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Abstract

The substantial improvement in the efficiency of switching filters, intended for the removal

of impulsive noise within color images is described. Numerous noisy pixel detection and

replacement techniques are evaluated, where the filtering performance for color images and

subsequent results are assessed using statistical reasoning. Denoising efficiency for the

applied detection and interpolation techniques are assessed when the location of corrupted

pixels are identified by noisy pixel detection algorithms and also in the scenario when they

are already known. The results show that improvement in objective quality measures can

be achieved by using more robust detection techniques, combined with novel methods of

corrupted pixel restoration. A significant increase in the image denoising performance is

achieved for both pixel detection and interpolation, surpassing current filtering methods

especially via the application of a convolutional network. The interpolation techniques used

in the image inpainting methods also significantly increased the efficiency of impulsive noise

removal.

Introduction

Different types of impulsive noise decrease the quality of digital, color images and may be

caused through transmission errors, electromagnetic disturbances, ageing of the storage mate-

rial, sensors imperfections, and flawed memory regions [1–4]. Impulsive noise can be also

introduced to images deliberately, due to the fact that deep neural networks are vulnerable to

adversarial examples [5]. For instance, in one-pixel attacks, altering only few pixels in an origi-

nal image is enough to fool a deep neural network [6, 7]. Therefore, filtering algorithms dedi-

cated to the suppression of impulsive disturbances in color images and also considered as

defensive methods against adversarial attacks, have attracted considerable interest among

many researchers [8–17].

In recent years, intensive development of the methods used for noise reduction in digital

images has been observed [18]. More advanced methods have indeed been proposed. How-

ever, doubts have appeared as to whether these new methods are able to significantly increase
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the objective indicators associated with denoising quality [19, 20]. In the case of Gaussian

noise, progress by the standard quality measures is tending to stagnate, it is therefore assumed

that the new methods will no longer be able to significantly ameliorate the standard indicators

of image quality. Numerous studies suggest that current methods are already quite close to the

theoretical, impassable, restoration quality limit [21]. The situation is different in the case of

impulsive noise removal. Most of the modern methods use switching filtering, which first

detects noise induced image corruption and the noisy pixels are then replaced by estimates,

calculated from non-corrupted pixels in their local neighborhood. These methods therefore

focus on the problem of detecting damaged pixels and less importance is given to how they

are replaced. The focus of this work is to examine the effective interpolation techniques and

assess where the application of these methods enables significant improvement in denoising

efficiency.

Generally, algorithms designed for impulsive noise reduction are based on contextual pro-

cessing schemes which replace corrupted pixels with their estimates, using information

obtained from the local sliding processing window. The most popular algorithm developed to

cope with impulsive noise is the Vector Median Filter (VMF) [22] in which the main drawback

is processing of every pixel in the image, regardless of whether it is noisy or not. Therefore, var-

ious switching filters were designed to repair only those pixels found to be corrupted by the

impulsive noise process [23–29]. Among them, methods based on: reduced vector ordering

[30–32], peer group concept [33–35], quaternions [36–38] and fuzzy sets theory [39–42], have

achieved satisfying results.

Another family of efficient image denoising algorithms utilizes a sparse linear combination

of basis elements taken from a learnt dictionary adapted to the processed data [43–45]. Initially

it was applied to attenuate the Gaussian noise, however soon the method was extended so that

the mixture of Gaussian and heavy tailed noise as well as imaging artifacts could also be attenu-

ated [46–50]. This technique is also capable of suppressing the impulsive noise [51–55].

