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Abnormal brain cholesterol homeostasis in Alzheimer’s
disease—a targeted metabolomic and transcriptomic study
Vijay R. Varma1, H. Büşra Lüleci2, Anup M. Oommen3, Sudhir Varma 4, Chad T. Blackshear5, Michael E. Griswold5, Yang An6,
Jackson A. Roberts 1, Richard O’Brien7, Olga Pletnikova8, Juan C. Troncoso8, David A. Bennett9, Tunahan Çakır2,
Cristina Legido-Quigley10 and Madhav Thambisetty 1✉

The role of brain cholesterol metabolism in Alzheimer’s disease (AD) remains unclear. Peripheral and brain cholesterol levels are
largely independent due to the impermeability of the blood brain barrier (BBB), highlighting the importance of studying the role of
brain cholesterol homeostasis in AD. We first tested whether metabolite markers of brain cholesterol biosynthesis and catabolism
were altered in AD and associated with AD pathology using linear mixed-effects models in two brain autopsy samples from the
Baltimore Longitudinal Study of Aging (BLSA) and the Religious Orders Study (ROS). We next tested whether genetic regulators of
brain cholesterol biosynthesis and catabolism were altered in AD using the ANOVA test in publicly available brain tissue
transcriptomic datasets. Finally, using regional brain transcriptomic data, we performed genome-scale metabolic network modeling
to assess alterations in cholesterol biosynthesis and catabolism reactions in AD. We show that AD is associated with pervasive
abnormalities in cholesterol biosynthesis and catabolism. Using transcriptomic data from Parkinson’s disease (PD) brain tissue
samples, we found that gene expression alterations identified in AD were not observed in PD, suggesting that these changes may
be specific to AD. Our results suggest that reduced de novo cholesterol biosynthesis may occur in response to impaired enzymatic
cholesterol catabolism and efflux to maintain brain cholesterol levels in AD. This is accompanied by the accumulation of
nonenzymatically generated cytotoxic oxysterols. Our results set the stage for experimental studies to address whether
abnormalities in cholesterol metabolism are plausible therapeutic targets in AD.
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INTRODUCTION
While several epidemiological studies suggest that midlife
hypercholesterolemia is associated with an increased risk of
Alzheimer’s disease (AD), the role of brain cholesterol metabolism
in AD remains unclear. The impermeability of cholesterol to the
blood brain barrier (BBB) ensures that brain concentrations of
cholesterol are largely independent of peripheral tissues1. This
further highlights the importance of studying the role of brain
cholesterol homeostasis in AD pathogenesis.
Prior epidemiologic work examining the relationship between

hypercholesterolemia1–3 and statin use3–5 in AD have suggested
that cholesterol metabolism may have an impact on amyloid-β
aggregation and neurotoxicity as well as tau pathology6,7. Other
studies have addressed the molecular mechanisms underlying
the relationship between brain cholesterol metabolism and AD
pathogenesis8. These studies have generally implicated oxysterols,
the main breakdown product of cholesterol catabolism, as
plausible mediators of this relationship1,9. Few studies have
however tested the role of both brain cholesterol biosynthesis
and catabolism in AD across multiple aging cohorts. A compre-
hensive understanding of cholesterol metabolism may uncover
therapeutic targets as suggested by emerging evidence that
modulation of brain cholesterol levels may be a promising
drug target10.

In this study, we utilized targeted and quantitative metabo-
lomics to measure brain tissue concentrations of both biosynthetic
precursors of cholesterol as well as oxysterols, which represent
BBB-permeable products of cholesterol catabolism, in samples
from participants in two well-characterized cohorts—the Balti-
more Longitudinal Study of Aging (BLSA) and the Religious Orders
Study (ROS). We additionally utilized publicly available transcrip-
tomic datasets in AD and control (CN) brain tissue samples to
study differences in regional expression of genes regulating
reactions within de novo cholesterol biosynthesis and catabolism
pathways. Finally, we mapped regional brain transcriptome data
on genome-scale metabolic networks to compare flux activity of
reactions representing de novo cholesterol biosynthesis and
catabolism between AD and CN samples.
We addressed the following key questions in this study:

1. Are brain metabolite markers of cholesterol biosynthesis
and catabolism altered in AD and associated with severity of
AD pathology in two demographically distinct cohorts of
older individuals?

2. Are the genetic regulators of cholesterol biosynthesis
and catabolism altered in brain regions vulnerable to AD
pathology and are these alterations specific to AD or
represent non-specific characteristics related to neurode-
generation in other diseases such as Parkinson’s
disease (PD)?
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3. Are predicted metabolic flux activity through reactions
within cholesterol biosynthesis and catabolism altered in
brain regions vulnerable to AD pathology and are these
alterations specific to AD?

RESULTS
Demographics
Table 1 summarizes the demographic characteristics of the BLSA
and ROS samples. In the BLSA sample, the three groups—AD,
cognitively normal (CN), and asymptomatic AD (ASY)—did not
differ significantly in age at death, sex, APOE ε4 carrier status,
statin use, and postmortem interval (PMI). AD samples were more
likely White (race) compared to CN samples. The three groups
varied significantly in the severity of neuritic plaques (CERAD
scores) with the AD group showing the highest pathology, ASY
intermediate, and CN with the lowest levels of pathology. CN, as
expected, differed from AD in the severity of neurofibrillary
tangles (Braak scores), with AD group showing the highest and CN
the lowest levels of pathology.
In the ROS sample, the three groups did not vary significantly in

race, APOE ε4 carrier status, statin use, and PMI. Persons with AD
were significantly older at death compared to both ASY and CN
samples and were more likely female (sex) compared to CN. CN, as
expected, differed from ASY and AD in the severity of neuritic

plaque pathology (CERAD scores) and neurofibrillary tangle
pathology (Braak scores) with the AD group showing the highest
pathology, ASY being intermediate and CN with the lowest
severity of each pathology.
Table 1 additionally summarizes differences across cohorts.

Considering the total sample, BLSA and ROS varied significantly in
sex, race, statin use, and PMI. Comparing by group (e.g., BLSA AD/
ASY/CN compared to ROS AD/ASY/CN, respectively), BLSA and
ROS samples did not vary in the age at death, APOE ε4 carrier
status, CERAD scores, or Braak scores. BLSA AD samples compared
to ROS AD samples were significantly younger at age of onset, had
a longer disease duration, lower percentage females, less likely to
use statins, and had a longer PMI. BLSA ASY samples did not vary
from ROS ASY samples. BLSA CN samples were significantly lower
percentage White (race).

De novo cholesterol biosynthesis
In pooled primary analyses (i.e., BLSA and ROS samples combined)
(Table 2), we observed significantly lower lanosterol concentration
in the AD group in the MFG (AD < ASY < CN; P < 0.001). We
additionally observed that lower lanosterol concentration in
the MFG was significantly associated with higher neuritic plaque
burden (P= 0.012) and higher neurofibrillary tangle pathology
(P < 0.001). Brain tissue concentration of free cholesterol was not
associated with disease status, neuritic plaque burden (CERAD
score), or neurofibrillary tangle pathology (Braak score).

Table 1. Demographic characteristics of study samples.

