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Abstract
Developmental dysplasia of the hip (DDH) is common, and features a widened Sharp’s angle as observed on pelvic x-ray images.
Determination of Sharp’s angle, essential for clinical decisions, can overwhelm the workload of orthopedic surgeons. To aid diagnosis
of DDH and reduce false negative diagnoses, a simple and cost-effective tool is proposed. The model was designed using artificial
intelligence (AI), and evaluated for its ability to screen anteroposterior pelvic radiographs automatically, accurately, and efficiently.
Orthotopic anterior pelvic x-ray images were retrospectively collected (n = 11574) from the PACS (Picture Archiving and

Communication System) database at Second Hospital of Jilin University. The Mask regional convolutional neural network (R-CNN)
model was utilized and finely modified to detect 4 key points that delineate Sharp’s angle. Of these images, 11,473 were randomly
selected, labeled, and used to train and validate the modified Mask R-CNN model. A test dataset comprised the remaining 101
images. Python-based utility software was applied to draw and calculate Sharp’s angle automatically. The diagnoses of DDH
obtained via the model or the traditional manual drawings of 3 orthopedic surgeons were compared, each based on the degree of
Sharp’s angle, and these were then evaluated relative to the final clinical diagnoses (based onmedical history, symptoms, signs, x-ray
films, and computed tomography images).
Sharp’s angles on the left and right measured via the AI model (40.07°±4.09° and 40.65°±4.21°), were statistically similar to that of

the surgeons’ (39.35°±6.74° and 39.82°±6.99°). The measurement time required by the AI model (1.11±0.00s) was significantly
less than that of the doctors (86.72±1.10, 93.26±1.12, and 87.34±0.80s). The diagnostic sensitivity, specificity, and accuracy of
the AI method for diagnosis of DDH were similar to that of the orthopedic surgeons; the diagnoses of both were moderately
consistent with the final clinical diagnosis.
The proposed AI model can automatically measure Sharp’s angle with a performance similar to that of orthopedic surgeons, but

requires far less time. The AI model may be a viable auxiliary to clinical diagnosis of DDH.

Abbreviations: AI = artificial intelligence, CT = computed tomography, DDH = developmental dysplasia of the hip, GPU =
graphics processing unit, MRI = magnetic resonance imaging, PACS = picture archiving and communication system, R-CNN =
regional convolutional neural network.

Keywords: acetabulum, artificial intelligence, developmental dysplasia of the hip, Sharp’s angle
Editor: Lanjing Zhang.

This work was funded by the Scientific Development Program of Jilin Province (no. 3D5177743429, 3D516D733429, and 20170204004GX). The funders had no role
in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

The authors declare that there is no conflict of interest.

Supplemental Digital Content is available for this article.
a Department of Orthopedics, Second Hospital of Jilin University, b Department of Mathematics and Statistics, University of New Mexico, USA, cDepartment of
Orthopedics, d Department Radiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, e Norman Bethune Health Science Center of Jilin University,
f Shenzhen Mingwu Artificial Intelligence Technology, g Shanghai Shenwei Information Technology, h Infervision Global Clinical Collaboration Resesrch Institute, China.
∗
Correspondence: Jincheng Wang, Meng Xu, Department of Orthopedics, Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130021, Jilin, China

(e-mail: bone@jlu.edu.cn, xumeng@jlu.edu.cn); Ye Huang, Shanghai Shenwei Information Technology, 107 Zunyi Street, Changning District, Shanghai 200051, China
(e-mail: jasonhuang5525@gmail.com).

Copyright © 2019 the Author(s). Published by Wolters Kluwer Health, Inc.
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix,
tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

How to cite this article: Li Q, Zhong L, Huang H, Liu H, Qin Y, Wang Y, Zhou Z, Liu H, Yang W, Qin M, Wang J, Wang Y, Zhou T, Wang D, Wang J, Xu M, Huang Y.
Auxiliary diagnosis of developmental dysplasia of the hip by automated detection of Sharp’s angle on standardized anteroposterior pelvic radiographs. Medicine
2019;98:52(e18500).

