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Abstract

Physiological responses to the environment, disease, and aging vary by sex in many ani-

mals, but mechanisms of dimorphism have only recently begun to receive careful attention.

The genetic model nematode Caenorhabditis elegans has well-defined mechanisms of

stress response, aging, and sexual differentiation. C. elegans has males, but the vast major-

ity of research only uses hermaphrodites. We found that males of the standard N2 labora-

tory strain were more resistant to hyperosmolarity, heat, and a natural pro-oxidant than

hermaphrodites when in mixed-sex groups. Resistance to heat and pro-oxidant were also

male-biased in three genetically and geographically diverse C. elegans strains consistent

with a species-wide dimorphism that is not specific to domestication. N2 males were also

more resistant to heat and pro-oxidant when keep individually indicating that differences in

resistance do not require interactions between worms. We found that males induce canoni-

cal stress response genes by similar degrees and in similar tissues as hermaphrodites sug-

gesting the importance of other mechanisms. We find that resistance to heat and pro-

oxidant are influenced by the sex differentiation transcription factor TRA-1 suggesting that

downstream organ differentiation pathways establish differences in stress resistance. Envi-

ronmental stress influences survival in natural environments, degenerative disease, and

aging. Understanding mechanisms of stress response dimorphism can therefore provide

insights into sex-specific population dynamics, disease, and longevity.

Introduction

Although sex has historically been treated as an inconvenient source of experimental variabil-

ity, recognition of sex as an important variable in basic animal research is growing [1–3]. Bio-

logical sex has broad effects on health, behavior, and interactions with the environment

consistent with differences in physiology, biochemistry, and genetics [4–7]. Chronic age-

related disease and longevity and are well-established sexually dimorphic traits with broad

health and economic implications [8–11]. In humans, females have ~7% longer lifespans than

males regardless of geographic region, ethnic background, health system, or wealth [12];

females also live longer in many other species of mammal [13, 14]. Genetic tractability and

short lifespans have made Drosophila and C. elegans key models for investigating the genetic

basis of aging and longevity [15–17]. Females live longer than males in Drosophila [18]. C.
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elegans is androdioecious with self-fertilizing hermaphrodites and out-crossing males; her-

maphrodites live longer than males when grown in mixed groups as is found in nature, but

males live longer than hermaphrodites when keep individually during adulthood [19–21].

Organismal responses to environmental stress have the potential to be sexually dimorphic

and influence population dynamics, disease, and aging. Studies in lab rodents and wild mam-

mal populations have demonstrated sex-specific effects of environmental contaminants, harsh

weather, and climate change [7, 14, 22, 23]. The sexes of mice, Drosophila, and C. elegans differ

in their response to longevity prolonging interventions such as dietary restriction and insulin/

IGF-1-like signaling manipulation [21, 24–26]. Cells respond to environmental stress by acti-

vating conserved transcription pathways for cytoprotective genes that promote stress resis-

tance [27–30]. Mild exposure to stressors early in life promotes later resistance to extreme

stress and increases longevity via these pathways [31–33]. Despite their importance to aging,

disease, survival, and distributions in nature, few studies have investigated sexual dimorphism

in responses to environmental stress.

Stress response mechanisms have been investigated extensively in C. elegans, but almost

exclusively in hermaphrodites [27, 34–38]. Males, which are XO, are generated spontaneously

by rare chromosome non-disjunction events or by male mating [39]; non-disjunction rates

increase in harsh environments such as high temperature consistent with outcrossing to facili-

tate adaptation. Hermaphrodites are almost exclusively used in research because they are far

more common and easily maintained. It is not known if resistance to common environmental

stressors differs between C. elegans sexes. From an evolutionary perspective, male C. elegans
might be expected to have a greater need for stress resistance because they are more likely to

occur in harsh environments and must search for mates. Alternatively, selection for male-spe-

cific fitness is likely to be limited because they are rare. Genetic control of sex-differentiation is

well-understood in C. elegans providing a tractable model for mechanisms of dimorphism

[40].

