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1  |  INTRODUC TION

Genetic information is coded on the genome, and transcription 
produces pre-mRNA as primary transcripts, which are further mod-
ified by several processes to generate mature mRNA, including 5′ 
cap, 3′-polyadenylation (poly[A]tail), and AS.1–4 Both the quan-
tity and quality of the genetic information are influenced not only 
by transcriptional factors and chromatin loops but also by post-
transcriptional regulation, including RNA splicing, editing, chemi-
cal modification (e.g., methylation), and polyadenylation.1–4 Recent 

studies have discovered cancer-associated changes in RNA editing, 
RNA modifications, and the expression of noncoding RNA species, 
including micro-RNAs and long noncoding RNAs.5–8 Especially, mu-
tations in genes encoding core spliceosomal proteins and accessory 
regulatory splicing factors are among the most common targets of 
somatic mutations in cancer.9

Introns are removed and exons are ligated together during 
pre-mRNA splicing, which is executed by the spliceosome, a multi-
megadalton ribonucleoprotein (RNP) complex.10 The advent of high-
throughput RNA-sequencing (RNA-seq) technologies has provided 
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Abstract
Pre-mRNA splicing is now widely recognized as a cotranscriptional and post-
transcriptional mechanism essential for regulating gene expression and modifying 
gene product function. Mutations in genes encoding core spliceosomal proteins and 
accessory regulatory splicing factors are now considered among the most recurrent 
genetic abnormalities in patients with cancer, particularly hematologic malignancies. 
These include mutations in the major (U2-type) and minor (U12-type) spliceosomes, 
which remove >99% and ~0.35% of introns, respectively. Growing evidence indicates 
that aberrant splicing of evolutionarily conserved U12-type minor introns plays a 
crucial role in cancer as the minor spliceosome component, ZRSR2, is subject to re-
current, leukemia-associated mutations, and intronic mutations have been shown to 
disrupt the splicing of minor introns. Here, we review the importance of minor intron 
regulation, the molecular effects of the minor (U12-type) spliceosomal mutations and 
cis-regulatory regions, and the development of minor intron studies for better under-
standing of cancer biology.
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detailed information on RNA splicing of normal and malignant cells 
on a genome-wide scale. For example, it is estimated that >90% of 
multiexon human genes undergo AS, an enzymatic process in which 
a single gene has the potential to produce multiple, potentially func-
tionally distinct pre-mRNA and protein isoforms.2,11 Therefore, pre-
mRNA splicing is considered a major mediator of proteome diversity 
due to its ability to generate various isoforms and transcripts with 
differing amino acid sequences from identical DNA sequences. 
Furthermore, due to the functional link between aberrant splicing 
and NMD, splicing serves as a step in regulating the expression of 
the entire gene. Indeed, specific splicing events occur at defined 
stages of tissue- or cell type-specific development, such as hemato-
poiesis, resulting in selective increases or decreases in the inclusion 
of individual exons to alter the function or stability of the encoded 
proteins to define a cell's identity.12–15

In the new era of transcriptome exploration, recent studies have 
revealed that a small number of introns, called “minor (U12) introns,” 
spliced by distinct machinery, play pivotal roles in various diseases, 
such as congenital growth retardation, neuromuscular disease, and 
cancer.16–18 Here, we review our understanding of the regulatory 
mechanism of minor introns and the dysregulation involved in can-
cer predisposition and development.

2  |  WHAT ARE MINOR (U12-T YPE) 
INTRONS?