Received: 9 June 2019 / Received in final form: 15 November 2019 / Accepted: 25 November 2019

http://dx.doi.org/10.1097/MD.0000000000018500

1

mailto:bone@jlu.edu.cn, xumeng@jlu.edu.cn
mailto:jasonhuang5525@gmail.com
http://creativecommons.org/licenses/by-nc-sa/4.0
http://dx.doi.org/10.1097/MD.0000000000018500


Li et al. Medicine (2019) 98:52 Medicine
1. Introduction

Developmental dysplasia of the hip (DDH) is a common disease,
with an incidence of about 1 per 1000 and a high disability rate.[1]

For a better prognosis, early diagnosis, and treatment of DDH is
important, but at the early stage there are often mild or no
symptoms. Screening and diagnostic methods do exist, but the
shortage of professional orthopedic surgeons in grassroots areas
still makes early diagnosis of DDH difficult. Thus, a simple and
cost-effective tool to help quickly diagnose DDH from a large
number of pelvic anterior images, and reduce the rate of
misdiagnosis, is urgently needed.
The most common method for diagnosing DDH uses x-ray

images. DDH is characterized by a shallow, steep, and straight
acetabular roof. In addition, Sharp’s angle is widened, that is, the
angle between the lower edge of the pelvic teardrop and the line
connecting the lower edge of the teardrop and the outer edge of
the acetabulum. The degree of Sharp’s angle reflects the
acetabular development and the coverage of the acetabulum
on the femoral head, and can be used to diagnose and predict
DDH progression. Thus, for patients with DDH the determina-
tion of Sharp’s angle is essential for making clinical decisions.[2,3]

In adults and older children with closed Y-shaped triradiate
cartilage, Sharp’s angle normally ranges from 33° to 38°. Hip
dysplasia is suggested when Sharp’s angle is greater than 47°.[4]

Presently, Sharp’s angles are manually drawn andmeasured on
pelvic x-ray images by a professional orthopedic surgeon.
However, so many pelvic x-ray images are generated daily in
the hospital that it is difficult for orthopedic surgeons to remain
current. Furthermore, doctors in some grassroots areas are
insufficiently trained to diagnose DDH. Thus, a convenient and
efficient method to measure Sharp’s angle is urgently needed.
In recent years, the application of artificial intelligence (AI) has

led to advancements in speech and image recognition and text
understanding.[5] There have also been many achievements in
medical imaging research,[6] notably in radiology,[7] dermatolo-
gy,[8] and ophthalmology.[9–12] The mainstream models in
computer vision have been screened and compared, including a
regional convolutional neural network (R-CNN) series,[13,14] the
YOLO (You Only Look Once) series,[15,16] and SSD (Single Shot
Detection).[17]

In this current study,MaskR-CNNwas employed[18] to locate 4
key points on x-ray images that correspond to Sharp’s angle, and
these points were utilized to calculate Sharp’s angle automatically.
Figure 1. Resear
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The validity of this proposed model was evaluated by comparing
the automated measurements of Sharp’s angle with the manual
measurements taken by well-trained orthopedic surgeons.

2. Methods

This study was approved by the Ethics Review Board of Second
Hospital of Jilin University (No. 223 2018). A requirement for
patients’ informed consent was waived. Patients’ data was
retrospectively collected and personal information was removed
to ensure anonymity. A deep learning artificial neural network to
measure Sharp’s angle automatically was proposed and devel-
oped step by step (Fig. 1).

2.1. Datasets

Standardized anteroposterior pelvic radiographs were collected
from patients who visited Second Hospital of Jilin University
between August 2009 and May 2018. The images were down-
loaded from the picture archiving and communication system
(PACS) of the hospital, intended for modeling and analysis only.
Among the downloaded images, well-exposed standardized

anteroposterior pelvic radiographs of patients aged 12 to 100
years were selected by 2 orthopedic professors and 2 radiology
professors. Images were excluded from this study if the patient
was diagnosed with any of the following: pelvic rotation or tilt,
according to the criteria of Tönnis[19]; postoperative hip
replacement or acetabular fracture; diseases including severe
hip osteoarthritis or tuberculosis; tumors causing severe changes
in hip morphology; severe hyperplasia of the upper edge of the
acetabulum; or images with blurred teardrops.
Eventually, 12,528 x-ray images of patients who underwent

Digital Radiography exams were initially included in this study,
based on the inclusion and exclusion criteria. Of these, 954 were
removed during the labeling process due to poor image quality,
101 were randomly selected as test data (not used for deep neural
network training), and the remaining 11,473 constituted a
training and validation dataset at a ratio of ∼8:2 (i.e., 9248 and
2225 images, respectively, training and validation).
2.2. Labeling the pelvic x-ray images

The labeling tool LabelMe was utilized to mark the 4 key points
(the lower edge of the teardrop and the outer edge of the
ch flow chart.