We compared stress resistance and stress response gene expression between young adult

male and hermaphrodite C. elegans. In the standard domesticated strain N2, males were more

resistant to heat, osmotic, and oxidative stress than hermaphrodites when kept in mixed-sex

groups. Heat and oxidative stress resistance were also male-biased in three genetically and geo-

graphically diverse natural isolate C. elegans strains indicating that dimorphism is not unique

to domestication. Individual N2 males were also more resistant to heat and oxidative stress

than individual hermaphrodites indicating that differences in resistance are not dependent on

interactions between worms. Comparisons of stress response gene expression under basal con-

ditions was complicated by gross differences in anatomy and tissue-specific gene expression.

Males induced canonical heat and oxidative stress-response genes by similar levels and in the

same major tissues as hermaphrodites suggesting that other mechanisms drive differences in

stress resistance. Lastly, resistance to heat and oxidative stress were influenced by sex determi-

nation master regulator TRA-1 suggesting that downstream developmental mechanisms estab-

lish differences in stress resistance.

Materials and methods

Worm strain and maintenance

The strains used were: wild-type N2 Bristol, AB2, CB4856, CB4853, CL2166 dvIs19[gst-4p::

GFP], VP604 kbIs24[gpdh-1p::DsRed2;myo-2p::GFP;unc-119 rescue], QV65 gpIs1[hsp-16.2p::

GFP];vsls33[dop-3p::DsRed2], and CB2590 tra-1(e1099)/dpy-18(e1096) III. All worms were

maintained at 20˚C using standard methods [41]. To maintain CB2590, individual L4 wild-
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type hermaphrodites were isolated and checked for segregation of Dpy and pseudomale phe-

notypes in offspring.

Mixed-sex populations of wild type worms were maintained by picking a high ratio of

males to hermaphrodites every few generations. Gravid adults from these mating populations

were bleached and the following synchronized generation was used for survival and gene

expression experiments. Males and hermaphrodites were grown together on the same agar

plates during larval development.

Physiological assays

Some agar plates were supplemented with either 400–425 mM NaCl or 175 μM juglone. Syn-

chronized males and hermaphrodites were grown together until the first day of adulthood and

then transferred together by chunking and immediate removal of the chuck leaving worms on

the surface of agar containing high NaCl or juglone. Survival on high salt was scored at 24 h as

described previously [42, 43]. Juglone has a short half-life causing high variability between

batches of agar [44, 45]. Therefore, survival of juglone was scored at 12 and 24 h and the earli-

est time point when at least 50% of worms in one sex were dead was used for analysis [46]. For

heat stress, standard agar plates with first day adult worms were wrapped in parafilm, floated

on a water bath at 35˚C for 8 h, transferred to 20˚C, and scored for survival starting 12 h after

recovery as described previously [47]. Worms on agar were counted dead if they did not

respond to gentle touching with a wire or hair pick. Each stressor plate containing a population

of both sexes served as a replicate for survival analysis; each trial was defined as a separate

batch of synchronized worms.

For testing heat shock and juglone survival of individual worms, single L4 male and her-

maphrodite worms from synchronized mixed-sex populations were picked to each well of a 96

well plate; each well contained OP50 bacteria at a final OD of 1.8–2.0, 100 μg/ml streptomycin,

and 50 μg/ml carbenicillin in a total of 100 μl of liquid NGM buffer. When worms reached the

young adult stage, they were exposed to stressors. For heat, the edges of plates were sealed with

parafilm and they were floated on a 35˚C water bath for 8 h, transferred to 20˚C, and scored

for survival starting 12 h after recovery. Juglone was added to a final concentration of 175 μM.

Worms in liquid were counted dead if they were immobile, had a rigid posture, and did not

respond to tapping of the plate.

qRT-PCR

Quantitative RT-PCR assays were performed as described previously [48] with the following

modifications. Each sex was picked at the young adult stage before containing embryos and

frozen in separate tubes. After lysis, genomic DNA was degraded using dsDNAse according to

manufacturer’s protocol (Thermo Fisher product EN007). Stress response mRNA levels were

normalized to cdc-42 and Y45F10D.4 and averaged for each sample. PCR products were veri-

fied with single melt curves and no template controls. Primer sequences are in S1 Table. To

measure stress-induced gene expression, worms were treated with sub-lethal 250 mM NaCl,

87.5 μM juglone, or exposed to a 35˚C water bath for 24 h, 1 h, or 15 minutes, respectively.