Baltimore Longitudinal Study of Aging (BLSA): study sample

Total sample, N= 29 CN, N= 8 ASY, N= 6 AD, N= 15

Age at death, mean (SD) 86.83 (9.88) 83.97 (15.06) 83.78 (6.71) 89.58 (6.99)

Age of onset, mean (SD) – – – 80.88 (7.83)a

Disease duration, mean (SD) – – – 8.70 (3.89)a

Sex, n (% female) 14 (48.28)a 4 (50.00) 3 (50.00) 7 (46.67)a

Race, n (% white) 27 (93.10)a 6 (75.00)a,b 6 (100.00) 15 (100.00)b

APOE e4 carrier, n (%) 8 (30.77) 2 (25.00) 1 (20.00) 5 (38.46)

Statin use, n (%) 6 (20.69)a 3 (37.50) 1 (16.67) 2 (13.33)a

CERAD, mean (SD) 1.90 (1.14) 0.25 (0.46)b,d 2.17 (0.41)c,d 2.67 (0.49)b,c

Braak, mean (SD) 4.00 (1.65) 2.63 (1.30)b 3.50 (1.64) 4.94 (1.22)b

Postmortem interval (hours), mean (SD) 15.48 (12.20)a 11.38 (6.41) 13.58 (4.36) 18.64 (16.03)a

Religious Orders Study (ROS): study sample

Total sample, N= 71 CN, N= 22 ASY, N= 18 AD, N= 31

Age at death, mean (SD) 89.52 (7.02) 87.44 (6.75)b 86.42 (7.65)c 92.81 (5.45)b,c

Age of onset, mean (SD) – – – 89.13 (5.71)a

Disease duration, mean (SD) – – – 3.67 (2.94)a

Sex, n (% female) 55 (77.46)a 13 (59.09)b 15 (83.33) 27 (87.10)a,b

Race, n (% white) 71 (100.00)a 22 (100.00)a 18 (100.00) 31 (100.00)

APOE e4 carrier, n (%) 19 (27.54) 4 (18.18) 6 (33.33) 9 (31.03)

Statin use, n (%) 41 (57.75)a 13 (59.09) 10 (55.56) 18 (58.06)a

CERAD, mean (SD) 1.82 (1.15) 0.32 (0.65)b,d 2.33 (0.49)d 2.58 (0.50)b

Braak, mean (SD) 3.85 (1.14) 2.91 (1.11)b,d 3.61 (0.85)c,d 4.65 (0.66)b,c

Postmortem interval (hours), mean (SD) 9.48 (6.14)a 9.59 (5.35) 10.80 (8.24) 8.67 (5.36)a

AD Alzheimer’s disease, CN cognitively normal, ASY asymptomatic AD, Disease duration: age death—age onset.
aP < 0.05 comparing BLSA to ROS (e.g., AD in BLSA compared to AD in ROS).
bP < 0.05 comparing AD to CN.
cP < 0.05 comparing AD to ASY.
dP < 0.05 comparing ASY to CN.
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In cohort-specific secondary analyses (Supplementary Table 1),
there were no significant associations (FDR-adjusted P < 0.05)
between any other metabolites related to de novo cholesterol
biosynthesis and either disease status or severity of AD pathology.

Cholesterol catabolism (enzymatic)
In pooled primary analyses (i.e., BLSA and ROS samples
combined) (Table 2), we observed significantly lower 24S-
hydroxycholesterol concentration in the AD group in the ITG
(AD < ASY < CN; P= 0.011). We additionally observed that lower
24S-hydroxycholesterol in the ITG was significantly associated
with higher neuritic plaque burden (P= 0.006) and lower 24S-
hydroxycholesterol concentration in both the ITG (P= 0.002) and
MFG (P= 0.042) were associated with higher neurofibrillary
pathology. Higher 7α-hydroxycholesterol concentration in the
ITG was significantly associated with higher neuritic plaque
burden (P= 0.027).
In cohort-specific secondary analyses (Supplementary Table 1),

we observed significantly lower 24S-hydoxycholesterol and 7α-
hydroxycholesterol concentration in the AD group in the MFG in
ROS (AD < ASY < CN; FDR-adjusted P= 0.036 and 0.048, respec-
tively). Lower 7α-hydroxycholesterol concentration in the MFG in
ROS was significantly associated with higher neuritic plaque
burden (FDR-adjusted P= 0.037). Lower 4β-hydroxycholesterol
concentration in the MFG in ROS was also significantly associated
with higher neuritic plaque burden (FDR-adjusted P= 0.029).

Cholesterol catabolism (non-enzymatic)
In pooled primary analyses (i.e., BLSA and ROS samples combined)
(Table 2), we observed significantly higher 5α,6α-epoxycholesterol,

5α,6β-dihydroxycholestanol, 5β,6β-epoxycholesterol, 7-ketocho-
lesterol, and 7β-hydroxycholesterol concentrations in the AD
group in the ITG (AD > ASY > CN; P= 0.040, P= 0.017, P= 0.013,
P= 0.001, P= 0.005 respectively). Higher 7-ketocholesterol and
7β-hydroxycholesterol concentrations in the ITG were also
associated with higher neuritic plaque burden (P= 0.008, P=
0.010, respectively).
In cohort-specific secondary analyses (Supplementary Table 1),

we observed significantly lower 5α,6β-dihydroxycholestanol con-
centration and 7β-hydroxycholesterol concentration in the AD
group in the MFG in ROS (AD < ASY < CN; FDR-adjusted P= 0.039
and P= 0.039, respectively).

Regional brain expression of genes regulating de novo
cholesterol biosynthesis, cholesterol catabolism (enzymatic),
and cholesterol esterification
As indicated in the Fig. 1 heatmap, for de novo cholesterol
biosynthesis we observed significantly altered gene expression
(FDR-adjusted P value <0.05) in AD in 9 out of 20 genes. The
majority of significantly altered genes (eight out of nine) showed
lower gene expression in AD relative to CN (AD < CN) in the ERC
and/or hippocampus. We observed no significant associations in
the control region (i.e., visual cortex).
For cholesterol catabolism (enzymatic), we observed signifi-

cantly altered gene expression (FDR-adjusted P value <0.05) in five
out of ten genes. Three had higher gene expression in AD
compared to CN (AD > CN) and two had lower gene expression
in AD relative to CN (AD < CN) in the ERC and/or hippocampus.
We observed no significant associations in the control region
(i.e., visual cortex).

Table 2. Pooled associations between metabolite levels and disease status/severity of AD pathology.

Disease group CERAD Braak

ITG MFG ITG MFG ITG MFG

Metabolite name β P value β P value β P value β P value β P value β P value

De novo cholesterol biosynthesis

Cholesterol . . −0.062 0.170 . . −0.037 0.292 . . 0.007 0.806

Lanosterol . . −0.278 <0.001 . . −0.139 0.012 −0.090 0.050 −0.180 <0.001

24,25-dihydrolanosterol . . . . . . . . −0.032 0.333 . .

7-dehydrocholesterol . . . . . . . . 0.160 0.147 . .

Desmosterol

Cholesterol catabolism (enzymatic)

27-hydroxycholesterol 0.210 0.170 . . 0.066 0.555 . . 0.051 0.641 −0.120 0.223

4β-hydroxycholesterol 0.119 0.234 . . 0.030 0.688 . . . . . .

24S-hydroxycholesterol −0.113 0.011 . . −0.074 0.008 . . −0.094 <0.001 −0.087 0.042

7α-hydroxycholesterol 0.154 0.068 . . 0.135 0.023 . . −0.002 0.977 −0.109 0.066

Cholesterol catabolism (non-enzymatic)

5α,6α-epoxycholesterol 0.199 0.040 0.115 0.139 0.118 0.116 0.038 0.508 . . . .

5α,6β-dihydroxycholestanol 0.213 0.017 −0.155 0.088 0.105 0.096 −0.111 0.101 . . −0.106 0.062

5β,6β-epoxycholesterol 0.196 0.013 0.071 0.327 0.112 0.069 . . 0.085 0.152 . .

7-ketocholesterol 0.304 0.001 . . 0.179 0.008 . . 0.102 0.155 −0.035 0.537

7β-hydroxycholesterol 0.237 0.005 . . 0.157 0.010 . . 0.050 0.448 −0.089 0.284

ITG Inferior Temporal Gyrus, MFG Middle Frontal Gyrus; P < 0.05 in bold.
Negative coefficients indicate that lower metabolite concentration is significantly associated with AD, higher neuritic plaque burden (CERAD score), or higher
neurofibrillary tangle pathology (Braak score). Positive coefficients indicate that higher metabolite concentration is significantly associated with AD, higher
neuritic plaque burden (CERAD score), or higher neurofibrillary tangle pathology (Braak score). Blank cells indicate that results were not pooled; these are
included in cohort-specific secondary analyses in Supplementary Table 1. Significant associations (P < 0.05) are indicated in bold. Baltimore Longitudinal Study
on Aging (BLSA) sample size: AD (n= 15), CN (n= 8); Religious Orders Study (ROS) sample size: AD (n= 31), CN (n= 22); note: samples pooled in analyses.
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For cholesterol esterification, we observed significantly altered
gene expression in one out of one gene with higher gene
expression in AD compared to CN (AD > CN) in the ERC. We
observed no significant associations in the control region (i.e.,
visual cortex). Significant genes are included in Fig. 1 and log-fold
changes and P values for all genes are included in Supplementary
Table 2.
Of the 15 genes that were significantly altered in AD, we did not

observe significantly altered expression (FDR-adjusted P value
<0.05) in PD compared to CN in the substantia nigra (Supple-
mentary Table 3).