Eukaryotic spliceosome consists of several snRNPs.19 Eukaryotic 
cells have two types of spliceosomes: U2 dependent (major) and U12 
dependent (minor) (Figure 1A).20 Both spliceosomes existed in the 
last eukaryotic common ancestor,21 and most of the spliceosome-
associated proteins are shared between the U2 and U12 splice-
osomes. Nonetheless, the types of snRNAs in each spliceosome are 
unique. The U2 spliceosome contains the U1, U2, U4, U5, and U6 
snRNAs, whereas the U12 spliceosome contains unique U11, U12, 
U4atac, and U6atac snRNAs; both the U2 and U12 spliceosomes 
contain U5 snRNA.20,22,23 Therefore, eukaryotic cells harbor two 
distinct pre-mRNA splicing machineries, referred to as the major 
(U2-dependent, >99% introns) and minor (U12-dependent, <0.35% 
introns) spliceosomes, which recognize and excise the major or 
minor class of introns, respectively.24–27 In line with the rarity of 
minor introns, the low abundance of their minor spliceosome (~100-
fold compared with the major spliceosome), especially the catalytic 
component U6atac snRNP, has been reported.28 The major introns 
are characterized by GT–AG introns, BPS, and a PPT located imme-
diately upstream of the 3′ ss (Figure 1A). In contrast with major in-
trons, minor introns are characterized by AT–AC introns (although 
most minor introns have been shown to have a GT–AG dinucleotide), 
highly evolutionarily conserved 5′ ss, and BPS (Figure 1A).29,30 These 
introns also lacked the characteristic polypyrimidine tract present in 
U2-type introns. In human cells, splicing of U2-type introns is initi-
ated with the U1 snRNP binding to the 5′ ss, SF1 binding to the BPS, 
and U2AF1/2 heterodimer binding to the 3′ ss and PPT, respectively. 

Subsequently, the U2 snRNP is recruited to the BPS and displaces 
SF1. SF3B1, a component of U2 snRNP, is involved in binding to the 
BPS. The preassembled U4/U6/U5 complex binds, and the U1 and 
U4 snRNPs are released to form a catalytically active spliceosome 
complex that mediates intron excision and proximal and distal exon 
ligation to synthesize mature mRNA.31 In contrast with U2-type in-
trons, the 5′ ss and BPS of U12-type introns are cooperatively rec-
ognized by the U11 and U12 snRNAs, respectively, and the U4atac/
U6atac/U5 tri-snRNP complex is used. These steps in splicing are 
similar to those in the U2- and U12-dependent pathways.18

Minor introns constitute only ~0.35% of all human introns 
and have been reported to be present in 700–800 genes (https://
midb.pnb.uconn.edu, https://genome.crg.es/cgi-bin/u12db/​u12db.
cgi).32,33 A recent study documented 770 minor introns in human 
MIGs, with each MIG typically carrying only a single U12-type 
minor intron and multiple U2-type introns in the other introns.33 
Importantly, such introns are enriched in genes that represent a 
somewhat restricted set of functional classes and pathways rather 
than being randomly distributed throughout the genome. They 
are especially abundant in genes involved in information process-
ing functions, such as DNA replication/repair, translation, RNA 
processing, transcription, cytoskeletal organization, voltage-gated 
ion channel activity, kinase, and vesicular transport.20,24,25,33 Gene 
ontology terms of MIGs are shown in Figure 1B. The identities of 
genes carrying minor introns and their positions in their host genes 
are highly conserved among humans, animals, and plants.20,34 One 
example of this is the first intron of the PTEN gene, which has been 
evolutionarily conserved even in European honey bees (Apis mellif-
era) (Figure 1C). However, the same intron 1 is a U2-type intron in 
C. elegans, indicating splice site mutations during evolution. In mam-
mals, PTEN mRNA expression is positively regulated by the splicing 
of the minor intron.35

3  |  MINOR SPLICEOSOMAL ZRSR 2 
MUTATIONS AND HEMATOLOGIC 
MALIGNANCIES

Since 2011, several groups have reported a high frequency of 
splicing factor mutations in patients with MDS, characterized by 
clonal hematopoiesis, cytopenia, and abnormal cellular matura-
tion/differentiation.36–38 This occurred most frequently in the U2 
(SF3B1, SRSF2, and U2AF1) and U12 spliceosomes (ZRSR2). This 
striking finding was accompanied by the observation that these 
mutations were mutually exclusive, shared convergent func-
tions, and that when co-mutated, they are synthetically lethal.39 
Several studies have demonstrated that these four genes are re-
currently mutated in various hematologic malignancies.1,31,36–38,40 
The mutational frequency of each spliceosomal component is 
indicated in Figure  2A.2,31,41 Notably, in contrast with U1/U2 
spliceosomal mutations detected in solid tumors, such as uveal/
mucosal melanoma (SF3B1),42 breast cancer (SF3B1),43 and Sonic 
Hedgehog medulloblastoma (U1SnRNA),44 ZRSR2 mutations are 