Fluorescence analyses

Worms were mounted on agarose pads with 5 mM levamisole and imaged using an Olympus

BX60 microscope with a Zeiss AxioCam MRm camera fitted with either GFP or RFP filters.

Exposure settings were consistent within each strain regardless of condition or sex. Color was

added using PowerPoint or ImageJ Version 1.53c in cases where two colors were merged;
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adjustments to contrast and brightness were made evenly to whole images and identically

within each strain for fluorescence. Images presented are representative of at least 10 worms.

Statistical analyses

Statistical significance for qRT-PCR experiments was determined with two-tailed unpaired t-

tests with Benjamini-Hochberg false-discovery rate adjustments when multiple genes were

measured. Statistical significance for NaCl and heat survival assays on agar was determined

with two-tailed unpaired Student’s t-tests. Paired Student’s t-tests were used for juglone sur-

vival to control for batch effects caused by low stability of juglone [44]. Statistical significance

for individual heat shock survival was determined with Log-rank tests using the OASIS online

statistic tool [49].

Results and conclusions

N2 males are more resistant to environmental stress than hermaphrodites

in groups

We first tested if C. elegans sexes differ in resistance to stress in the common laboratory strain

N2. We used three environmental stressors that are used widely in the literature and are found

in natural environments of free-living nematodes: hyperosmolarity, heat, and juglone. Hyper-

osmolarity causes loss of cell volume and protein aggregation [42, 50–52]. Juglone is a natural

allelochemical and pro-oxidant produced by plants of the juglandaceae walnut family to

inhibit growth of other organisms in surrounding soil [53]. High temperature causes protein

misfolding [54]. Changes in osmolarity and temperature are likely common for C. elegans in

rotting surface vegetation with changes in time of day, sun exposure, rain, humidity, and plant

tissue osmolarity. Exposure to juglone and similar nathoquinones is also likely, because juglan-

daceae has a broad distribution [55]. As shown in Fig 1A, N2 males were more resistant to all

three stressors than hermaphrodites when together in mixed-sex populations.

Males of natural C. elegans isolates are more resistant to heat and juglone

than hermaphrodites

We next tested if the male-biased stress resistance we observed in Fig 1A is representative of the

species or specific to N2, which is a domesticated strain derived from an isolate in Bristol,

England (77). We selected three natural isolates that are genetically and geographically divergent.

CB4856 is from Hawaii and is one of the most genetically divergent from N2 [56]. AB2 is from

Adelaide, Australia, and CB4853 from Altadena, California [57, 58]. As shown in Fig 1B–1D,

resistance to heat and juglone was male-biased in all three natural isolates; together with data for

N2 (Fig 1A), these results are consistent with a species-wide male-bias in resistance to acute heat

shock and oxidative stress when worms are in mixed-sex groups as found in nature. Alternatively,

sex-bias in high salt resistance varied greatly by strain (Fig 1A–1D); it was male-biased in N2 and

CB4856, there was no bias in AB2, and it was hermaphrodite-biased in CB4853.

Individual N2 males are more resistant to heat and juglone than

hermaphrodites

Prior studies demonstrated that sex-bias in longevity is influenced by pheromones and physi-

cal interactions between worms with males having a longer lifespan than hermaphrodites

when kept individually during adulthood but a shorter lifespan than hermaphrodites when

kept in groups [19–21]. For comparison to these prior results, we also tested survival of N2

males and hermaphrodites that were picked individually to wells of a microplate at the L4
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larval stage and then exposed to heat shock or juglone on the first day of adulthood. As shown

in Fig 2A, 2B and S1 Fig, males were more resistant to heat shock and juglone when isolated as

individuals. The dimorphism was particularly strong for juglone with males having a mean

survival time more than threefold longer than hermaphrodites (Fig 2 and S1 Fig).

Basal stress response gene expression

Organisms respond to stress, in part, by activating expression of genes encoding proteins that

repair damage or diminish the stressor. For example, protein homeostasis mechanisms and

organic osmolyte synthesis and transport promote survival of hypertonicity [42, 50, 51, 59, 60].

