patients diagnosed with NPC.   

Introduction 

Nasopharyngeal carcinoma (NPC) is a distinct subset of head and 
neck cancer endemic to Southeast Asia and Southern China, with a re-
ported incidence rate of 50–80 cases per 100,000 people per year [1]. 
The standard treatment for NPC is concurrent chemoradiotherapy with 
or without adjuvant chemotherapy, which has led to substantial 
improvement in overall survival in patients with advanced NPC [2]. 

Although treatment decisions are primarily based on the tumor- 
nodule-metastasis (TNM) stage [3], its role in predicting prognosis 
may be limited [4]. Moreover, the early identification of unfavorable 
treatment outcomes could aid in more individualized clinical decisions 
prior to initiating treatment. Currently, the plasma load of Epstein-Barr 
virus (EBV) DNA is the only prognostic biomarker applicable in 
advanced-stage NPC [5] however, its prognostic value has been incon-
sistent [6]. Therefore, exploring other prognostic non-invasive 
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* Corresponding author. 
E-mail address: phillipchoi007@gmail.com (Y. Choi).  

Contents lists available at ScienceDirect 

Translational Oncology 

journal homepage: www.elsevier.com/locate/tranon 

https://doi.org/10.1016/j.tranon.2021.101180 
Received 9 June 2021; Received in revised form 4 July 2021; Accepted 13 July 2021   

mailto:phillipchoi007@gmail.com
www.sciencedirect.com/science/journal/19365233
https://www.elsevier.com/locate/tranon
https://doi.org/10.1016/j.tranon.2021.101180
https://doi.org/10.1016/j.tranon.2021.101180
https://doi.org/10.1016/j.tranon.2021.101180
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tranon.2021.101180&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Translational Oncology 14 (2021) 101180

2

biomarkers would be clinically relevant for risk stratification of patients 
diagnosed with NPC. 

Several studies have investigated the role of diffusion-weighted MRI 
in predicting treatment response [7, 8] or distant metastasis [9] in NPC 
patients, thereby demonstrating the potential of diffusion-weighted MRI 
as a non-invasive prognostic imaging technique. More recently, radio-
mics, an emerging field for extracting high-throughput quantitative data 
from medical images, has shown promise in the prognostication of NPC 
[10–13]. Wang et al. explored the capability of MR-based radiomics to 
predict early treatment response to induction chemotherapy in patients 
with stage II–IV NPC [12]; they found that the radiomic signature 
demonstrated good predictive performance. However, the study was not 
inclusive of all cancer stages of NPC and only focused on treatment 
response to induction therapy. 

The current study aims to expand the role of MR-based radiomics in 
patients with all stages of NPC, with progression-free survival (PFS) as 
the primary endpoint. Therefore, the purpose of the present study is to 
assess the additive prognostic value of radiomics when integrated with 
clinical and stage variables in predicting PFS in patients with NPC. 

Materials and Methods 

This single-center retrospective cohort study was approved by the 
Institutional Review Board of our institution, and informed consent was 
waived. 

Patients 

Patients diagnosed with NPC between June 2006 and October 2019 
were retrospectively reviewed for inclusion. The inclusion criteria were 
as follows: 1) pathologically diagnosed with NPC at our institution; 2) 
available initial MRI prior to treatment; 3) available MR sequences, 
including T2-weighted images (T2WI) and contrast-enhanced T- 
weighted images (CE-T1WI); 4) received treatment at our institution; 5) 
age 18 years or older; and 6) absence of distant metastasis or secondary 
malignancy at initial presentation. Clinical information was retrieved 
from the electronic medical records maintained by our institution. Pa-
tients were grouped into training and test sets (7:3 ratio) via random 
stratified sampling such that the progression statuses were equally 
maintained between both sets (caret R package). The patients were 

staged according to the 8th edition of the American Joint Committee on 
Cancer (AJCC) TNM staging manual [14]. The histological subtypes of 
NPC were classified as follows based on the World Health Organization 
standard: 1) differentiated keratinizing carcinoma (type I), 2) differen-
tiated non-keratinizing carcinoma (type II), and 3) undifferentiated 
non-keratinizing carcinoma (type III) [15]. A flowchart of the patient 
selection process is depicted in Fig. 1. 