Genome-scale metabolic network modeling of reactions
within de novo cholesterol biosynthesis, catabolism
(enzymatic), and esterification
In Table 3, we summarize results of genome-scale metabolic
network modeling of reactions within de novo cholesterol
biosynthesis, catabolism (enzymatic), and esterification. Out of
177 reactions catalyzed by the 31 a priori specified genes, 16 were
significantly (P < 0.05) altered in AD in the ERC and/or hippocam-
pus including 15 within the de novo cholesterol biosynthesis
pathway (3 in pre-squalene and 12 in post-squalene) and 1 within
the cholesterol catabolism (enzymatic) pathway. The majority of
reactions within the de novo cholesterol biosynthesis pathway
(14/15) were decreased in AD compared to CN. Within the
cholesterol catabolism (enzymatic) pathway, 1/1 was increased in

the AD hippocampus. The majority of reactions within the control
region—visual cortex—(15/16) were not significantly different
between AD and CN. Reactions related to cholesterol esterification
were not predicted to be significantly altered between the two
groups in any of the brain regions examined. Supplementary
Table 4 includes iMAT-based metabolic network modeling results
from all 177 reactions in AD and CN samples.
Genome-scale metabolic network modeling in PD samples

relative to CN (in the substantia nigra) of the 16 reactions that
were significantly altered in AD did not reveal any significantly
altered reactions (Supplementary Table 5).
Figure 2a–d summarizes metabolite, gene expression, and

iMAT-based metabolic network modeling results in pathway-
specific figures. For all metabolomic, gene expression, and
metabolic flux results, significant associations where higher
metabolite concentration, higher gene expression, or increased
flux in a reaction are associated with AD are indicated in red.
Significant associations where lower metabolite concentration,
lower gene expression, or reduced flux in a reaction are associated
with AD are indicated in green.

DISCUSSION
Despite the well-established association between hypercholester-
olemia and AD risk, the role of brain cholesterol metabolism in AD
pathogenesis remains unclear. Understanding the relevance of
brain cholesterol homeostasis in AD may provide insights into
effective disease-modifying treatments.
Our results suggest that while brain levels of free cholesterol are

unchanged in AD, both de novo cholesterol biosynthesis and
catabolism are impacted by the disease. Metabolite levels and
gene expression associated with cholesterol biosynthesis are
largely reduced in AD in brain regions vulnerable to pathology.
Similarly, cholesterol breakdown through enzymatic conversion to
its principal catabolic product, 24S-hydroxycholesterol is also
reduced in AD. Furthermore, our metabolomic and differential
gene expression results are supported by metabolic network
modeling that suggests both reduced cholesterol biosynthesis
as well as an increase in conversion of cholesterol to primary
bile acids in AD. In addition, our results indicate increased non-
enzymatic cholesterol catabolism in AD, suggesting a shift
towards pathways that may generate potentially cytotoxic
oxysterols as well as enhanced cholesterol esterification.
Our results are derived from metabolite data acquired across

two longitudinally followed cohorts of older adults from distinct
study populations differing in important demographic and
biologic characteristics (i.e., race and sex) as well as exposure to
statin therapy and PMI. Converging results from these two
independent cohorts, therefore, suggest that our observations
on dysregulation of cholesterol homeostasis likely reflect funda-
mental features of AD pathogenesis.
We additionally assessed whether our results were specific to

AD by performing identical analyses on gene expression data in a
non-AD neurodegenerative disease, by using brain tissue samples
from PD patients. We found that gene expression of enzymes
regulating de novo cholesterol biosynthesis and catabolism are
not altered in the substantia nigra in PD suggesting that these
changes may be relatively specific to brain regions vulnerable to
AD pathology.
We observed significantly lower levels of the principal

cholesterol precursor, lanosterol in AD as well as significant
associations between lower lanosterol concentrations and greater
severity of both neuritic plaque burden and neurofibrillary
pathology. The de novo synthesis of cholesterol from acetyl CoA
occurs through a series of enzymatic reactions in the mevalonate
pathway (Fig. 2a) that first generate squalene (i.e., pre-squalene
mevalonate pathway), which is subsequently converted to
lanosterol (i.e., post-squalene mevalonate pathway). Lanosterol is

Fig. 1 Differential brain gene expression in AD. AD Alzheimer’s
disease, CN control, ERC entorhinal cortex. Differential brain gene
expression of de novo cholesterol biosynthesis, catabolism (enzy-
matic), and esterification in AD. Summary of genes differentially
expressed in selected brain regions in AD compared to CN across
three pathways (de novo cholesterol biosynthesis, cholesterol
catabolism (enzymatic), and cholesterol esterification). Green shad-
ing indicates that gene expression was significantly reduced in AD
compared to CN. Red shading indicates that gene expression was
significantly increased in AD compared to CN. Gray shading
indicates gene expression was not significantly different between
AD and CN. Gene Expression Ominbus (GEO) data sample size: ERC:
AD (n= 25), CN (n= 52); hippocampus: AD (n= 29), CN (n= 56);
visual cortex: AD (n= 18), CN (n= 12).
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the first steroidal intermediate metabolite in cholesterol biosynth-
esis and is converted to cholesterol by sequential enzymatic
reactions through two distinct, but closely related pathways: the
Bloch and Kandutsch–Russell pathways (Fig. 2b).
Our finding that AD is associated with reduced synthesis of

lanosterol can be interpreted in the context of recent evidence
that biosynthetic precursors of cholesterol may exert neuropro-
tective roles. Lanosterol has been shown to induce mitochondrial
uncoupling and autophagy, promoting neuronal survival in a
mouse model of Parkinson’s disease11. Similarly, increasing levels
of lanosterol have been shown to reduce neuronal atrophy and
improve motor deficits in a mouse model of Huntington’s disease
as well as the survival of striatal cells overexpressing Huntingtin
protein12. Our finding that this cholesterol precursor is depleted in
the AD brain in regions vulnerable to pathology suggests that
mitochondrial function and autophagy may be disrupted leading

to neurodegeneration. Interestingly, the accumulation of mutant
amyloid precursor protein (APP) and Aβ in hippocampal neurons
has been shown to induce impairment in both mitochondrial
structure and function as well as defective mitophagy and
autophagy with synaptic loss13.
Despite a decrease in brain tissue concentration of lanosterol,

we found no significant differences in absolute concentrations of
free cholesterol in AD. Our results are broadly consistent with prior
studies that have measured free cholesterol in the AD brain14–16.
Some prior reports have however observed higher brain
cholesterol concentrations in AD. Xiong et al. assayed both free
and esterified cholesterol levels in a small sample of AD and CN
brains using enzymatic methods and reported higher concentra-
tions in AD17. However, it is unclear whether these assays were
performed in specific brain regions or measured total brain
cholesterol concentrations. In a smaller study, Cuttler et al.
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reported higher concentrations of cholesterol in the MFG in AD
samples relative to CN18.
In order to further assess whether de novo cholesterol

biosynthesis is altered in AD, we tested differences in gene
expression of enzymatic regulators of these reactions between AD
and CN samples in the hippocampus, ERC, and visual cortex.
Broadly, we observed a significant reduction in expression of

several genes catalyzing reactions in de novo cholesterol
biosynthesis in the hippocampus and ERC in AD, while no
alterations were detected in the visual cortex. These included
genes encoding enzymes catalyzing reactions leading to the
synthesis of the earliest cholesterol precursors (Fig. 2a), including
acetoacetyl CoA (catalyzed by ACAT1/2—cytosolic acetyl-
coenzyme A acetyltransferases), the biosynthetic precursor of
hydroxymethyl-glutaryl (HMG)-CoA. We also observed a significant
reduction in regional brain expression of the hydroxymethyl-
glutaryl (HMG)-CoA synthase (HMGCS) gene in the hippocampus
and the HMG-CoA reductase (HMGCR) gene in both the ERC and
hippocampus in AD. HMGCR catalyzes the formation of mevalo-
nate from HMG-CoA, the rate-limiting step in cholesterol
biosynthesis in the endoplasmic reticulum (ER), and the target
of statin drugs used to lower LDL cholesterol levels in plasma.
These findings are especially relevant in the context of previous
epidemiological studies that have shown associations between
the rs3846662 single-nucleotide polymorphism (SNP) in HMGCR
and AD risk19,20.
In addition to reduced de novo cholesterol biosynthesis