Detoxification and anti-oxidation genes regulated by transcription factors SKN-1 and DAF-16

promote survival of juglone [46, 61, 62]. Small cytosolic chaperones regulated by HSF-1 and

DAF-16 promote survival of high temperature [54, 63]. We first used qRT-PCR to compare

expression of stress response genes under basal conditions. We measured mRNA levels for

well-characterized genes representative of core hyperosmotic (gpdh-1), endoplasmic reticulum

(ER) unfolded protein (hsp-4), SKN-1 dependent detoxification (gst-4), HSF-1 dependent

cytosolic heat shock (hsp-16.2), mitochondrial unfolded protein (hsp-6), metal (mtl-2), and

RNA homeostasis (numr-1/2) stress responses [46, 59, 64–67]. Expression was normalized to

two housekeeping genes (cdc-42 and Y45F10D.4).

Fig 1. Males are more resistant to osmotic stress, heat shock, and juglone than hermaphrodites in groups. (A-D) Male and

hermaphrodite worms were growth on standard 51 mM NaCl agar until the young adult stage and then exposed together in groups to 425

mM NaCl, 35˚C for 8 h, or 175 μM juglone. Survival was scored after 24 h for 425 mM NaCl, 72 h of recovery for heat shock, and 12–24 h

for juglone. Values are mean ± standard error. N = 4–12 replicate populations of 17–920 worms from 2–3 trials. �P> 0.01,��P< 0.01, and
���P< 0.001 versus hermaphrodites.

https://doi.org/10.1371/journal.pone.0272452.g001
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N2 males had 5.4, 4.5, 2.6, 3.7, 2.0, and 4.5-fold greater relative mRNA levels for core osmotic,

ER stress, detoxification, heat shock, metal response, and RNA homeostasis genes than hermaph-

rodites, respectively (S2A Fig); mitochondria and innate immune response genes were not

Fig 2. Males are more resistant to osmotic stress, heat shock, and juglone than hermaphrodites as individuals.

Survival curves for single trials heat shock (A) or juglone (B); details for all trials are in S1 Fig. Male and hermaphrodite

worms were growth together on standard 51 mM NaCl agar until the L4 larval stage; one L4 worm was picked to each

well of a 96 well plate containing OP50 bacteria in liquid NGM buffer. On the first day of adulthood, worms were

exposed to 35˚C for 8 h or 175 μM juglone was added. Survival was scored for each worm. N = 47–49 worms of each

sex.

https://doi.org/10.1371/journal.pone.0272452.g002
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statistically different. Although these results suggest higher basal expression of some stress

response genes in males, interpretation of these differences is complicated by sex-specific organs

(e.g., spermatheca, uterus, vulva, seminal vesicle, and vas deferens) and potential differences in

abundance of tissues enriched in stress-response mRNAs such as epidermis, intestine, and mus-

cle [43, 68–70]. We also compared expression of tissue-specific mRNAs that are not known to be

regulated by stress: ctsa-1.2 (intestine), elt-3 (intestine), elt-7 (intestine), vha-6 (intestine), lon-1
(epidermis and intestine), nhr-23 (epidermis), col-19 (epidermis), and mlc-1 (muscle). Expression

of ctsa-1.2, nhr-23, and mlc-1 were 2.4–2.7-fold greater and elt-3 and lon-1 were 2-fold lower in

males than hermaphrodites consistent with general sex-biases in tissue abundance and/or gene

expression that account for at least 2-3-fold differences (S2B Fig). Expression of gpdh-1, hsp-4,

and numr-1/2 were slightly more male-biased than a 3-fold threshold (S2A Fig), but highly diver-

gent anatomy makes interpreting the biological importance of these differences difficult.