Progression-free survival 

PFS was defined in this study as the interval between the initial date 
of pathological diagnosis and the date of disease progression, death, or 
last clinical visit in cases where no progression was observed. Disease 
progression was determined based on pathologic confirmation or 
obvious progression on clinical and imaging follow-up. Patients without 
disease progression were followed up for at least three months. The last 
follow-up date was December 29, 2020. 

MRI acquisition 

Two different 3.0-T MR scanners were used to acquire MRI scans of 
all patients (Verio, Siemens Healthineers with 16-channel head coils; 
Ingenia, Philips Healthcare with 32-channel head coils). Axial CE-T1WI 
images were acquired after administration of gadolinium-based contrast 
agent (Gadobutrol, Gadovist; Bayer Schering Pharma AG) at 0.01 mmol/ 
kg. The acquisition protocols of neck MRI were slightly variable, but 
mostly consisted of the following parameters: 1) axial T2WI: repetition 
time/echo time [TR/TE] = 3600/82 ms, field of view [FOV] = 200 ×
200, matrix = 320 × 256, flip angle = 160◦, number of excitations = 1, 
echo train length = 15, slice thickness = 5 mm, gap = 5.75 mm, and 2) 
CE-T1WI: TR/TE = 603 × 16, FOV = 200 × 200, matrix = 320 × 256, 
flip angle = 150◦, number of excitations = 1, echo train length = 5, slice 
thickness = 5 mm, gap = 5.75 mm). 

MRI preprocessing and image segmentation 

At first, both T2WI and CE-T1WI were co-registered using “General 
Registration” module in 3D Slicer (version 4.10.1, www.slicer.org) [16, 
17]. MRI may be susceptible to artifacts of non-uniform intensity across 
the same type of tissue. To resolve this, N4 bias field correction was 

Fig. 1. Flowchart illustrating the patient selection process  
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applied to the original MRI using “N4ITK MRI Bias Field Correction” 
module in 3D Slicer [18], thereby improving intensity inhomogeneity 
across different MRIs. Furthermore, intensity normalization was per-
formed from 0 to 255 using the PyRadiomics platform implanted in the 
3D Slicer software [19]. 

Two radiologists with 7 and 8 years of experience in diagnostic head 
and neck radiology segmented the primary NPC in consensus. The seg-
mentations included every axial slice with a visible primary tumor to 
obtain full three-dimensional ROIs (Fig. 2). 

Radiomics feature extraction and selection 

A total of 213 radiomic features were extracted from volumetric 
segmentations of both T2WI and CE-T1WI, and a heatmap of all radio-
mic features of patients is shown in Supplementary Fig. 1. In the training 
cohort, dimensionality reduction was performed via the least absolute 
shrinkage and selection operator (LASSO) with Cox regression [20], in 
which the optimal tuning parameter lambda (i.e., lambda.min, giving 
the minimal mean squared error) was identified after 10-fold cross 
validation [21] (glmnet R package). 

Risk stratification of patients according to radscore 

The radiomics score (radscore) was computed as the linear sum of 
the selected radiomic features with their respective coefficients 
weighted by Cox proportional hazards models of the training cohort as 
follows [22]: 

1stfeaturecoefficient × 1stfeaturevalue + … + nthfeaturecoefficient

× nthfeaturevalue 

The computed radscores were then dichotomized by optimal strati-
fication based on log-rank statistics that yielded the most significant 
differences in PFS [23] (survminer R package). 