through the pre-squalene mevalonate pathway in AD (Fig. 2a),
we also observed significantly reduced gene expression of
enzymes involved in the synthesis of farnesylpyrophosphate
(FPP), a key precursor of non-sterol isoprenoids in the ERC and
hippocampus. These include isopentenyl-diphosphate isomerase
(IDI) and farnesyl-diphosphate synthase (FDPS). FPP is an
important metabolic branch point at the intersection of both
cholesterol and non-sterol isoprenoid biosynthesis21. Our findings,
therefore, suggest that key biochemical reactions determining the
biosynthetic fates of both cholesterol and non-sterol isoprenoids
are impaired in AD. These results add to growing evidence
implicating perturbations in isoprenoid metabolism in AD
pathogenesis22. Until recently, dysregulation in isoprenoid meta-
bolism has received relatively little attention in comparison to
cholesterol metabolism in the pathogenesis of AD. The isopre-
noids, FPP, and geranylgeranyl pyrophosphate (GGPP) participate

in prenylation reactions—an important post-translational mod-
ification of several proteins including the small GTPases, which
serve as molecular switches in numerous signaling pathways
relevant to AD23. Interestingly, in a previous proteomics study
performed in the same BLSA samples as in our current report, we
showed reduced levels of the GTPase signaling proteins, RHOB,
and G protein subunit alpha i protein (GNAI1) in the frontal cortex
in AD24. The role of Rho GTPases as regulators of synaptic plasticity
may be especially relevant in interpreting our findings in the
context of AD pathogenesis25.
In the post-squalene cholesterol biosynthesis pathway (Fig. 2b),

we additionally found lower expression of the DHCR24 gene in
the hippocampus and ERC in AD. DHCR24 was originally identified
by differential mRNA display as a gene whose expression is
selectively reduced in AD within regions vulnerable to AD
pathology and was named Selective Alzheimer’s Disease Indicator
1 (Seladin-1)26. Although subsequent microarray studies have
reported inconsistent results on DHCR24 expression in AD,
accumulating evidence suggests that DHCR24 may exert pleio-
tropic effects on several molecular mechanisms relevant to AD.
While DHCR24 and its substrate, desmosterol play key roles in
cholesterol homeostasis, DHCR24 also has reactive oxygen species
(ROS)-scavenging activity and may protect against Aβ-induced
neurotoxicity and apoptosis by inhibiting caspase-3 activation27.
Reduced DHCR24 gene expression in regions vulnerable to AD
pathology may therefore indicate greater susceptibility to ROS,
Aβ-induced neurotoxicity, apoptosis, and neurodegeneration.
As brain cholesterol homeostasis likely reflects net effects of

both cholesterol biosynthesis and catabolism, we were also
interested in assessing concentrations of metabolite markers of
cholesterol breakdown. We found that cholesterol breakdown
through enzymatic conversion to its principal catabolic product,
24S-hydroxycholesterol (Fig. 2c) is lower in AD, and lower 24S-
hydroxycholesterol concentration is also associated with greater
severity of both neuritic plaque and neurofibrillary pathology.
The conversion of cholesterol to 24S-hydroxycholesterol is
catalyzed by the neuron-specific enzyme CYP46A1 and this
reaction represents the primary metabolic route for elimination
of cholesterol from the brain across the BBB into the peripheral
circulation28,29. Our findings are consistent with accumulating
evidence that 24S-hydroxycholesterol may play important roles as
a modulator of Aβ production, tau phosphorylation and neuronal
death as well as cognitive performance30,31.

Fig. 2 Alterations in brain metabolite concentrations and brain gene expression in AD. Alterations in brain metabolite concentrations and
brain gene expression related to cholesterol biosynthesis and catabolism in AD. Metabolites indicated in bold (non-italics) and in a box (e.g.,
Lanosterol) were measured and detectable in the study in the ITG and MFG in the BLSA and ROS cohorts. Genes indicated in bold and in a box
(e.g., CYP46A1) were measured and detectable in the ERC, hippocampus, and visual cortex in GEO datasets. Metabolites or genes not in bold
and not in a box (e.g., Lathosterol) were not measured or detectable. Genes indicated in a hexagon (e.g., HSD3B7) regulate reactions that are
predicted by metabolic network modeling to be significantly different between AD and CN samples. a De novo cholesterol biosynthesis (pre-
squalene mevalonate pathway). Acetyl CoA acetyl-coenzyme A, ACAT1 acetyl-coenzyme A acetyltransferase 1, ACAT2 acetyl-coenzyme A
acetyltransferase 2, acetoacetyl CoA acetoacetyl-coenzyme A, HMGCS1 3-hydroxy-3-methylglutaryl-coenzyme A synthase 1, HMG-CoA
3-hydroxy-3-methylglutaryl-coenzyme A, HMGCR 3-hydroxy-3-methylglutaryl-coenzyme A reductase, PMVK phosphomevalonate kinase, MVK
mevalonate kinase, GGPPS1 geranylgeranyl diphosphate synthase 1, IDI1 isopentenyl-diphosphate delta isomerase 1, FDPS farnesyl-
diphosphate synthase, IDI2 isopentenyl-diphosphate delta isomerase 2, FDFT1 farnesyl-diphosphate farnesyltransferase 1, SQLE squalene
epoxidase, LSS lanosterol synthase. b De novo cholesterol biosynthesis (post-squalene mevalonate pathway, including the Bloch and
Kandutsch–Russell pathways) and cholesterol esterification. DHCR24 24-dehydrocholesterol reductase, CYP51A1 cytochrome P450 family
51 subfamily A member 1, 24,25 DHLan 24,25-dihydrolanosterol, TM7SF2 transmembrane 7 superfamily member 2, SC4MOL methylsterol
monooxygenase 1, SC5D sterol-C5-desaturase, DHCR7 7-dehydrocholesterol reductase, SOAT1 sterol O-acyltransferase 1. c Cholesterol
catabolism (enzymatic). CYP27A1 cytochrome P450 family 27 subfamily A member 1, CYP3A4 cytochrome P450 family 3 subfamily A member
4, 4β-OHC 4β-hydroxycholesterol, 27-OHC 27-hydroxycholesterol, CH25H cholesterol 25-hydroxylase, CYP11A1 cytochrome P450 family
11 subfamily A member 1, 22R-OHC 22R-hydroxycholesterol, 25-OHC 25-hydroxycholesterol, CYP7B1 cytochrome P450 family 7 subfamily B
member 1, 7α, 24-diOHC 7α, 24-dihydroxycholesterol, CYP46A1 cytochrome P450 family 46 subfamily A member 1, CYP7A1 cytochrome P450
family 7 subfamily A member 1, 24S-OHC 24S-hydroxycholesterol, CYP39A1 cytochrome P450, family 39, subfamily A member 1, 7a-OHC 7α-
hydroxycholesterol, CYP8B1 cytochrome P450, family 8, subfamily B, member 1, 7α,12α-diOHCnone 7α,12α-dihydroxycholestenone, HSD3B7
3-beta-hydroxysteroid dehydrogenase type 7, 7α-OHCnone 7α-hydroxycholestenone, CA cholic acid, CDCA chenodeoxycholic acid.
d Cholesterol catabolism (non-enzymatic). 7β-OHC 7β-hydroxycholesterol, 5α,6α-EC 5α,6α-epoxycholesterol, 5β,6β-EC 5β,6β epoxycholesterol,
5α,6β-EC 5α,6β epoxycholesterol.
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We also observed alterations in brain tissue concentrations of
nonenzymatically generated oxysterols in AD (Fig. 2d). These
included 7α-hydroxycholesterol (which can also be generated
enzymatically by CYP7A1)32 and 7β-hydroxycholesterol, both of
which were also significantly associated with severity of neuritic
plaque pathology. Other nonenzymatically generated oxysterols
whose concentrations were higher in AD included 5α,6α-epoxycho-
lesterol, 5α,6β-dihydroxycholestanol, and 5β,6β-epoxycholesterol.
Our results are relevant in the context of prior studies, suggesting
that these oxysterol species may mediate cytotoxicity, apoptosis,
oxidative stress and chronic inflammation32–34. While the precise
mechanisms generating cytotoxic oxysterols in the brain remain to
be identified, it is interesting that both APP and Aβ have been
shown to oxidize cholesterol33. Furthermore, Aβ:copper complexes
in lipid rafts promote the catalytic oxidation of cholesterol to
generate oxysterols that may trigger hyperphosphorylation of tau
and accumulation of neurofibrillary tangles35,36.
One previous study utilized mass spectrometry-based assays of