Males induce stress response genes similar to hermaphrodites

Gene induction by stress is well documented in hermaphrodites but not in males. We next

compared the ability of males and hermaphrodites to induce stress responses. Both sexes of N2

were exposed to sublethal doses of stress (250 mM NaCl, a 35˚C water bath, or 87.5 μM juglone

for 24 h, 15 minutes, and 1 h, respectively). Males induced hyperosmotic (gpdh-1 and hmit-
1.1), heat shock (hsp-16.2, 70, and 16.49), and detoxification (gst-4, gst-12, and gst-30) genes by

levels comparable to hermaphrodites (Fig 3). Induction of only glutathione synthesis gene gcs-
1 was significantly different between sexes with a reduced induction in males (2.3-fold versus

5.0-fold in hermaphrodites, Fig 3C). Therefore, males strongly induce osmotic, heat shock,

and detoxification genes, but not more than hermaphrodites.

Given difficulties interpreting basal mRNA differences and lack of correlation between

stress response induction levels and male-biased stress resistance, we next used fluorescent

transcriptional reporters for canonical osmotic, heat shock, and detoxification stress response

genes (gpdh-1p::dsRed2, hsp-16.2p::GFP, and gst-4p::GFP, respectively) [46, 71, 72] to deter-

mine if there were any major differences in distributions that may correlate with stress resis-

tance. As shown in S3A and S4 Figs, fluorescence for these reporters was not clearly visible

above background in either sex under basal conditions. Fluorescence for all three reporters

was strongly induced in both sexes by their respective stressors; gpdh-1p::dsRed2 was induced

in the intestine by high salt (S3B Fig), hsp-16.2p::GFP was induced in the intestine by heat

shock (Fig 4A), and gst-4p::GFP was induced in the epidermis by juglone (Fig 4B). Therefore,

these canonical osmotic, heat shock, and detoxification stress response genes are induced in

the same major tissues in both sexes.

Sex-determination factor TRA-1 influences stress resistance

We next tested if the central sex-determination pathway of C. elegans influences stress resis-

tance. Development of many sexually dimorphic characteristics is determined by a cascade of

signaling proteins terminating with transcription master regulator TRA-1 in C. elegans [40,

73]. Sex chromosome dosage determines if the pathway regulating TRA-1 is active; in XX

worms, TRA-1 is de-repressed allowing it to repress male development; in XO worms, TRA-1

is repressed and male organs development. XX worms homozygous for a strong loss of func-

tion tra-1(e1099) allele develop into phenotypic ‘pseudomales’. XX tra-1 pseudomales have

tails and non-gonadal tissues that are indistinguishable from XO wild type males; compared to

wild type males, tra-1 pseudomale gonads are smaller and mating success is reduced [74].

We tested resistance to heat shock and juglone, which were consistently male-biased in

wild type worms (Figs 1 and 2, and S1 Fig). As shown in Fig 5A, XX tra-1 ‘pseudomales’ were
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more resistant to heat shock than wild type hermaphrodites in groups; heterozygote hermaph-

rodite survival was indistinguishable from wild type hermaphrodites (51.5±5.9%, N = 8). As

shown in Fig 5B and S1 Fig, XX tra-1 ‘pseudomales’ were more resistant to juglone than wild

type hermaphrodites when isolated as individuals; in a trial that also included N2 males, there

was no difference between wild type males and tra-1 pseudomales (S1 Fig). These results sug-

gest that sexual characteristics established downstream from active TRA-1 in wild type XX her-

maphrodites reduce resistance to heat shock and juglone relative to males, which have low

TRA-1 activity.

We also measured stress response gene expression under basal conditions. As shown in S5

Fig, XX tra-1 ‘pseudomales’ had 2.5–3.0-fold greater expression of core osmotic,

Fig 3. Stress response gene induction in N2 males and hermaphrodites. Expression of stress response genes with and without exposure to

(A) osmotic (250 mM NaCl for 24 h), (B) heat shock (35˚C for 15 min), or (C) oxidative stressors (87.5 μM juglone for 1 h). Values are mean

plus standard error. N = 4–10 replicate populations of 3–5 worms. �P< 0.05, ��P< 0.01, and ���P< 0.001 versus control of the same sex;
†P< 0.05 versus hermaphrodites of the same condition.