https://midb.pnb.uconn.edu
https://midb.pnb.uconn.edu
https://genome.crg.es/cgi-bin/u12db/u12db.cgi
https://genome.crg.es/cgi-bin/u12db/u12db.cgi
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F I G U R E  1  Characteristics of U12-dependent (minor) introns. (A) Main determinants for distinguishing U2-type and U12-type introns in 
terms of 5′/3′ splice sites (ss), branchpoint sequences (BPS), and polypyrimidine tract (PPT). Red-dotted rectangles indicate evolutionarily 
conserved sequences in U12-dependent (minor) introns. (B) Gene ontology analysis of minor intron-containing genes (MIGs). (C) 
Conservation of PTEN/Pten first intron as a minor intron across species
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restricted in hematologic malignancies, especially in MDS and 
BPDCN.2,16,41,45 SF3B1, SRSF2, and U2AF1 are subject to heterozy-
gous, change-of-function46–48 missense mutations that affect 
specific residues.36,49,50 In contrast, the X chromosome-encoded 
ZRSR2 is enriched in nonsense and frameshift mutations across 
the open reading frame in male patients, consistent with loss of 
function.36,49–51 The mutational distribution across ZRSR2 coding 
sequence in MDS51 and AML52,53 patients is shown in Figure 2B 
(https://www.cbiop​ortal.org54 ). For example, across >2000 se-
quentially sequenced myeloid neoplasm patients, 100% of these 
patients with somatic mutations in ZRSR2 were males, and no fe-
male had the ZRSR2 mutation.16 In line with the role of U12 spli-
ceosome in minor intron splicing, Madan et al. first demonstrated 
that ZRSR2 loss results in impaired splicing of U12-type introns, 
and RNA-seq of MDS bone marrow (BM) revealed that loss of 
ZRSR2 activity causes increased missplicing.45 These splicing de-
fects involved the retention of U12-type introns, while splicing 

of U2-type introns was mostly unaffected. Furthermore, global 
minor IR followed by NMD on a ZRSR2 null background was con-
firmed with the RNA-seq of another ZRSR2-mutated MDS cohort 
(Figure 2C)16,45 and the newly generated Zrsr2 conditional knock-
out murine model.16 A striking enrichment for U12-type IR in 
ZRSR2-mutant patients has been reported, but not in patients with 
SF3B1, SRSF2, or U2AF1 mutations (Figure 2D).16 Phenotypically, 
the analysis of the murine model enhanced self-renewal of Zrsr2-
null HSCs in vivo,16 which stands in marked contrast with recent 
studies that evaluated the effects of hotspot mutations in SF3B1, 
SRSF2, and U2AF1, all of which identified a perplexing impairment 
in self-renewal when those mutations were induced in mice using 
similar transplantation methods.46,55–57 Although another Zrsr2-
deficient model developed almost no hematologic phenotypes,58 
both groups shared the same finding that Zrsr2-deficient myeloid 
progenitors exhibited missplicing of minor introns; however, 
the effects on splicing were less pronounced than those of the 

F I G U R E  2  ZRSR2 mutation dysregulates minor intron splicing. (A) Histogram of spliceosomal mutations across hematologic malignancies. 
AML, acute myeloid leukemia; BPDCN, blastic plasmacytoid dendritic cell neoplasm; CLL, chronic lymphocytic leukemia; CMML, chronic 
myelomonocytic leukemia; MDS, myelodysplastic syndrome; MPN, myeloproliferative neoplasms; PMF, primary myelofibrosis; RS, ring 
sideroblasts. (B) Schematic of the ZRSR2 protein with amino acid locations and specific mutations in patients with MDS and AML. (C) 
Overlap of U12-type (minor) intron retention events between the two reported cohorts. (D) Numbers of retained minor introns in samples 
harboring spliceosomal gene mutations from the Beat AML cohort
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ZRSR2-mutated human MDS cells. To this regard, Madan et al. re-
ported a collective role of Zrsr1 (Zrsr2p1) and Zrsr2 in the murine 
U12-spliceosome.58