It can be observed that most of the efforts focused on the development of switching tech-

niques have been centered on impulse detection, while VMF was used as an estimator for the

detected corrupted pixels [35, 56, 57]. The VMF computes in the first step, the sum of distances

from each pixel to all samples in the processing window. Then the central pixel is replaced by

the one for which the sum of distances is minimized. When the corrupted pixels are detected,

they can be replaced using the Arithmetic Mean Filter (AMF), operating only on uncontami-

nated pixels [35, 57–59]. The denoising performance of such a trimmed AMF marginally

improves when using VMF and it is significantly less computationally demanding. Both esti-

mators are resistant to the occurrence of local outliers, but although AMF is much faster, VMF

is useful when every pixel in the local neighborhood is classified as noisy. Therefore, the com-

bined approach has been introduced in [58], which computes the trimmed mean when the

neighborhood contains undistorted pixels and VMF otherwise. This algorithm is very reliable,

fast and performs competitively with respect to the state-of-the-art filters [57–59], therefore

this interpolation technique was chosen as Reference Estimator (RE) for the experiments

reported in this work.

In recent years, there has been a lack of significant improvement in the performance of the

switching filters. Many of the recently introduced filters achieve comparable results, when eval-

uated with benchmark images. It can be attributed to the main focus of research efforts being

mainly towards impulse detection, where the accuracy is already very close to the current theo-

retical maximum. Further improvement in the precision of impulse detection is very challeng-

ing and might only be achieved with very complex and computationally expensive solutions.

Therefore, in our investigation whether a substantial increase in the efficiency of impulsive

noise suppression is still possible, our focus is on the switching filters estimation step.
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For this purpose, data interpolation techniques are described, which to our knowledge have

not yet been utilised for impulse removal in color images. Among those, very promising results

are provided by the methods used in image inpainting [60]. Additionally, the performance of

neural networks designed for detection and restoration of impulses was also examined [61,

62]. A similar approach, to find alternative methods for impulse noise reduction have been

previously utilized [63–67].

In following Section the concept of switching filtering is presented, with explicit division

into impulse detection and replacement stages. Farther in the paper, simulation performance

tests are described demonstrating significant denoising improvement that can be achieved on

both detection and impulse replacement parts of the investigated filters. In addition, the

impact of imperfections in impulse detection is considered, followed by visual comparison of

image enhancement results. Finally some conclusions are drawn on the merits of the investi-

gated filtering designs.

Switching algorithms

A switching filter is composed of two stages: impulse detection and its replacement, using an

appropriate estimation technique. For both processing steps, a number of different approaches

have been proposed in the extensive literature [27, 68–71], and a selected subset of those algo-

rithms is briefly described in the following subsections.

The concept of a switching filter is presented in Fig 1. The impulse detection step is respon-

sible for assigning pixels of the processed image into two classes: noisy and clean. Pixels are

then replaced by some particular algorithmic methods, which try to estimate the original

color, using information obtained from the local neighborhood. Pixels which are classified as

clean, are not altered in any way.

Impulse detection

In general, impulse detection is responsible for controlling the data flow in the switching

filter. Its input is comprised of both the corrupted image and some additional parameters, the

most common among which is the size of the operating window, where others are algorithm

specific.

Fig 1. Switching filter for impulsive noise removal.

https://doi.org/10.1371/journal.pone.0253117.g001
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The minimum operating window size and the filtering parameters recommended by the

authors of these filtering schemes are used in each of the detection techniques evaluated in this

paper. The output of an impulse detection step is a noise map, which is a binary array of: zeros,
depicting the detected noisy pixels, and onesmarking those classified as clean. In this paper,

impulse detection algorithms will be often referred to as Detectors, and all abbreviations of

detection schemes names will by marked with D as the last letter of each corresponding acro-

nym. The detectors investigated in this work are enumerated in Table 1(a)).

Impulse replacement

After noisy pixels are recognized in the switching filter detection step, the impulsive pixel res-

toration is performed to replace corrupted pixels with their estimates, obtained using informa-

tion derived from the local neighborhood. In this paper, such impulse suppression algorithms

are called Estimators, and all abbreviations of their names contain E as the last letter of each

corresponding acronym.

From a plethora of available algorithms, a representative subset of methods, which are char-

acterized with both competitive impulse suppression performance and reasonable computa-

tional cost, were selected and presented in Table 1(b)).