cholesterol precursors, free cholesterol, and oxysterols in the brain
in AD in comparison to CN samples. In samples from the ROS
study, Hascalovici et al. used gas chromatography–mass spectro-
metry (GC–MS) to assay these metabolites in the frontal cortex in
AD, MCI, and CN samples16. They however did not report any
significant group differences in the concentrations of cholesterol
precursors, free cholesterol, or oxysterols in their study. It is likely
that differences in assay methodology (GC–MS versus UHPLC–MS/
MS) may account for the inconsistency between these prior
findings and our current results. Testa et al.37 utilized isotope
dilution gas chromatography/mass spectrometry to measure
enzymatically and nonenzymatically generated oxysterol concen-
trations from the frontal and occipital cortices in AD (N= 13) and
CN (N= 4) brains. They found that levels of several oxysterols were
associated with disease progression. These prior findings are
broadly consistent with our current report.
Our transcriptomics analyses compared gene expression levels

of several enzymes regulating synthesis of oxysterols in the brain
(Fig. 2c). While the expression of many of these genes was similar
in the AD and CN groups, it is striking that we find lower gene
expression of CYP46A1, in the ERC in AD. CYP46A1 is the neuron-
specific, rate-limiting enzyme in the elimination of cholesterol29,38

through its conversion to 24S-hydroxycholesterol39 and plays a
key role in regulating brain cholesterol levels. Inactivation of
CYP46A1 has been shown to lower cholesterol efflux from the
brain leading to a compensatory decrease in de novo cholesterol
biosynthesis40. This compensatory reduction in cholesterol synth-
esis appears to be important in maintaining steady-state
cholesterol levels in the brain in response to CYP46A1 inactivation.
Our current results showing unaltered concentrations of free
cholesterol in the brain in AD despite reduced expression of
CYP46A1 may thus be mediated by a compensatory reduction in
de novo cholesterol biosynthesis as suggested by reduced
concentrations of lanosterol, the early biosynthetic precursor of
cholesterol. Of relevance to our current findings are also previous
studies that support a role for CYP46A1 beyond cholesterol
turnover as 24S-hydroxycholesterol39,41 is a potent modulator of
NMDARs which are critical for synaptic plasticity and memory41,42.
Recent studies have suggested that CYP46A1 plays a key role in
the preservation of cognitive performance during aging and may
be a promising target of disease-modifying treatments for AD43.
Female mice overexpressing CYP46A1 showed improved mea-
sures of spatial memory during aging, modulation of NMDA
receptor activity, and improved markers of synaptic integrity44.
Activation of CYP46A1 by low-dose Efavirenz, a non-nucleoside
reverse transcriptase inhibitor is a therapeutic target that is
currently under evaluation in a randomized clinical trial in patients
with mild cognitive impairment due to AD43,45. An exciting finding
from a recent study by van der Kant and colleagues in induced
pluripotent stem cell (iPSC)-derived neurons suggests that

reducing levels of cholesterol esters through activation of
CYP46A1 by Efavirenz reduced both p-tau and Aβ secretion46.
These results raise the exciting possibility that CYP46A1 activation
and conversion of cholesterol to 24S-hydroxycholesterol39 may be
a therapeutic mechanism targeting both the principal pathologi-
cal processes in AD47.
While the predominant mechanism of cholesterol elimination

from the brain is through its conversion to 24S-
hydroxycholesterol39 by CYP46A1, a small fraction is esterified
for storage through the enzymes sterol O-acyltransferase 1
(SOAT1) (also called Acyl-CoA:cholesterol acyltransferase 1; ACAT1)
and lecithin:cholesterol acyltransferase (LCAT)48,49. It is interesting
that we find increased gene expression of SOAT1 in AD samples in
the ERC. Inhibition of ACAT1 has received attention as a promising
therapeutic target in AD and is believed to reduce amyloidogenic
processing of APP by increasing the conversion of unesterified
cholesterol to 24S-hydroxycholesterol39 by CYP46A150. Further-
more, polymorphisms in the SOAT1 gene have been previously
associated with AD risk, brain amyloid load and CSF cholesterol
concentrations51. Our finding of increased gene expression of
SOAT1 in the ERC in AD suggests that it may promote the
accumulation of cholesterol esters within the endoplasmic
reticulum and promote amyloidogenic processing of APP.
While regional differences in brain tissue abundance of

metabolite levels and differential gene expression can provide
insights into metabolic dysregulation in AD, these analyses only
provide a limited view of cholesterol metabolism. They do not
account for interactions between cholesterol metabolism and
other biochemical pathways, consider interactions between
reactions within the cholesterol biosynthesis/catabolism path-
ways, or identify an increase or decrease in rates of associated
reactions. Therefore, to develop a systems-level overview of
cholesterol metabolism in AD, we mapped regional brain
transcriptomic data to a genome-scale metabolic network using
iMAT in order to predict the relative activity/inactivity of
reactions catalyzed by specific genetic regulators of cholesterol
synthesis and catabolism. These results broadly support our
interpretation that lower biosynthesis of cholesterol, as well as
reduced breakdown, are characteristic biochemical abnormal-
ities in AD. They also extend these findings by suggesting that
there may be increased conversion of 24S-hydroxycholesterol to
primary bile acids in the AD brain through 3β-hydroxysteroid
isomerase (HSD3B7). This enzyme catalyzes the inversion of the
3β-hydroxyl group of cholesterol to the 3α-hydroxyl group of
bile acids and is the converging step of bile acid synthesis
through the classical, alternative, and neural pathways52,53.
These findings add to growing evidence of abnormal brain bile
acid metabolism and signaling in both AD and other neurode-
generative diseases52,54,55. In a recent publication using brain
tissue samples from the BLSA included in this study, we reported
higher concentrations of the primary bile acids, cholic acid, and
chenodeoxycholic acid in AD samples relative to CN56. In
addition, a study using similar iMAT-based analysis identified
significant differences between AD and CN in bile acid-
associated reactions using transcriptomic data across multiple
cohorts and identified HSD3B7 as significantly altered in AD57.
Together, these results point to a shift in cholesterol catabolism
toward the enhanced synthesis of bile acids in AD and an
accompanying reduction in 24S-hydroxycholesterol levels that
may compromise synaptic plasticity and accelerate cognitive
impairment through perturbation of NMDA receptor activity41.
Using targeted and quantitative metabolomics assays of brain

tissue samples from two well-characterized longitudinal cohorts in
combination with regional brain gene expression and metabolic
network modeling, we show that AD is associated with pervasive
abnormalities in cholesterol biosynthesis and catabolism. Our
findings suggest a disease model where reduced de novo
cholesterol biosynthesis may occur in response to impaired
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enzymatic cholesterol catabolism and efflux to maintain brain
cholesterol levels in AD. While reduced cholesterol biosynthesis
may enhance mitochondrial dysfunction and impair autophagy,
reduced cholesterol conversion to 24S-hydroxycholesterol may
increase amyloidogenic processing of APP, tau phosphorylation,
and neuronal death. These perturbations appear to be accom-
panied by the accumulation of nonenzymatically generated
cytotoxic oxysterols in AD that may further exacerbate oxidative
damage and neuroinflammation. This model presents testable
hypotheses in experimental studies that can address whether
these abnormalities in cholesterol metabolism may be caused by
disease or act as primary drivers of AD pathogenesis. These follow-
up experimental studies are also critical to identify cholesterol
metabolism-related therapeutic targets in AD.
There are important limitations to our study. While we assayed