Blastic plasmacytoid dendritic cell neoplasm is a hematologic 
malignancy that is thought to develop from pDCs or their precur-
sors.59 Male-predominant BPDCN can have leukemic involvement of 
the blood and BM, as well as tumor formation in the skin (in ~90% of 
cases), lymphoid organs, and other tissue.41,59 Togami et al.41 discov-
ered ZRSR2 mutations in ~26% of BPDCN, most of which are non-
sense or frameshift mutations. It is quite striking since BPDCN is the 
only hematologic malignancy in which ZRSR2 is the most prevalently 
mutated of the four spliceosomal proteins described above. Given 
that the minor (U12) spliceosome component, ZRSR2, is subject to 
recurrent, leukemia-associated mutations, minor intron splicing is 
essential in the hematopoietic system.

4  |  DOWNSTRE AM OF NMD TARGETS IN 
ZRSR 2- MUTATED CELL S

With regard to the physiologic roles of the minor spliceosome, 
transcriptomic analyses of ZRSR2-mutated MDS cells revealed that 
only a subset of minor spliceosome-dependent genes is recurrently 
and robustly misspliced, implying that not all U12-type introns are 
equally crucial for disease pathogenesis.16 To identify the function-
ally important splicing target, we performed CRISPR enrichment 
screening using the custom sgRNA library for the protein-coding 

region of each of the 601 MIGs whose mRNAs were identified as 
differentially spliced in ZRSR2-mutant MDS patient samples versus 
spliceosomal wild-type MDS patient samples and predicted to result 
in NMD. Strikingly, in addition to PTEN, only one gene, LZTR1, was 
significantly enriched in all conditions (Figure  3A), and encodes a 
substrate-specific CUL3 adaptor regulating ubiquitination-mediated 
suppression of RAS-related GTPases,60–62 and is subject to loss-
of-function mutations in glioblastoma,63 schwannomatosis,64 and 
the RASopathy known as Noonan syndrome.65 Indeed, the loss of 
LZTR1 resulted in a significant accumulation of RAS proteins, in-
cluding RIT1, a RAS GTPase recently identified as an endogenous 
LZTR1 substrate,61 and a gene known to undergo activating muta-
tions in RASopathies and various cancers.66,67 An inspection of the 
transcriptomic data from primary BM cells revealed that the reten-
tion of a U12-type intron in LZTR1 (intron 18) followed by NMD was 
specific to ZRSR2-mutant MDS and undetected in BM samples from 
ZRSR2 wild-type MDS and normal subjects.

Togami et al.41 demonstrated that the ZRSR2 mutation in pDC 
causes abnormal pDC development and an inflammatory response 
via TLRs. Also, it impairs pDC activation by TLR stimulation with 
lipopolysaccharide and activation-induced apoptosis, all of which 
are associated with the retention of the minor intron in IRF7 and 
the inability to enhance IRF7 expression.41 Indeed, such events 
promote pDC expansion and signatures of decreased activation in 
vivo. Interestingly, the LZTR1 IR events observed in ZRSR2-mutated 
MDS cells were not reproduced in pDC-lineage cells with ZRSR2 de-
pletion.41 Similarly, IRF7 IR was restricted in pDCs, indicating that 

F I G U R E  3  Minor intron-containing LZTR1 is the negative regulator of malignant transformation. (A) Positive-enrichment CRISPR/Cas9 
lentiviral screen with custom sgRNA library for minor intron-containing genes (MIGs) to identify functionally important ZRSR2-regulated 
minor intron splicing events. Enrichment fold change and p-value are indicated in Ba/F3 (top) and 32D (bottom) cells. (B) Acquired resistance 
to imatinib (top) and rebastinib (bottom) in K562-Cas9 cells with nontargeting sgRNA and sgRNAs targeting the protein-coding region or the 
minor intron in LZTR1
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minor intron regulation by ZRSR2 is a highly context- and cellular-
dependent event.16 Levesque et al. analyzed RNA-seq data from The 
Cancer Genome Atlas for 14 cohorts and reported that the differen-
tial splicing of minor introns is context dependent in tumorigenesis.68