It is important to mention that the original implementation of algorithms and pre-trained

neural networks are prepared for different computational platforms (MATLAB, Python and

C++). Also some parts of the code are only provided in binary form, therefore detailed com-

parison of complexity between those computational implementations is not feasible and of lit-

tle importance to this work. Moreover, due to multi-platform problem, the computations for

different methods are performed on different machines mostly using CPU but also GPU in

case of neural networks. Therefore, measurements of the computational time are incompara-

ble and omitted from this paper.

Performance tests

All of the algorithms (detectors and estimators) selected for evaluation have been tuned using

parameters recommended by the authors of the respective papers. Also, our efforts focused on

determining the efficiency of these estimators when locations of impulses are known and

when they are found by a detection algorithm.

For each of the tests an image dataset was chosen (available for download from [88]), com-

posed of 100 color images with a resolution of 640 × 480. Images are artificially contaminated

by Random Valued Impulsive Noise (RVIN) for the following densities: ρ 2 h0.1, 0.3, 0.5i.

One of the most common, the RVIN model was used—Channel Together Random Impulse

[89]. In this model only a given fraction ρ of the image pixels is affected by the noise process. If

a particular pixel is corrupted, then all of its RGB channels are randomly altered by a value

taken from full 8-bit RGB encoding range: h0, 255i.

Next, the integrated detectors and estimators described in previous Section are paired

together. This way every detector is matched with an estimator to form a switching filter. Also,

in order to eliminate any detection imperfections and to prevent impulse suppression effi-

ciency decrease, the true maps of noise (acquired during image contamination) are given,

which are considered as an output of the Perfect Detector (PD). Finally, for each contaminated

image:

• The evaluated accuracy (ACC) and F1-score of each detector is given.

• The denoising efficiency of each detector and estimator pair is assessed.
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Table 1. Description of the considered impulsive noise Detectors and Estimators.

DETECTOR Full name of the detector

ACWD Adaptive Central-Weighed Vector Median Filter [72]

computes the dissimilarity between the central pixel of the processing windowW and the outputs of the Adaptive Central-Weighed Vector Median Filter (ACWVMF)

[72] obtained for increasing weighting coefficients. If the sum of Euclidean distances between pixels of W determined for a set of weighting factors exceeds a predefined

threshold, then the processed pixel is classified as noisy.

IDCNN Impulse Detection Convolutional Neural Network [73]

is a modification of the Denoising Convolutional Neural Network (DnCNN) [74]. IDCNN consists of a sequence of convolutional layers followed by Rectified Linear

Unit [75] and Batch Normalization [76] for feature extraction and sigmoid layer for the noisy pixels detection. Pretrained model recommended in [73], trained with

default parameters summarized in Table 2 was used.

FFD Fast Fuzzy Noise Reduction Filter [77]

evaluates a similarity of pixels in the neighborhood using a fuzzy metric and is applied for impulse detection in Fast Fuzzy Noise Reduction Filter [77]. If the central

pixel of the filtering window is not the most similar to its neighbors, then it is assumed to be noisy.

FASTD Fast Adaptive Switching Trimmed Arithmetic Mean Filter [57, 58, 78]

computes the pixel impulsiveness measure, based on the trimmed sum of ordered Euclidean distances in the RGB color space. This measure is then adapted to local

image characteristic and compared to a predefined threshold. If the threshold value is exceeded, the pixel is classified as corrupted.

FPGD Impulse detection algorithm based on the Fast Peer-Group Filter [34, 35]

utilizes a simplified peer-group based classification technique. It categorizes neighbors of the processed pixel into two groups: peers and non-related pixels, judging

upon their Euclidean distance in the RGB color space. Finally, if the processed pixel has less than two peers inW, it is classified as noisy.

GDPD Geodesic Digital Path Detector [79, 80]

determines the minimal connection cost between the border ofW and its center, which is the pixel being processed. If the connection cost of a minimum path exceeds

a predefined threshold, then it indicates that the central pixel is corrupted, as no low-cost connection with the window boundary can be found.