the primary metabolites associated with cholesterol biosynthesis
and breakdown, these represent only a subset of the total number
of metabolites in these pathways. Therefore, our interpretation of
the results is restricted to the metabolites that could be reliably
detected and measured. Furthermore, as our metabolomic and
gene expression analyses were cross-sectional, we were unable to
directly test how AD progression may impact changes in
metabolite concentrations or their genetic regulation.
Another limitation was that the analyses of gene expression

were performed on publicly available datasets in brain regions
distinct from the BLSA or ROS where metabolite levels were
assayed. The limited availability of tissue samples from the ERC
and hippocampus in BLSA and ROS precluded metabolomics
assays on these regions in our study. The regions chosen for gene
expression analyses for both AD and PD were however disease-
specific and symptom proximate regions (ERC/hippocampus in
AD; substantia nigra in PD) that may allow us to derive disease-
specific insights about abnormal metabolism in AD.
Another important consideration is that prior studies have

indicated that many community-dwelling older individuals have
multiple brain pathologies58. This makes it challenging to
conclusively attribute observed metabolomic changes in our
study to specific pathologies. However, our use of two indepen-
dent cohorts where both AD and CN samples were defined using
standardized clinical and neuropathologic diagnoses, and our
inclusion of PD as a non-AD neurodegenerative disease compar-
ison provides additional support that our findings may be specific
to AD and associated pathologies.
We also acknowledge that we chose to focus our attention on

findings that were convergent between the BLSA and ROS cohorts
as these are more likely to be related to AD-associated
pathological changes. There are however divergent associations
between the two cohorts that may be driven primarily by
interactions between metabolic abnormalities and demographic
differences such as sex and race as well as non-AD pathologies
that merit further investigation.
Despite these limitations, our integrated analyses of regional

brain metabolomic and transcriptomic data enhance under-
standing of dysregulated cholesterol metabolism in AD, provide
valuable opportunities to test a priori hypotheses in experimental
models in future studies, and may pave the way for the discovery
of treatments targeting abnormal cholesterol metabolism in AD.

METHODS
Participants: BLSA
The BLSA is a prospective cohort study that began at the National Institute
on Aging (NIA) in 195859,60.
Evaluations are scheduled every two years. As of 2003 participants over

the age of 80 are scheduled for evaluations every year.
Autopsy sample characteristics have been described in detail pre-

viously61, including differences compared to the overall BLSA cohort62,

neuropathologic assessment of AD pathology63, and clinical diagnoses at
consensus case conferences64.
BLSA autopsy participants were classified into three groups based on the

below criteria:
1) AD participants (n= 15) had a clinical diagnosis of either AD or MCI

due to AD within 1 year of death and a CERAD pathology score of >1 (i.e.,
CERAD B or C).
2) Cognitively normal (CN) participants (n= 8) had normal cognition

within 1 year of death and a CERAD pathology score <=1 (i.e., CERAD 0 or
A). CN participants did not have significant amyloid pathology at autopsy
and cognitive impairment during life.
3) Asymptomatic AD (ASY) participants (n= 6) had a clinical diagnosis of

normal cognition within 1 year of death and a CERAD pathology score >1
(i.e., CERAD B or C). ASY participants had characteristic AD brain pathology
(neuritic plaques and neurofibrillary tangles) and did not have cognitive
impairment during life. This group has been described previously65. Table
1 describes the demographic characteristics of the BLSA sample.
The BLSA study protocol has ongoing approval from the Institutional

Review Board of the National Institute of Environmental Health Science,
National Institutes of Health. Written informed consent was obtained at
each visit from all participants.

Participants: ROS
The ROS is a longitudinal, clinical and pathological cohort study of
individuals within religious communities across the US with the goal of
linking AD risk factors with incident clinical and neuropathologic
phenotypes66. The study began enrolling participants without known
dementia in 1994. Study methods including recruitment have been
detailed previously67. Follow-up and autopsy rates exceed 90% and 85%,
respectively68.
Our samples consisted of a subset of participants from the larger ROS

autopsy study. Dementia status was determined at each study visit by
trained clinicians using all cognitive and clinical data blinded to prior years
and based on NINCDS-ADRDA recommendations. For participants diag-
nosed with AD, “age at first AD diagnosis”, the best approximation of the
age of onset, was defined as the age at the visit where an AD diagnosis
was rendered. A final consensus clinical diagnosis was determined at death
blinded to all neuropathologic data.
Autopsies were performed based on standard methods reported

previously69. Postmortem brains were examined by an expert neuro-
pathologist or trained technician to assess AD pathology. CERAD and Braak
criteria were used to assess the severity of AD pathology, as described
previously70.
ROS autopsy participants were classified into three groups based on the

below criteria:
1) AD participants (n= 31) had a final consensus clinical diagnosis of AD

and an NIA-Reagan score of intermediate or high likelihood of AD. NIA-
Reagan criteria are based on both neuritic plaques (CERAD score) and
neurofibrillary tangles (Braak score)71.
2) CN participants (n= 22) had a clinical diagnosis of no cognitive

impairment (NCI) and an NIA-Reagan score of low likelihood or no AD) and
therefore free of significant AD-specific pathology at death and cognitive
impairment during life.
3) ASY participants (n= 18) had a final consensus clinical diagnosis of

NCI and an NIA-Regan score of intermediate or high likelihood of AD. Table
1 describes the demographic characteristics of the ROS sample.
All ROS participants provided written informed consent and the study

was approved by an Institutional Review Board of Rush University Medical
Center. Participants signed an Anatomical Gift Act for organ donation and
a repository consent to allow their data and biospecimens to be shared.

Participants (AD and CN): Gene Expression Omnibus (GEO)
We accessed gene expression data on AD and CN samples from publicly
available microarray datasets (Gene Expression Omnibus (GEO): GSE48350
and GSE5281). Both datasets included gene expression data acquired on
the Affymetrix U133 Plus2 array platform from 23 brain regions. We
analyzed the data from the entorhinal cortex (ERC; AD: n= 25 and CN: n=
52), hippocampus (AD: n= 29 and CN: n= 56), and visual cortex (used as a
control region) (AD: n= 18 and CN: n= 12).
GEO data were used for analyses of regional differential brain gene

expression and for genome-scale metabolic network modeling described
below in the “Statistical analyses” section. For both analyses, we reported
pooled results combining both GEO datasets.
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Participants (PD and CN): Gene Expression Omnibus (GEO)
We accessed gene expression data on Parkinson’s disease (PD) and CN
samples from publicly available microarray datasets (GEO: GSE20292 and
GSE20114). Both datasets included gene expression data acquired on the
Affymetrix (U133A and U133 Plus2 arrays) platform. We analyzed data from
the substantia nigra, the brain region primarily impacted by PD-specific
neuropathology72 (PD: n= 21 and CN: n= 26).
Similar to analyses in AD vs CN, we used GEO data for regional brain

gene expression and for genome-scale metabolic network modeling and
reported pooled results combining both GEO datasets.

Brain tissue processing
For brain tissue samples in both BLSA and ROS, we performed targeted
metabolomics on two a priori specified regions: the inferior temporal gyrus
(ITG) and the middle frontal gyrus (MFG). These two regions were selected
as regions vulnerable to β-amyloid and tau deposition, respectively73,74.
Sample extraction and storage have been described previously75.
Brain tissue samples (up to 80mg) were homogenized with 85/15

ethanol phosphate buffer 1:3 (mg tissue/µL solvent w/v) using a Precellys
(4 °C, nitrogen-cooled, with 1.4-mm ceramic beads in 0.5-mL precellys vials,
program: 5800 rpm, three cycles each 30 s, 30 s pause) device and
centrifuged (10.000 rcf, 2 min, 4 °C). In total, 20 µL sample homogenate
supernatant was placed on the 96-well plate Biocrates kit filter plate with
prior placed oxysterol-specific stable isotope-labeled internal standards
(10 µL, in MeOH+ 0.01% butylated hydroxytoluene (BHT), concentration
range 0.5–100 µM), dried under nitrogen for 5 min. In all, 14 d6 or d7
deuterium-labeled internal standards appropriate to each of the 14
analytes were used. Free oxysterols were extracted from the sample
homogenate supernatant (dried for 30min under nitrogen) with 100 µL
methanol +0.01% BHT by filter plate shaking (20 min at 600 rpm) and
centrifugation (2 min at 500 rcf, 4 °C) into the capture plate. 30 µL Milli-Q
water was added to each sample extract and carefully shaken for 5 min
at 500 rpm.