As described above, ZRSR2 dependency may vary across spe-
cies, indicating a distinct vulnerability in specific human organs. 
Interestingly, in contrast with branchpoints (BPs) within U2-type 
introns, which are highly constrained in their location, BPs within 
U12-type introns exhibit a bimodal distribution, such that half of the 
U12-type introns have BPs similar in location to U2-type BPs, while 
half of the U12-type BPs occur in closer proximity (within 20 nucle-
otides) to 3′ ss.29 Interestingly, this bimodality is relevant to ZRSR2 
responsiveness. Introns that respond to ZRSR2 loss had BPs that 
were significantly more proximal to the 3′ ss than nonresponsive 
introns. In contrast, nonresponsive U12-type introns exhibited no 
such spatially restricted enrichment, implying that BP location influ-
ences the U12-type intron susceptibility to retention in the absence 
of ZRSR2.29 These findings suggest that minor introns can be clas-
sified into two groups based on ZRSR2 dependency. Other than the 
ZRSR2 mutation, U12 snRNP components have not been reported 
to be recurrently mutated in cancer, although minor snRNP compo-
nents, such as RNU4ATAC, RNPC3, and RNU12, have been shown to 
be mutated in congenital and degenerative diseases with neurologi-
cal or developmental phenotypes.69–73

5  |  C ANCER-A SSOCIATED MUTATIONS IN 
MINOR INTRONS

Despite the relative rarity of U12 spliceosomal mutations, there are 
other mechanisms for inhibiting minor intron splicing. An example 
is LZTR1 minor intronic mutation in a reported family with auto-
somal recessive Noonan syndrome in which a child died of acute 
leukemia,65 harboring mutations in LZTR1's minor intron (c.220-
17C>A) and LZTR1's coding region (R210*). This same intronic se-
quence is also mutated in schwannomatosis.64 These mutations 
were detected in the U12 BPS-containing evolutionarily conserved 
region “TCCTTAAC.” Indeed, sgRNAs targeting either the BPS or 
coding regions promptly induced resistance to tyrosine kinase in-
hibitor in K562 cells endogenously harboring a BCR/ABL translo-
cation (Figure 3B).16 Given that even a single base substitution or 
deletion disturbed the intron removal, the splicing fidelity of minor 
introns is highly dependent on the BPS, all of which were validated 
by the minigene reporter assay, in which the intronic sequences 
can be mutagenized in the plasmid, and minigene-derived splicing 
is evaluated by RT-PCR.16 As shown in Figure 4A,B, most mutations 
within “TCCTTAAC” induced transcripts with intron18 retention, 
followed by NMD.

Conversely, splice site mutations do not simply cause IR. For ex-
ample, in Peutz–Jeghers syndrome, an autosomal dominant disorder 
associated with gastrointestinal polyposis and increased cancer risk, 
it has been reported that the 5′ ss mutation (AT > GT) of STK11 (also 
known as LKB1) minor intron (Intron 2) resulted in aberrant splicing 

from the mutated 5′ ss to several cryptic, noncanonical 3′ ss imme-
diately adjacent to the normal 3′ ss.74 Although only a few intronic 
mutations in the conserved BPS and splice sites have been pheno-
typically validated, recent efforts for aggregating and harmonizing 
both exome and genome sequencing data from various large-scale 
sequencing projects75 (gnomAD, https://gnomad.broad​insti​tute.org) 
have raised the possibility that various genomic variants affect the 
interaction with minor spliceosomes when they are located at the 
region essential for the canonical U12-type spliceosome. For ex-
ample, PTEN and PARP1 are MIGs (in the first and last introns, re-
spectively) and well studied tumor suppressors involved in genomic 
stability, metabolism, and DNA repair. Of note, both minor introns 
in PTEN and PARP1 have genomic variants that alter 3′ ss and BPS-
containing evolutionarily conserved “TCCTTAAC” (Figure  4C). In 
fact, Olthof et al. identified 51 pathogenic variants in a minor intron 
ss that reduce the ss strength and induce AS.33 Further studies are 
required to determine the extent to which similar variants or single-
nucleotide polymorphisms are associated with cancer predisposition 
on a genome-wide scale.