(a)

ESTIMATOR Full name of the estimator

VSIE Very Straightforward Interpolation (replacement) of NAN’s [81]

performs a one-dimensional data interpolation based on uncorrupted values in a dataset. Each color image channel is processed as an individual 2D-array, where the

column-wise and row-wise estimates of noisy pixels are averaged. For the experiments described in this paper, a shape-preserving piecewise cubic interpolation method

was adopted.

FBE Fill Bad [82]

estimator computes missing values in the image channel array using a common linear interpolation which estimates a new channel value using linear weighted

averaging. The algorithm exploits only the values of the adjacent neighbors of a corrupted pixel, processing the image channel column-wise only.

DCTE Discrete Cosine Transform [83]

based estimator was created for automatic smoothing of multidimensional incomplete data and adopted for the purpose of gap reconstruction within large datasets,

such as medical or satellite images. The algorithm is based on penalized least square method and is processing image channels by performing DCT and Inverse DCT for

some desired number of iterations. The amount of smoothing is automatically adjusted applying minimization of generalized cross validation score.

IPNE InPaint NANs [84]

calculates missing data by establishing sets of linear equations for every missing value in the array (image channel). Each equation is constructed using the assumption

that every value in the array is an average of the adjacent ones (4-neighborhood). As the number of equations exceeds the number of missing values, the least squares

method is used to compute the final estimates.

NSE Navier-Stokes Estimator [85]

estimator is a heuristic inpainting technique based on computational fluid dynamics methodology. It was created as a result of research showing that there is an analogy

between the image and the stream function of a two-dimensional incompressible flow of fluid. The aim of the algorithm is to continue isophotes while matching

gradient vectors at the boundary of the missing data regions.

CNNE Convolutional Neural Network [74]

estimator is based on a similar design like CNND but consists of only seven layers, in which the first layer contains Dilated Convolution+ReLU, then next five

consecutive layers are Dilated Convolution+Batch Normalization+ReLU, and the last layer is Dilated Convolution. A set of these CNN denoisers are pre-trained with

different noise levels and integrated into the optimization-based framework in order to restore distorted images. This approach is also used for inpainting purposes and

in this case, in the first step the missing pixels are interpolated using Shepard interpolation [86] and then the interpolation artifacts are removed using a model-based

optimization of an inverse problem.

(b)

https://doi.org/10.1371/journal.pone.0253117.t001
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Impulse detection

In our experiments, the performance of the chosen impulse detection algorithms was evaluated

using Accuracy (ACC) and F1-score:

ACC ¼
jTPj þ jTNj

jTPj þ jTNj þ jFPþ jFNj
; F1 � score ¼

2� R� P
Rþ P

; ð1Þ

where:

R ¼
jTPj

jTPj þ jFNj
; P ¼

jTPj
jTPj þ jFPj

; ð2Þ

and |TP|, |TN|, |FP| and |FN| are numbers of pixels assigned to following states:

• True Positive (TP)—correctly detected impulse.

• True Negative (TP)—pixel recognized as noise-free.

• False Positive (FP)—pixel falsely classified as impulse (Type-I error).

• False Negative (FN)—pixel incorrectly classified as noise-free (Type-II error).

For all concerned impulse detection techniques, an F1-score was computed for every image

of the dataset [88] (also dataset containing all noisy and restored images is available online at

[90]) using noise fractions: ρ 2 {0.1, 0.3, 0.5}. Medians of obtained ACC and F1-score values

are summarized in Table 3.

The analysis of the obtained results leads to the following conclusions:

• The most accurate detector, among tested, is without any doubt the CNND, which achieves

an astonishingly high F1-score and ACC, even for ρ = 0.5.

• FPGD algorithm is not very accurate for low noise ratios but its performance improves sub-

stantially if higher noise fraction occurs.

• Detection efficiency of ACWD and FFD, while rather satisfactory for low impulse density,

significantly deteriorates when more impulses are present.

• FASTD and GDPD techniques are robust to the increase in impulse occurrence ratio, which

makes them the second and third best detectors among tested.

Table 2. Summary of CNND detector parameters [73].