https://doi.org/10.1371/journal.pone.0272452.g003
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Fig 4. Males induce hsp-16.2 and gst-4 in the same tissues as hermaphrodites. Paired bright-field and fluorescence micrographs of hsp-
16.2p::GFP (A) and gst-4p::GFP (B) expressing worms after heat shock (12 h after 35˚C for 1 h) or juglone exposure (12 h after 87.5 μM

juglone for 1 h). Images of the same magnification and strain were taken with the same exposure settings. Scale bars are 200 or 50 μm at

low and high magnification, respectively. Images are representative of at least 10 worms.

https://doi.org/10.1371/journal.pone.0272452.g004
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detoxification, heat shock, innate immune, metal response, and RNA homeostasis genes than

wild type hermaphrodites. However, similar to wild type males, intestine-enriched mRNAs

csta-1.2 and elt-7 were also expressed higher in tra-1 ‘pseudomales’ by similar degrees making

interpretation of these differences difficult.

Discussion

C. elegans males are more resistant to heat shock and juglone than

hermaphrodites

Results in Fig 1 demonstrate that C. elegans males are more resistant to acute heat shock and

oxidative stress than hermaphrodites when living together as they do in nature. The four

strains that we tested are genetically and geographically diverse consistent with this male-bias

being species-wide and not a byproduct of domestication. Greater resistance to heat shock and

toxins would be expected to give males an advantage in harsh conditions that increase their

occurrence due to X chromosome non-disjunction.

Greater resistance to stress is often correlated with slower aging and longer lifespan [75–

77]. Prior studies demonstrate that C. elegans males have a shorter lifespan than hermaphro-

dites when in groups [20]. However, mating and male pheromones have been shown to

decrease lifespan, and males live longer than hermaphrodites when cultured individually dur-

ing adulthood [20, 78, 79]. Our assays with worms isolated individually indicate that male-

biases in heat and juglone resistance are not dependent on chemical or physical interactions

between worms. Our assays were completed in the first few days of adulthood with worms

under severe stress; these conditions likely reduce interactions between worms compared to

longevity assays under standard culture conditions. The greater male stress resistance that we

observed correlates with a greater intrinsic male lifespan. It is not known if sex influences

stress resistance in other species including mammals that have well-established sex-biases in

associated phenotypes such as degenerative disease, aging, and longevity [8–11].

Although mechanisms of resistance vary by mode and degree of stress, transcriptional regu-

lation of genes that reduce stress (e.g., detoxification or osmolyte accumulation genes) or pro-

mote repair (e.g., heat shock protein chaperones) is central to many responses [27, 34, 37, 80].

Some canonical stress response genes were expressed greater in males than hermaphrodites

Fig 5. XX tra-1 pseudomales are more resistant to heat and juglone than hermaphrodites. (A) Heat shock survival for N2 wild type

hermaphrodites and homozygote tra-1(e1099) pseudomales; heat shock was 35˚C for 8 h and then 72 h of recovery. Values are

mean ± standard error. N = 4–6 replicate populations of 27 to 359 worms from 2 trials. (B) Survival curves for tra-1 pseudomales and

N2 hermaphrodites in 175 μM juglone; details for all trials are in S1 Fig. Assay conditions were identical to Fig 2B.

https://doi.org/10.1371/journal.pone.0272452.g005
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under basal conditions, but these differences are difficult to interpret because of sex-specific

organs and other gross anatomical differences [81]. Induction of osmotic, heat shock, and

detoxification genes is well documented and understood for C. elegans hermaphrodites but

not for males [27, 46, 52, 80, 82]. Our results demonstrate that males induce these stress

responses by levels comparable to hermaphrodites (Fig 3) and in the same major tissues (Fig 4,

S3 and S4 Figs). Therefore, we did not observe any obvious sex-specific differences in expres-

sion of core stress response genes that would explain greater stress resistance in males. It is

possible that sex-specific regulation of other cytoprotective genes is responsible for differences

in resistance, but global transcript comparisons between sexes have not found male enrich-

ment for genes with obvious cytoprotective functions under basal conditions [83, 84].