Statistical analysis 

All statistical analyses were performed using the R Statistical Soft-
ware (version 3.5.1, Vienna, Austria). Student’s t-test and chi-square test 
were used to compare continuous and categorical clinical variables, 
respectively, between the training and test cohorts. From the training 
cohort, univariate Cox proportional hazards analyses were used to 
calculate hazard ratios (HRs) with 95% confidence intervals (CIs) for the 
association between clinical, stage, radiomic covariates, and PFS. 
Multivariate Cox proportional hazards analyses were then performed to 
create the prognostic models (i.e., clinical, stage, radiomic, and combi-
nations of each model). For each survival model, the integrated time- 
dependent area under the ROC curve (iAUC) was estimated, providing 
accuracy measures with respect to time-specific versions of sensitivity 

and specificity calculated from time-to-event data (risksetROC R pack-
age) [24]. The differences in iAUC between the survival models were 
calculated via bootstrapped resampling with 1000 repetitions. A statis-
tically significant difference in iAUC was considered when the 95% CI 
did not contain zero. Additionally, analysis of variance was used to 
assess improvements in the survival models. The prognostic perfor-
mance of all models was assessed in a test cohort using the prediction 
error curves of Brier scores over PFS times (pec R package). Finally, a 
nomogram for predicting 2- and 5-year PFS was plotted using the rms R 
package. All statistical tests were two-sided, and statistical significance 
was set at p <0.05. 

Results 

Patients 

The baseline characteristics of the patients are summarized in 
Table 1. 

Among the 81 patients, the mean age was 53 ± 13 years, and there 
were 61 men (75.3%). The most common stage was 1 for both T-stage 
(38/81, 46.9%) and N-stage (36/81, 44.4%). AJCC stage III was the 
most prevalent disease (35/81, 43.2%), and the most common histo-
logical subtype was undifferentiated non-keratinizing carcinoma (49/ 
81, 60.5%). Within the median follow-up period of 53 months (inter-
quartile range=25–88 months), 16 deaths (19.8%), 3 local recurrences 
(3.7%), and 12 (14.8%) distant metastases were reported. The mean PFS 
was 57.5 ± 43.6 months. There were no significant differences in 
baseline covariates between the training (n=57) and test (n=24) cohorts 
(Supplementary Table 1). 

Selected radiomic features and radscore 

Seven radiomic features were selected, of which four features were 
extracted from CE-T1WI (Maximum2DDiameterSlice, ZoneVariance, 
LargeAreaEmphasis, SmallAreaEmphasis), and three from T2WI (Max-
imum2DDiameterSlice, Correlation, informational measure of correla-
tion). Detailed descriptions and coefficients are provided in 
Supplementary Table 2 The dichotomization of patients into high-risk 
(n=29) and low-risk (n=52) groups according to the optimal stratifi-
cation based on log-rank statistics of radscores is illustrated in Supple-
mentary Fig. 2. 

Prognostic models for progression-free survival 

All Cox proportional hazards analyses were performed in the training 
cohort. In univariate Cox proportional hazards analysis, only the high- 
risk group based on radscore was significantly associated with poor 
PFS (HR=5.87; 95%; CI=1.55, 22.2; p=0.01) (Table 2). 

Fig. 2. Representative example MRI-based volumetric region of interest segmentation in a 58-year-old male patient on axial (a) T2WI, (b) CE-T1WI and (c) its three- 
dimensional reconstruction. 
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Among the clinical variables, male sex (HR=3.81; 95% CI, 
4.88–29.8), advanced T-stage (HR=2.23; 95% CI=0.65, 7.6), advanced 
N-stage (HR=2.39; 95% CI=0.7, 8.2), and advanced AJCC stage 
(HR=5.49; 95% CI=0.7, 42.9) were associated with poor PFS but 
without statistical significance (all, p>0.05). Cox proportional hazards 
analysis of 45 patients with known EBV status yielded an implausibly 
large coefficient with 95% CI ranging from zero to infinity, thus 
rendering unreliable results. 

In multivariate survival models for PFS, the addition of stage vari-
ables to the clinical model did not significantly improve prognostic 
performance (Table 3) (p=0.43). 