Parameter Value/Method

Number of convolutional layers 17

Number of filters in convolutional layer 64

Size of convolutional window 3 × 3

Number of epochs 50

Learning rate 0.001

Learning rate decay 0.1

Epoch in which learning rate decay is used 30

Batch size 128

Weights optimization ADAM optimizer [87]

Patch size 41 × 41

https://doi.org/10.1371/journal.pone.0253117.t002
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Box plots shown in Fig 2, present the statistical features: median, quartiles: Q1 and Q3, and

whiskers: min/max, of the distribution of F1-score values obtained for every corrupted image

in dataset and for each detector.

It can be observed that:

• F1-score medians are explicitly different for every detection technique, especially if noise

fraction ρ is high.

• Different algorithms provide significantly distinct distributions of F1-score within a tested

dataset of images.

• The CNND strongly outperforms other detectors.

• The performance of ACWD deteriorates significantly along with an increase in noise frac-

tion.

Impulse replacement

For noise replacement efficiency assessment the Peak Signal-to-Noise Ratio (PSNR) was used:

PSNR ¼ 10 log
10

2552

MSE
; MSE ¼

1

3y

Xm

u¼1

Xn

v¼1

X

q

ðoqu;v � x
q
u;vÞ

2
; ð3Þ

where oqu;v and xqu;v, q 2 {R, G, B} are the channels of the original and restored image pixels, ν, μ
denote image sizes and θ stand for the overall number of image pixels.

Table 3. Medians of ACC and F1-score obtained using different detectors.

ρ ACWD CNND FASTD FFD FPGD GDPD ACWD CNND FASTD FFD FPGD GDPD

ACC F1-score

0.1 0.9950 0.9996 0.9965 0.9945 0.9921 0.9934 0.9750 0.9978 0.9823 0.9728 0.9613 0.9670

0.3 0.9653 0.9990 0.9904 0.9788 0.9831 0.9859 0.9390 0.9983 0.9840 0.9635 0.9719 0.9765

0.5 0.8591 0.9956 0.9707 0.9062 0.9598 0.9714 0.8388 0.9956 0.9706 0.8978 0.9605 0.9715

Best results are emboldened.

https://doi.org/10.1371/journal.pone.0253117.t003

Fig 2. Impulse detection performance. Evaluated with F1-score measure.

https://doi.org/10.1371/journal.pone.0253117.g002
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The aim of this paper is to show a statistically significant improvement in RVIN removal.

Also, to make this work as clear and consistent as possible the inclusion of other popular qual-

ity measures, such as the Feature Similarity Index (FSIM) [91] or Normalized Color Difference

(NCD) [92] is beyond the scope of this paper, especially when statistical tests should be also

performed on those additional quality measures. Therefore, for every corrupted image restored

using each detector-estimator pair, the PSNR measure only was computed. The medians of

PSNR for RE are summarized in the first column of Table 4. Other columns depict differences

between the median obtained for particular pair and when computed for a detector paired

with RE.

Results can be summarized as follows:

• If PD is used, the overall impulse replacement performance, deteriorates along with an

increase in noise fraction, but the relative average efficiency among different algorithms is

preserved.

• Also when PD is used, most of tested estimators outperform the RE. However, for highest

noise fraction even FBE and NSE algorithms perform worse than the reference one (RE).

Generally, FBE performs less efficiently in every case, and NSE shows similar efficiency.

• The most efficient estimator is the CNNE and the second one is IPNE. Also results for

DCTE show noticeable improvement and VSIE performs mostly better than RE.

• In the case when CNNE is paired with PD or CNND, the median of PSNR obtained is more

than 4 dB higher, which is really spectacular. For other detectors this improvement is not so

prominent, but still quite high.

• The adopted detection scheme has a significant impact on the noise suppression perfor-

mance, especially if noise fraction is high. Generally, the less accurate of a detector being

used, superiority of other estimators over the RE is less significant, or not observed at all.