Figure 2. Sharp’s angles (black lines) on a pelvic X-ray image. Key point A, lower edge of the teardrop on the left; key point B, outer edge of the acetabulum on the
left; key point C, lower edge of the teardrop on the right; key point D, outer edge of the acetabulum on the right. These 4 key points were predicted on the X-ray
images and the Sharp’s angles were automatically drawn and calculated with the Python-based utility. Green lines are an example of an annotated image with the
corresponding key point coordinates stored in a separate ∗.json file. The areas in the green box, centered on key points in the red boxes, and the background are
the 6 categories of the AI model.
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acetabulum on both sides) that comprise Sharp’s angle on
standardized pelvic x-ray images (Fig. 2). Each labeled x-ray
image was examined twice before inclusion in the training
dataset. Each annotated image with marked corresponding key
point coordinates was stored in a separate ∗.json file.

2.3. Preprocessing training images

The x-ray images included in this study were generated using
different equipment, so each was first scaled in x�y pixels (x=
1024) while maintaining the original image’s aspect ratio. For
model training, the images were made to fill a 1024�1024 pixel
square. The pixel mean was deducted from the RGB (red, green,
blue) channels before training. To apply to the modified Mask R-
CNN model, the ∗.json file with the annotated data was
converted into an MS COCO style annotation file by our own
Python-based utility software. A custom key category and a
square generated with the key points returned the vertex
coordinates of the border.
2.4. Modifications of the Mask R-CNN model

The standard Mask R-CNN model was selected[18] and fine
adjustments were made based on it. ResNet101 + FPN (feature
pyramid network) was still used as the backbone of the network,
which was consistent with the standard model in the literature.
According to suggestions in the literature,[18] the header
network portion was fine adjusted. In addition to the existing
3

classification/border prediction/mask prediction branch, a paral-
lel branch was added for key point detection (Fig. 3). When
dealing with key point detection, each key point was treated as a
one-hot binary mask whose dimensions were tested and
optimized to a value of 56�56 pixels.
For model training, the irregular quadrilateral (see Fig. 3) was

first treated as the only category (excluding the background
category) to predict the position of the corresponding 4 key
points. However, the results showed that the performance using
the test data was not ideal. Our Python-based utility was then
modified to label the area near each of the 4 key points as a
separate category and automatically generate a small square
centered on the original key point. This gave us 5 categories,
which included the original irregular quadrilateral (see Fig. 3) and
the 4 new categories described above.
Each of the 4 vertices of the small red squares in Fig. 3 was

considered a new key point, so 4 additional categories provided
the corresponding additional 4�4 key points. The predictions on
the test set data were then the coordinates of the center point
calculated from the vertices of each small square border. With
this new training strategy, the performance on the test data set
was significantly better than the previous one. We suspected that
if the number of key points was insufficient, there might be an
overfit of the model capacity. The loss function in this study was
basically consistent with the loss function described in a previous
research,[18] and we added the loss function for key point
detection. For each key point, the cross-entropy loss of its
Softmax was minimized during training.

http://www.md-journal.com


Figure 3. Modification of the standard Mask R-CNNModel. An additional branch for key point detection was adopted in the header network section of theMask R-
CNN model. Apart from the irregular quadrilateral shown in Figure 2, the area near each of these 4 key points was also regarded as separate categories. Each
category then has 4 new corresponding key points. With the background, there were 6 classifications (NUM_CLASSES=6).
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2.5. Training and inference

Four graphics processing units (GPUs) were used in a mini-batch
and 2 images per GPU resulted in an effective batch size of eight.
A region of interest was considered positive if the intersection-
over-union was at least 0.7; otherwise it was negative. The ratio
was 1:2 for positive-to-negative samples of each image. Stochastic
gradient descent was used with an initial learning rate of 0.002, a
momentum of 0.9, and a weight decay of 0.0001.
First, the rest of the network was fixed and the head network

iteratively learned 30 epochs. At this point, the validation loss
started to show a trend of flattening and small increase, which
indicated a possible overfitting to the network. (See details in
Fig. 4). The initial learning rate was divided by 10 and all network
layers were opened to learn another 50 epochs to achieve the last
result. As shown in Fig. 4, although the training loss continued to
decrease a bit, the validation loss started to increase after 80
epochs (30 + 50).
The X-ray images in the training dataset were utilized for

training and validation at a ratio of ∼8:2. In the test phase, the
image was scaled to x�y pixels (x=1024) while maintaining the
original image’s aspect ratio.