However, the addition of radiomic model to either clinical or stage 

model significantly improved their prognostic performances, yielding 
iAUC increments of 0.08 and 0.09, respectively. The addition of radio-
mic model to the combined clinical and stage model demonstrated the 
highest iAUC of 0.81 (95% CI=0.80, 0.81), with an iAUC increment of 
0.04. The iAUC of all survival models are depicted in Fig. 3. 

Finally, a nomogram with all variables was created visually to 
quantify the probability of 2-year and 5-year PFS (Fig. 4). 

Validation based on integrated Brier scores with prediction error curves 

The survival models were validated in a separate test set via inte-
grated Brier scores and illustrated as prediction error curves (Supple-
mentary Fig. 3). Compared to the reference curve of Kaplan–Meier 
survival estimation, the combined and radiomic models demonstrated 
lower prediction error rates (i.e., lower curves) over a follow-up PFS 
period of longer than 12-months. 

Discussion 

The current study investigated the potential additive prognostic 
value of radiomic features derived from pre-treatment conventional MR 
sequences (T2WI and CE-T1WI) in patients with NPC. Seven relevant 
radiomic features were selected to construct the radiomics survival 
model, which significantly improved prognostication when it was added 
to the well-known clinical and stage variables. The radiomic and com-
bined survival models were also validated in the test cohort. Our find-
ings demonstrate that MR-based radiomics may hold promise for aiding 
early risk stratification of patients with NPC. 

Past studies have yielded important insights into the role of MR- 
based radiomics in the prognostication of NPC. Mao et al. [25] applied 
texture analysis to pre-treatment T2WI and CE-T1WI in NPC patients 
and found that a combination of CE-T1WI-based uniformity features 
with tumor volume and overall stage improved the predictive ability for 
PFS. More specifically, the two features selected from CE-T1WI in our 
study, ‘LargeAreaEmphasis’ and ‘SmallAreaEmphasis’, were indicative 
of coarse and fine textures, respectively [19]. The prognostic perfor-
mance of the combined model (C-index: 0.794) in their study was also 
very similar to ours (iAUC=0.81). The main difference is that their study 
only applied texture analysis, while the current study comprehensively 
included various standardized features from a wider array of radiomics. 

Our finding is consistent with several recent studies which found that 
an MR-based radiomics model improved prediction of disease-free sur-
vival/PFS [26–28] and overall survival [29, 30]. All these studies 
applied generally similar approaches of extracting multiparametric 
MR-based radiomics and integrating them to the conventional clinical 
variables in their prognostic models. The combined number of patients 
in these studies is large (>1,000) and patients were recruited in both 
endemic and non-endemic regions, further supporting the prognostic 

Table 1 
Baseline characteristics of patients.  

Covariate n=81 

Age, mean±SD 53±13 
Sex, n (%)  

Male 61 (75.3) 
Female 20 (24.7) 

Smoking history, n (%)  
No 34 (42) 
Yes 46 (56.8) 
Unknown 1 (1.2) 

T-stage, n (%)  
1 38 (46.9) 
2 9 (11.1) 
3 23 (28.4) 
4 11 (13.6) 

N-stage, n (%)  
0 12 (14.8) 
1 36 (44.4) 
2 29 (35.8) 
3 4 (4.9) 

AJCC 8th TNM stage, n (%)  
I 6 (7.4) 
II 25 (30.9) 
III 35 (43.2) 
IVA 15 (18.5) 

GTV (mL), mean±SD 15876±12976 
Histologic subtype, n (%)  

Differentiated non-keratinizing carcinoma 27 (32.3) 
Undifferentiated non-keratinizing carcinoma 49 (60.5) 
Keratinizing squamous cell carcinoma 5 (6.2) 

EBV status, n (%)  
Positive 53 (65.4) 
Negative 12 (14.8) 
Unknown 16 (19.8) 

CCRT, n (%)  
Yes 74 (91.4) 
No 7 (8.6) 

Cumulative radiation dose (Gy), mean±SD 7002 ± 304 
Clinical endpoints, n (%)  

Deaths 16 (19.8) 
Local-recurrence 3 (3.7) 
Distant metastasis 12 (14.8) 

Progression-free survival (months), mean±SD 57.5 ± 43.6 
Follow-up time (months), median (IQR) 52.7 (24.8–88.1)  

Table 2 
Univariate Cox proportional hazards analyses for progression-free survival.  