• Even the best estimator (CNNE) may perform worse than reference technique if the detector

has low F1-score and noise density is high enough. This suggests that the more sophisticated

estimators are less robust to detection imperfections. Also it shows that although the RE is

relatively simple and computationally efficient, it can still be regarded as a robust and com-

petitive noise suppression technique.

Also box plots, for estimators paired with best detector (CNND) only, are presented in

Fig 3. Those, present the statistical features of PSNR distribution obtained for each estimator

together with the results obtained for PD. It can be seen that even though median values differ,

the variations of results are not very distinct.

Thorough statistical analysis of the obtained results was achieved, where Friedman’s test

[93] was applied for a significance level of α = 0.05, two hypothesizes are subsequently

formulated:

H0:. Differences in the obtained results are not statistically significant (p� 0.05).

H1:. Results obtained for all algorithms are significantly different (p< 0.05).

In every test scenario, the H0 hypothesis was rejected with probability of error p< 0.001.

This means that performance of particular noise suppression algorithm differs significantly,

no matter which detector is used. Table 5 depicts mean ranks computed for Friedman’s test. If

the mean rank for particular estimator is lower than the mean rank obtained for RE (in the

same row), it means that this algorithm is on average less efficient than RE (for the same
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detector). Although, from a mean ranks perspective, less results show superiority over RE, the

general conclusions are rather similar to those drawn from analysis of medians and box plots.

In the sequel to Friedman’ tests, Post-hoc testing (proposed by Nemenyi [93]) are con-

ducted, which in our case compared RE to every other algorithm separately. For those tests

two new hypothesizes are formulated:

H2:. There is no significant difference in performance of RE and tested algorithm (p� 0.05).

H3:. Result obtained for tested algorithm is significantly better than obtained using RE

(p< 0.05).

Results of Post-hoc tests are presented in Table 6 where H2 and H3 hypothesizes are

depicted. As comparison of medians and mean ranks may show differences in the average

results, the Post-hoc tests state a statistical significance in those differences. Therefore, more

H2 results can be found in Table 6, as some averaged results have not been found to be of great

effect.

Additionally it is worth noting that:

Fig 3. Impulse replacement performance using the best detector—CNND.

https://doi.org/10.1371/journal.pone.0253117.g003

Table 5. Mean ranks from Friedman’s test.

Detector Estimator

RE VSIE CNNE FBE NSE DCTE IPNE RE VSIE CNNE FBE NSE DCTE IPNE RE VSIE CNNE FBE NSE DCTE IPNE

ρ = 0.1 ρ = 0.3 ρ = 0.5

ACWD 2.33 4.62 6.93 1.89 2.06 4.82 5.35 5.90 4.90 6.12 1.75 4.94 2.83 1.56 6.87 4.16 5.44 2.56 5.53 2.38 1.06

CNND 2.55 4.15 6.56 1.53 2.06 5.19 5.96 2.65 3.97 6.96 1.14 2.32 5.21 5.75 3.73 3.04 7.00 1.00 3.22 5.48 4.53

FASTD 2.30 4.11 6.82 1.43 2.41 5.07 5.86 2.70 4.34 7.00 1.14 2.45 5.24 5.13 5.65 5.25 7.00 1.62 2.74 3.66 2.08

FFD 2.37 4.19 6.93 2.06 1.76 4.95 5.74 4.83 5.63 6.79 1.43 3.64 3.50 2.18 6.73 4.37 6.05 2.27 4.85 2.52 1.21

FPGD 2.32 4.03 6.77 1.40 2.50 5.05 5.93 2.79 4.03 6.95 1.13 2.24 5.17 5.69 4.02 3.77 6.96 1.05 2.01 5.49 4.70

GDPD 2.26 4.04 6.76 1.36 2.52 5.12 5.94 2.47 3.98 6.90 1.15 2.52 5.26 5.72 3.43 3.89 6.90 1.05 2.01 5.62 5.10

PD 2.51 4.18 6.48 1.56 2.07 5.20 6.00 2.29 3.97 6.86 1.15 2.67 5.16 5.90 2.29 3.50 6.92 1.05 3.20 5.22 5.82

Highest mean ranks (best results) are emboldened.

https://doi.org/10.1371/journal.pone.0253117.t005
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• the results obtained for all detector-estimator pairs are significantly heterogeneous, in gen-

eral—Friedman’s test rejected H0 for every scenario tested.