Potential post-transcriptional mechanisms of male-biased stress resistance

Given that stress response gene expression comparisons did not reveal obvious mechanisms

for the male-biased stress resistance that we observed, differences in post-transcriptional

mechanisms may play important roles. The activity of key cytoprotective proteins can be regu-

lated independent of mRNA; this includes GPDH-1, which was recently shown to be regulated

by protein O-GlcNAc transferase OGT-1 independently of mRNA levels [82]. Species-wide

male-bias in resistance to at least two distinct types of stress, high temperature and pro-oxi-

dant, suggest that there may be a broad mechanism not specific to any one mode of stress.

Under many types of stress, global protein translation is reduced to conserve resources and

reduce the burden on protein homeostasis [50, 51, 85–87]. Turn-over of damaged proteins

and autophagy also promote cell homeostasis during stress [88, 89]. Future studies could com-

pare these processes in the two sexes.

Heat shock and juglone resistance are influenced by TRA-1

Sex determination in C. elegans is regulated by a well-characterized gene dosage-dependent

signaling cascade terminating in transcriptional master regulator TRA-1 [40]. Wild type XO

males and XX tra-1 ‘pseudomales’ have low TRA-1 activity and were more resistant to heat

shock and juglone than XX wild type hermaphrodites (Fig 5 and S1 Fig). These results are con-

sistent with developmental outcomes downstream from TRA-1 that reduce heat shock resis-

tance in hermaphrodites relative to males. TRA-1 is a transcriptional repressor and was found

to bind to at least 184 genes with ChIP-seq making identification of downstream mechanisms

potentially complicated [90]. However, genetic analyses have identified some key downstream

regulators of sexual characteristics that could be tested for effects on stress resistance [91–94];

these include mab-3 (Male Abnormal), dmd-3 (Doublesex/Mab-3 Domain), ceh-30 (C. Elegans
Homeobox), egl-1 (EGg Laying defective), fog-1 (Feminization Of Germline), and fog-3; MAB-

3 represses vitellogenin genes needed to provide yoke to oocytes [95–97], MAB-3 and DMD-3

control male-tail development [98], CEH-30 and EGL-1 protect male-specific neurons from

undergoing apoptosis [91], and FOG-1 and FOG-3 regulate sexual characteristics of the germ-

line [93, 94]. Mutations in these pathways feminize or masculinize these specific processes

and, in future studies, can be tested for effects on stress resistance.

Supporting information

S1 Table. Sequences of primers.

(XLSX)

S1 Fig. Males are more resistant to osmotic stress, heat shock, and juglone than hermaph-

rodites as individuals. Details of individual stress survival assays. Heat shock trial 3 and
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juglone trial 2 are shown in Fig 2. Juglone trial 3 is shown in Fig 5B.

(PDF)

S2 Fig. Basal expression of stress response genes in male and hermaphrodite N2. Relative

mRNA levels of core stress response genes in young adults were measured with qRT-PCR. Val-

ues are mean plus standard errors. N = 7–9 replicates of 3–5 worms each. �P< 0.05, ��P<
0.01, and ���P< 0.001 versus hermaphrodites.

(PDF)

S3 Fig. Males induce gpdh-1 in the same tissues as hermaphrodites. Paired bright-field and

fluorescence micrographs of gpdh-1p::dsRed2;myo-2p::GFP expressing worms on agar with 51

or 250 mM NaCl. Images of the same magnification and strain were taken with the same expo-

sure settings. Scale bars are 200 or 50 μm at low and high magnification, respectively. Images

are representative of at least 10 worms.

(PDF)

S4 Fig. hsp-16.2p::GFP and gst-4p::GFP under basal conditions. Paired bright-field and fluo-

rescence micrographs of hsp-16.2p::GFP (A) and gst-4p::GFP (B) expressing worms under con-

trol conditions. Images of the same magnification and strain were taken with the same

exposure settings. Scale bars are 200 or 50 μm at low and high magnification, respectively.

Images are representative of at least 10 worms.

(PDF)

S5 Fig. Basal expression of stress response genes in XX tra-1 pseudomales and hermaphro-

dite N2. Relative mRNA levels of core stress response genes in young adults were measured

with qRT-PCR. Values are mean plus standard error. N = 4–12 replicates of 6–12 worms each.
�P< 0.05, ��P< 0.01, and ���P< 0.001 versus N2 hermaphrodites.

(PDF)
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