6  |  PROSPEC TS OF A MINOR INTRON 
STUDY IN THE C ANCER FIELD

The exploration of genetic variants or somatic mutations at 5′/3′ ss 
and BPS is underway by several groups. Given that the involvement 
in both alleles is considered stochastically rare, such studies should 
focus on mutations in regions prone to deletion or loss of heterozy-
gosity. A recent study by Olthof et al. proposed that AS of minor in-
trons occurs more frequently than previously considered and occurs 
in a tissue-specific manner.33 Other than simple loss of function of 
MIGs due to NMD, such AS or somatic/germline mutations may result 
in translation into a truncated protein, exerting dominant-negative 
or gain-of-function effects, as most minor introns are expected to 
have in-frame stop codons. Additionally, Olthof et al. discovered that 
AS events were more prevalent in long minor introns, whereas re-
tention was favored in shorter introns.33 Quantitative proteomics or 
ribosome profiling combined with RNA/whole genome-seq will shed 
light on previously unrecognized variants.

Minor introns are less efficiently excised from pre-mRNA than 
major introns. Therefore, it has been postulated that minor introns 
serve as “molecular switches” to regulate the expression of their 
host genes, with the rate of removal of a single minor intron within 
a gene regulating the expression of the entire host mRNA.76,77 This 
may enable each MIG to be fine tuned in context-specific time-
controlled regulation. Another significance of minor introns might 
be solved with the analysis of animal models depleted with specific 
U12-type introns or with a dCas13d-based RNA tracking system.78 
These ideas are indirectly supported by the evidence of the high in-
stability of U6atac snRNP, a crucial component of the minor spliceo-
some catalytic core,77 resulting in inefficient minor intron splicing. 
Alternatively, rapid MIG expression is achieved when U6atac is sta-
bilized by the stress-activated protein kinase, MAPK14 (p38MAPK), 
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which in turn activates these molecular switches to allow the expres-
sion of genes required to deal with cellular stress, such as PTEN.77

Whether specific IR events in tumor suppressors are shared 
among cancers and contribute to tumorigenesis remains uneluci-
dated. Our study demonstrated that LZTR1’s minor intron was effi-
ciently excised in all normal samples.16 However, a notable subset of 
tumors without ZRSR2 or LZTR1 mutation in almost all profiled can-
cer types exhibited IR that were specific to LZTR1’s minor intron.16 
Furthermore, the extent of LZTR1 IR varied across samples and can-
cer types, with 11.1% of all profiled cancer samples exhibiting LZTR1 
minor IR exceeding that observed in any peritumoral control normal 
tissue.16 Considering tissue-specific MIG expression and minor IR 
events, shared retention events among patients with cancer may en-
able us to identify unnoticed tumor suppressors among MIGs.

Finally, ZRSR2 mutations in the X chromosome exhibit marked 
male predominance,16,41 indicating a sex bias in the vulnerability 
to aberrant splicing and dysregulated MIGs. ZRSR2 is considered 
an example of “EXITS,” which stands for “escape from X inactiva-
tion tumor suppressor.”79 At the same time, we separated minor 
introns into ZRSR2-responsive and ZRSR2-unresponsive groups, 
implying a ZRSR2-independent regulatory mechanism.16 Future 
studies should examine the sex bias in relation to ZRSR2 sensi-
tivity. The ZRSR2-independent spliceosome complex could be 
revealed by dCas13-APEX2 tools that catalyze biotin-labeling to 
neighboring biomolecules at U12 BPS.80 Additionally, the develop-
ment of nanopore sequencing will allow us to investigate not only 

full-length MIG mRNA but also its dynamics, modification, and fur-
ther speculation.81
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