Covariate HR 95% CI P-value 

Age 1.05 0.99–1.1 0.10 
Sex, male 3.81 4.88–29.8 0.20 
Smoking, smoker 0.99 0.42–2.3 0.98 
T-stage, 3-4 2.23 0.65–7.6 0.20 
N-stage, 3-4 2.39 0.70–8.2 0.17 
AJCC stage, III-IV 5.49 0.70–42.9 0.10 
Cumulative radiation dose, >median 1.46 0.42–5.0 0.55 
GTV, >median 0.74 0.22–2.4 0.62 
Radscore, high-risk 5.87 1.55–22.2 0.01 

AJCC, American Joint Committee on Cancer; GTV, gross tumor volume 

Table 3 
Multivariate survival models for progressive-free survival.  

Model layers iAUC 95% CI iAUC 
difference 

95% CI P-value 
* 

Clinical** 0.72 0.71–0.73    
Stage*** 0.70 0.69–0.71    
Radiomic 0.71 0.71–0.72    
Clinical + stage 0.76 0.75–0.77 0.04 0.03–0.05 0.43 
Clinical +

radiomic 
0.80 0.79–0.80 0.08 0.07–0.09 0.04 

Stage + radiomic 0.79 0.78–0.80 0.09 0.08–0.10 0.001 
Clinical + stage +

radiomics 
0.81 0.80–0.81 0.04 0.04–0.05 <0.001  

* P-values calculated from analysis of variance 
** Clinical model consists of age, sex, smoking history, and cumulative radi-

ation dose 
*** AJCC TNM stage 
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role of MR-based radiomics in patients with NPC. 
While positive EBV status is known to be associated with favorable 

overall survival [31] in patients with NPC, the clinical use of EBV-DNA 
levels for predicting prognosis has produced heterogeneous results in the 
past [6]. Likewise, our study did not reveal a meaningful prognostic 
value of EBV status in predicting PFS. This finding is in line with a study 
by Yip et al., who reported that disease-free survival according to EBV 
status was not significantly different over long follow-up periods [31]. 
Radiomic features could be a reasonable alternative biomarker to EBV 
for patients with NPC, considering that they could be extracted 
non-invasively, and at a low cost. 

For image analysis, we chose both T2WI and CE-T1WI for two rea-
sons: 1) the two are the most commonly acquired conventional se-
quences during routine MRI scans, and thus might be more 
generalizable, 2) the radiomic features extracted from joint T2WI and 
CE-T1WI demonstrated better prognostic performance than those from 
single sequence [22]. Future research will have to investigate extracting 
radiomic features from advanced physiologic MR sequences, such as 
diffusion-weighted imaging or perfusion-weighted imaging, which 
might reveal interesting insights into the underlying prognostic value of 

radiomic features. 
This study has several limitations. Firstly, the prognostic models 

were not externally validated in independent settings, limiting the 
generalizability of the results of the current study. Secondly, other 
detailed prognostic molecular biomarkers, such as c-Met, ERBB3, and 
MTDH [32]], were not investigated due to lack of data availability. 
Finally, PFS was not subcategorized into local recurrence-free survival 
or distant metastasis-free survival due to the small number of events for 
each subcategory. 

In conclusion, the current study demonstrated that integrating MR- 
based radiomic features with well-known clinical variables improved 
prognostication of patients initially diagnosed with NPC. Our results 
provide evidence for the robust additive prognostic role of radiomics, 
which may aid in early clinical decision making. 
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