Targeted metabolomics
Ultrahigh-Performance Liquid Chromatography-tandem mass spectro-
metry (UHPLC–MS/MS) with multiple reaction monitoring (MRM)-based
detection in positive mode using a SCIEX API 5500 QTRAP® (AB SCIEX,
Darmstadt, Germany) instrument with electrospray ionization (ESI) were
used for free oxysterol assays. The 96-well plate allows the analysis of up
to 75 samples, 1 blank sample, 3 zero samples (internal standards plus
extraction solvent), calibrators 1–7, and three quality control levels (QC,
low, medium, high in replicates) of human plasma-based materials.
Quantitation was performed with deuterium-labeled internal standards
for each analyte (mix produced based on Avanti Polar Lipids standards)
and 7-point external calibration. The individual calibrators for each
analyte are designed in relation to their physiological ranges. Supple-
mentary Table 6 includes quantitation ranges for each metabolite for
calibrators 1–7. The assay has been validated according to European
Medicines Agency (EMA) guidelines76. Analytical intra- and interday/batch
precision expressed by the coefficients of variation (CV) using this
methodology were <15% (intra-/interday/batch) for all analytes. Batch
effects were controlled and adjusted for using MetIDQ software-
implemented normalization procedure.
We measured metabolite concentrations across three categories related

to cholesterol homeostasis21. All metabolites met the inclusion criteria
described below (“Statistical analysis”).

1. De novo cholesterol biosynthesis: 24,25-dihydrolanosterol, 7-dehy-
drocholesterol, desmosterol, lanosterol, and free cholesterol.

2. Cholesterol catabolism (enzymatic): 27-hydroxycholesterol,
4β-hydroxycholesterol, 24S-hydroxycholesterol, and 7α-hydroxycho-
lesterol*.

3. Cholesterol catabolism (non-enzymatic): 5α,6α-epoxycholesterol,
5α,6β-dihydroxycholestanol, 5β,6β-epoxycholesterol, 7-ketocholes-
terol, and 7β-hydroxycholesterol.

*7α-hydroxycholesterol can be generated both enzymatically and
nonenzymatically77.

Cognitive status
In BLSA, evaluation of cognitive status including dementia diagnosis has
been described in detail previously64.

In ROS, evaluation of cognitive status including dementia diagnosis has
been described in detail previously66,78,79.

Regional brain gene expression
We first identified an a priori list of genes known to encode enzymes
across three categories related to cholesterol homeostasis:

1. De novo cholesterol biosynthesis
2. Cholesterol catabolism (enzymatic): representing oxysterol biosynth-

esis from the enzymatic conversion of cholesterol
3. Cholesterol esterification

We examined differential gene expression of these genes in AD vs CN
samples in three brain regions. We chose the hippocampus and ERC as the
accumulation of pathology in these regions is thought to trigger the onset
of AD symptoms80–82. We chose the visual cortex as a control region. We
tested for differential gene expression in an a priori list of 31 genes known
to encode enzymes regulating cholesterol biosynthesis, catabolism
(enzymatic), and esterification reactions. Expression levels of these genes
were also used in genome-scale metabolic network modeling using
Integrative Metabolic Analysis Tool (iMAT)83 (described in the “Statistical
analysis” section below).
We then examined differential gene expression in the substantia nigra of

PD compared CN samples. This analysis was restricted to genes that were
significantly differentially expressed in the AD compared CN samples with
the goal of testing whether gene expression differences in AD were
disease-specific or related to non-specific changes associated with
neurodegeneration. Expression levels of these genes in the substantia
nigra in PD compared to CN samples were also used in genome-scale
metabolic network modeling using iMAT. These analyses were also
restricted to reactions that were significantly less active or more active
in AD compared CN in the ERC, hippocampus, or visual cortex and tested
whether metabolic reactions predicted to be altered in AD were also
altered in PD compared to CN samples in the substantia nigra.

Statistical analyses
Metabolites with >30% of values missing were excluded from all analyses.
This threshold is consistent with our prior studies84,85. Values that were
indicated as less than the limit of detection (LOD) were imputed as the
LOD threshold value divided by 2. Because missing values indicated as less
than LOD ( < LOD) are not missing at random (NMAR), we used
metabolite-specific LOD threshold data to impute a value for metabolites
that had <=30% of values missing. We have included the percentage of
missing values by brain region across metabolites as well as metabolites
that were excluded from analyses based on the 30% threshold in
Supplementary Table 7.
For statistical tests, we used an alpha-level of 0.05 as the threshold for

statistical significance. Each metabolite tested in this study represented a
hypothesis developed a priori based on its established role in specific
biochemical pathways as well as a priori-defined brain regions vulnerable
to AD pathology.
We first tested for differences in age at death, sex, race, APOE genotype,

statin use, CERAD scores, Braak scores, and postmortem interval (PMI)
across AD, CN, and ASY groups within studies as well as across studies (i.e.,
BLSA compared to ROS).
Second, in primary analyses, we tested whether brain tissue concentra-

tions of metabolites differed across AD, CN, and ASY groups (i.e., disease
status) and were associated with severity of AD pathology (i.e., CERAD and
Braak scores) in the ITG and MFG. For models with AD pathology, we
examined the association between metabolite levels and CERAD and Braak
scores independent of disease status (i.e., disease status was not
considered in models). We first visualized linear associations between
metabolite concentrations and our predictors of interest: disease status
(AD, CN, ASY) (Supplementary Fig. 1) and pathology (CERAD and Braak
scores) (Supplementary Figs. 2 and 3) in BLSA and ROS separately.
Convergent associations—i.e., where linear associations between metabo-
lite concentration and disease status/ pathology in ROS and BLSA were in a
similar direction—were pooled and are presented as primary results
(indicated with a “*” in Supplementary Figs. 1–3). As these results represent
convergent associations in two independent cohorts, we report significant
associations where P < 0.05. Divergent associations—i.e., where linear
associations between metabolite concentration and disease status/
pathology in ROS and BLSA were in a different direction—were not
pooled and are included as cohort-specific secondary analyses in
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Supplementary Tables. As these secondary results represent divergent
associations in cohort-specific models, we report significant associations
using the Benjamini–Hochberg false discovery rate (FDR) < 0.0586 to
correct for the total number of metabolite comparisons within each a
priori specified biochemical pathway/cluster.
Similar to our previous metabolomics analyses84, in order to test for

differences in metabolite concentrations by disease status in the ITG
and the MFG, we used linear mixed-effects models in each of the three a
priori-defined biochemical pathways (i.e., clusters): de novo cholesterol
biosynthesis, cholesterol catabolism (enzymatic), and cholesterol

catabolism (non-enzymatic). Log2-transformed metabolite concentration
was used as the dependent variable, disease status (i.e., AD, CN, ASY) as the
main fixed effect, sex, and age at death as covariates, within-subject
covariance structure was modeled as unstructured, and variance was
estimated using Huber-White robust variance estimates. We used the same
approach to model CERAD and Braak pathology scores substituting
pathology for disease status in the model. Significant associations are
indicated in Table 2. In Fig. 2, we also visualize significant associations:
metabolites highlighted in green indicate that lower metabolite concentra-
tion is significantly associated with AD, higher neuritic plaque burden