• the performance of FBE and NSE is statistically indistinguishable from RE regardless of the

noise fraction and detector used.

• CNNE is almost always significantly better than RE with single exception for highest noise

fraction and when least accurate detectors (ACWD and FFD) are used.

• the efficiency of VSIE technique is significantly better than that of RE for ρ< 0.5 with the

exception when ACWD is used as detector.

• other algorithms are more likely better than RE for lower noise fractions, which means that

inferiority of RE is less prominent if more impulses occur in the processed image.

• in few test scenarios, when CNNE is used, mean ranks achieved value equal to the number of

tested algorithms (see Table 5) which means that CNNE performed best for every processed

image.

An impact of imperfections in detection

The image 48 (MOTOCROSS) from the used dataset, containing a lot of detailed regions, was

corrupted with RVIN with intensity ρ = 0.3 and selected as test sample. Then in order to evalu-

ate the impact of detection errors on the replacement performance, the CCNE (best estimator)

has been paired with every detector (excluding PD), and applied to restore the test image. The

evaluation of the result, has been made using Mean Absolute Error (MAE) which is defined

for the entire images as:

MAE ¼
1

3y

Xm

u¼1

Xn

v¼1

X

q

joqu;v � x
q
u;vj: ð4Þ

However, we use this index also separately for pixels being TPs, FPs, FNs. The results are pre-

sented in circular aim-plots shown in Fig 4 and can be summarized as follows:

• FNs have minimal contribution to MAE in every case, which means that error introduced by

omitted impulses has negligible impact on overall denoising performance.

• The efficiency of impulse detection shows noticeable influence in the balance between TPs

and FPs contributions. The interesting observation can be made that although the more

accurate detectors reduce the magnitude of error for correctly recognized impulses, the

Table 6. Hypothesis for Post-hoc tests.

Detector Estimator

VSIE CNNE FBE NSE DCTE IPNE VSIE CNNE FBE NSE DCTE IPNE VSIE CNNE FBE NSE DCTE IPNE

ρ = 0.1 ρ = 0.3 ρ = 0.5

ACWD H3 H3 H2 H2 H3 H3 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2

CNND H3 H3 H2 H2 H3 H3 H3 H3 H2 H2 H3 H3 H2 H3 H2 H2 H3 H3

FASTD H3 H3 H2 H2 H3 H3 H3 H3 H2 H2 H3 H3 H2 H3 H2 H2 H2 H2

FFD H3 H3 H2 H2 H3 H3 H3 H3 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2

FPGD H3 H3 H2 H2 H3 H3 H3 H3 H2 H2 H3 H3 H2 H3 H2 H2 H3 H2

GDPD H3 H3 H2 H2 H3 H3 H3 H3 H2 H2 H3 H3 H2 H3 H2 H2 H3 H3

PD H3 H3 H2 H2 H3 H3 H3 H3 H2 H2 H3 H3 H3 H3 H2 H3 H3 H3

Decision made with significance level α = 0.05.

https://doi.org/10.1371/journal.pone.0253117.t006
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portion of MAE cased by FPs is more significant. This can lead to the conclusion, that more

accurate impulse replacement has to come at a price of collateral damage made upon small

image details, which are incorrectly classified as impulses

Visual comparison

The visual performance of all tested estimators paired with PD (representing flawless detec-

tion) can be observed in Fig 5. Comparison has been once more made using MOTOCROSS

image corrupted with RVIN of ρ = 0.3.

Results can be concluded as follows:

• without question the CNNE yielded the best performance among tested estimators in both

comparisons. The details of the image are well preserved even in heavily textured regions. If

ACWD is used some impulses remain (due to insufficient detection accuracy), but textures

are well preserved or restored.