Fig. 3 Workflow of iMAT-based metabolic network modeling. AD Alzheimer’s disease, CN control, ERC entorhinal cortex. Description of
workflow of iMAT-based metabolic network modeling to predict significantly altered enzymatic reactions relevant to de novo cholesterol
biosynthesis, catabolism, and esterification in the AD brain. a Our human GEM network included 13417 reactions associated with 3628 genes
([1]). Genes in each sample are divided into three categories based on their expression: highly expressed (>75th percentile of expression),
lowly expressed (<25th percentile of expression), or moderately expressed (between 25th and 75th percentile of expression) ([2]). Only highly-
and lowly expressed genes are used by iMAT algorithm to categorize the reactions of the Genome-Scale Metabolic Network (GEM) as active or
inactive using an optimization algorithm. Since iMAT is based on the prediction of mass-balanced based metabolite routes, the reactions
indicated in gray are predicted to be inactive ([3]) by iMAT to ensure maximum consistency with the gene expression data; two genes (G1 and
G2) are lowly expressed, and one gene (G3) is highly expressed and therefore considered to be post-transcriptionally downregulated to
ensure an inactive reaction flux ([5]). The reactions indicated in black are predicted to be active ([4]) by iMAT to ensure maximum consistency
with the gene expression data; 2 genes. (G4 and G5) are highly expressed and one gene (G6) is moderately expressed and therefore
considered to be post-transcriptionally upregulated to ensure an active reaction flux ([6]). b Reaction activity (either active (1) or inactive (0) is
predicted for each sample in the dataset ([7]). This is represented as a binary vector that is brain region and disease-condition specific; each
reaction is then statistically compared using a Fisher Exact Test to determine whether the activity of reactions is significantly altered between
AD and CN samples ([8]).
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(CERAD score), or higher neurofibrillary tangle pathology (Braak score).
Metabolites highlighted in red indicate that higher metabolite concentra-
tion is significantly associated with AD, higher neuritic plaque burden
(CERAD score), or higher neurofibrillary tangle pathology (Braak score).
For brain gene expression data, we pooled both AD vs CN GEO datasets

(GSE48350 and GSE5281) and first normalized the samples using Robust
Multi-array Average (RMA)87 with the Brainarray ENTREZG (version 22)
custom CDF88. In order to test for differences between AD and CN in the
pooled GEO datasets, we used the R package limma89 to test each gene
univariately, controlling for sex, age, and batch. We used FDR86 (P < 0.05) to
adjust for multiple comparisons accounting for all 20,414 genes on the
Affymetrix U133 Plus2.0 array used in both GEO datasets. We highlighted
significant (FDR-corrected) genes that were differentially expressed in AD
vs CN samples across all three brain regions: hippocampus, ERC, and visual
cortex (control region). In a heatmap (Fig. 1), we visualized significant
results: red represents increased expression and green represents reduced
expression in AD vs CN.
We performed similar analyses for brain gene expression data from the

substantia nigra comparing PD vs CN using GEO datasets GSE20292 and
GSE20141; Brainarray ENTREZG (version 24) was used to normalize
samples. The goal of this analysis was to test whether differential gene
expression observed in AD was similar in a non-AD neurodegenerative
disease. We, therefore, restricted these analyses to significant genes that
were differentially expressed in AD vs CN analyses. We used identical
analyses (e.g., R package limma89 and FDR correction) to test for
differences between PD and CN samples, controlling for batch. As one of
the PD datasets analyzed (GSE20141) did not include sex or age
information, these covariates were not included in this analysis.
Using regional brain gene expression data, we additionally performed

genome-scale metabolic network modeling, a computational framework to
predict fluxes through multiple metabolic reactions90,91. We used the most
recent version of the human genome-scale metabolic model (GEM) network,
Human-GEM 1.3.292 to create personalized metabolic networks for all (1) AD
vs CN samples from the hippocampus, ERC, and primary visual cortex regions
across the GSE5281 and GSE48350 datasets; and (2) PD vs CN samples from
the substantia nigra across the GSE20292 and GSE20141datasets.
The human GEM is a stoichiometry-based and mass-balanced computa-

tional reconstruction of all known biochemical reactions within human
cells. This system-level reconstruction of metabolic processes provides a
mechanistic link between genotype and phenotype93. This is achieved by
writing mass balances around each intracellular metabolite considering the
rates (fluxes) of reactions that consume and produce that metabolite94.
The mass balances are solved as a set of linear equations through
optimization to predict fluxes through model reactions in a given
condition. Subcellular localization (cytoplasm, mitochondria, endoplasmic
reticulum, etc.) is also taken into account in this approach for enzymes
located in multiple cellular compartments by defining separate reactions
for each compartment. Our human GEM network included 13417 reactions
associated with 3628 genes (Fig. 3a[1]). We focused specifically on
reactions associated with the a priori list of 31 genes known to encode
enzymes regulating de novo cholesterol biosynthesis, catabolism (enzy-
matic), and esterification reactions (described above in the “Regional brain
gene expression” section). We identified a total of 177 reactions controlled
by these genes within de novo cholesterol biosynthesis (93 reactions),
cholesterol catabolism (enzymatic) (18 reactions), and cholesterol ester-
ification (66 reactions) pathways.
The RMA-normalized and sex- and age-corrected transcriptomic data for

AD vs CN data were mapped onto the Human-GEM network separately for
each sample in the two GEO datasets using Integrative Metabolic Analysis
Tool (iMAT)83 (Fig. 3). For PD vs CN, sex and age data were not available in
one of the PD datasets (GSE20141) and therefore transcriptomic data was
only RMA-normalized.
iMAT is one of the commonly preferred algorithms for metabolic

network modeling because it does not require any additional information
such as the measured rates of some reactions. iMAT uses an optimization
algorithm to maximize the consistency between flux activity predictions
from the metabolic network and the gene expression data such that
reactions associated with highly expressed genes are pushed to carry a
non-zero flux (i.e., active) in the metabolic network while reactions
associated with lowly expressed genes are pushed to be inactive.
Separately for each of the two GEO datasets, gene expression data across
all samples were combined to identify the 25th and 75th percentiles of
expression. These were used to determine whether the expression of a
specific gene within any given sample was either lowly expressed (i.e.,
below the 25th percentile), highly expressed (i.e., above the 75th

percentile) or moderately expressed (i.e., above the 25th percentile and
below the 75th percentile). Only genes that were lowly or highly expressed
contributed to iMAT predictions of whether a reaction was transcriptionally
downregulated (i.e., inactive) or upregulated (i.e., active) (Fig. 3a[2]).
In mapping the expression data on reactions associated with multiple

genes, the maximum gene expression value among the multiple genes
was assigned to that reaction for isoenzymes (where multiple genes can
independently code for enzymes that catalyze a reaction), and the
minimum gene expression value among the multiple genes was assigned
to that reaction for enzyme complexes (where multiple genes are required
to code for an enzyme)90. Three rate constraints were introduced in the
iMAT simulations of both AD and CN samples (or PD and CN samples) to
ensure their activity: glucose and oxygen uptake rates and active
macromolecule synthesis rate had their lower bounds set to 0.01, 0.01,
and 0.0001, respectively, leaving all the other reaction rates unconstrained
in the simulations. Therefore, these three reactions were always active in all
personalized models generated and differences in the predicted reaction
activities between AD and CN (or PD and CN) were only due to differences
in the set of highly and lowly expressed reactions for each sample as well
as the consequent change in the mass-balance-based metabolite routes in
the network.
After reactions were predicted by iMAT as either inactive or active,

within each disease group (AD and CN) Fig. 3b[6]), each sample was
represented as a binary vector (active= 1; inactive= 0) for each reaction
(Fig. 3b[7]). The group and region-specific binary vectors were then
compared using the Fisher Exact Test to determine whether the activity of
reactions (active or inactive) were significantly (P < 0.05) altered between
AD and CN (Fig. 3b[8])57. We indicated significant results in the
hippocampus and ERC as well as the visual cortex (control region).
We performed similar analyses in PD compared to CN samples in the
substantia nigra. The goal of this analysis was to test whether reactions
that were significantly altered in AD were similarly altered in a non-AD
neurodegenerative disease. We, therefore, restricted these analyses to
reactions that were significantly less active or more active in AD compared
to CN in the ERC, hippocampus, or visual cortex.
Simulations were performed in MATLAB R2018a using Gurobi optimizer

and the iMAT implementation available under COBRA Toolbox95.
In order to enhance the interpretability of our metabolite, gene

expression, and metabolic network modeling results, we visualize results
in pathway figures (Fig. 2) including the following categories: de novo
cholesterol biosynthesis; cholesterol catabolism (enzymatic); and choles-
terol esterification.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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