• in case of visual comparison, the second best algorithm is DCTE, which also provides very

impressive detail and texture preservation.

Fig 4. Aim-plots. Shows MAE caused by TP, FP, and FN results separately (CNNE was used as the corrupted pixels restoration technique).

https://doi.org/10.1371/journal.pone.0253117.g004
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• Other algorithms introduce more errors even if PD is used. The textures are significantly

smoothed out and details noticeably deformed.

• as long as the RE algorithm shows inferior efficiency to CNNE and DCTE, it is not the worst

algorithm among tested.

• while CNNE just leaves undetected pixels, other algorithms, especially FBE, pollute the sur-

roundings with leftover impulse colors. Therefore their performance is noticeably dependent

on detector accuracy.

Fig 5. Impulse suppression performance on artificially corrupted image. MOTOCROSS image (ρ = 0.3) using the best detector—CNND and all tested estimators, is

presented (PSNR values are provided).

https://doi.org/10.1371/journal.pone.0253117.g005
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The comparison of images in Fig 5 resulted in interesting remark that even though from

PSNR point of view DCTE shown statistically inferior numerical efficiency in comparison to

IPNE, its actual output is more pleasant visually, as it performs significantly better in edge

preservation. Additional examples for different images are provided in S1 File.

The efficiency of the analyzed methods was also evaluated on real images affected by impul-

sive noise, but for the sake of brevity we presented only the results achieved using the best fil-

ter. The first experiment was made on a corrupted cDNA image. This type of images are used

for measuring the expression level of large number of genes [94]. The second experiment was

performed on a part of the digitized fresco “The Condemned in Hell” by Luca Signorelli. The

restoration results are presented in Fig 6 and they confirm good denoising capabilities of the

analyzed filter when applied for real noisy images.

Conclusions

The paper starts with the question: Is large improvement in efficiency of impulsive noise sup-

pression in color images still possible? After extensive testing, performed using numerous

impulsive noise detection and interpolation algorithms and thorough analysis of the results,

there is no doubt that the answer is indeed positive.

The impulse detection step has a very significant impact on estimation performance

because undetected impulses are taken to calculate estimator output, thus introducing estima-

tion errors. Also the occurrence of false positive results lead to a decrease in image quality.

However, for low noise contamination fractions, the application of more sophisticated inter-

polation algorithms than the one used by Reference Estimator (AMF performed not corrupted

pixels only) provided noticeable PSNR improvement even if low F1-score detectors are used. If

more impulses occur in the image, only a few algorithms outperform the RE, and may yet pore

to be inferior, if paired with less accurate detector. Certainly, the best gain in performance is

observed if true maps of noise are used for estimation.

Among tested estimators, the best numerical performance is without question achieved by

Convolution Neural Network (CNNE), and the second best is Inpaint Nans (IPNE). If visual

comparison is performed, CNNE definitely excels other methods but also the Discrete Cosine

Transform based technique (DCTE) shows a slightly better performance than IPNE. Other

Fig 6. Impulse suppression performance on naturally corrupted images. Image of cDNA (a) and part of an image of

the fresco “The Condemned in Hell” by Luca Signorelli (b) are presented.

https://doi.org/10.1371/journal.pone.0253117.g006
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algorithms, except FBE generally provide improved results when compared to RE, especially if

noise fraction is lover than ρ = 0.5.

We have shown that combining novel methods of impulse detection and replacement,

based on image inpainting techniques and convolutional neural network applied within the

framework of switching filters, allows to increase the filtering performance in terms of PSNR

by a few decibels, which is a dramatic improvement. The obtained results show clearly that

huge gain in performance of various other methods of impulsive and mixed noise suppression

can be expected. The application of novel methods of impulse detection and interpolation can

be especially advantageous in denoising scenarios, in which the detection of outliers injected

into the image by the noise process plays a crucial role. We are positive that the results reported

in this paper will promote the development of novel methods of impulsive noise removal, as

we have shown that there is still much room for performance gain.

Supporting information

S1 File. Additional examples.

(PDF)
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