2.6. Code

The open source project matterport/Mask_RCNN (https://
github.com/matterport/Mask_RCNN) from GitHub was modi-
fied to fit the training objects and goals of the present study. A
pre-trained weight file (mask_rcnn_coco.h5) based on the MS
COCO dataset was used to start the actual training.

2.7. Measurement and diagnosis

The proposed AI model was applied to the 101 anteroposterior
pelvic radiographs in the test dataset. The lower edge of the
teardrop and the outer edge of the acetabulum were then detected.
The positions of the 4 key points were predicted and Sharp’s angle
4

was drawn and automatically calculated via our Python-based
utility (See details in Fig. 2). Accordingly, Sharp’s angles between
33° and 38° were considered normal. Sharp’s angles less than 32°
are uncommon and probably of no clinical significance, whereas
angles from 39° to 42° are the upper limit of normal. Sharp’s angles
over 47° are characteristic of DDH. The prognosis for hip joints
with Sharp angles between 42° and 47° is under investigation and
requiresdynamicobservation[4] according to thediagnostic criteria.
The Sharp’s angles of the 101 test orthotopic anterior pelvic X-

ray imageswerealsomeasured traditionally by3 rigorously trained
attending orthopedic surgeons using the PACS tools. A DDH
diagnosis was based on the measured angles. To evaluate efficacy,
themeasurements of Sharp angles of the acetabulum performed by
the AI model and surgeons were compared with the clinical DDH
diagnosis (based, as standard,onmedical history, symptoms, signs,
x-ray films, and computed tomography [CT] images).
2.8. Statistical analysis

SPSS 21.0 statistical software was used to analyze and organize
the data. The count data are represented by the number of cases
and percentage rate, i.e., n (%). Comparisons between groups
were performed by Chi-Squared test (x2). Measurement data
are described as mean± standard deviation. According to the
Kolmogorov-Smirnov normality test, P> .05 indicated that the
data conformed to normal distribution.
Comparisons between groups were analyzed by variance F-

test. Two groups were compared using the least significance
difference test and Student t test. The consistency of the indicator
diagnosis results was tested by the kappa statistic. Statistical
significance was set at P< .05.
3. Results

The Sharp’s angles of the 101 test anteroposterior pelvic
radiographs, measured by different approaches, were compared

https://github.com/matterport/Mask_RCNN
https://github.com/matterport/Mask_RCNN


Figure 4. Training loss and validation loss data obtained during model training and tuning. These 2 figures were taken from drawings in TensorBoard. The X axis is
the numbers of steps/epochs and the Y axis is the loss value.
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and analyzed (Table 1; Supplementary Table 1, http://links.lww.
com/MD/D505). On the left, the Sharp’s angles as measured
respectively by the AI model and surgeons were 40.07°±4.09°
and 39.35°±6.74°. The Student t test analysis indicated that there
was no significant difference between these 2 measurements (t=
1.422, P= .158). On the right, the corresponding Sharp angles
were 40.65°±4.21° and 39.82°±6.99°, which were also statisti-
cally similar (t=1.587, P= .116).
Another important parameter for evaluating method perfor-

mance is the time required for measuring Sharp’s angle. In the test
dataset of 101 X-ray images, the measurement time of the AI
Table 1

Left and right Sharp’s angles measured by the AI model and
surgeons

∗
.

AI Surgeons t P

Left 40.07°±4.09 39.35°±6.74 1.422 .158
Right 40.65°±4.21 39.82°±6.99 1.587 .116
∗
n=101 X-ray images.

5

model (1.19±0.00s) was significantly less than that of surgeons B
(86.72±1.10s),C (93.26±1.12s), and D (87.34.±0.80s; Fig. 5;
Supplementary Table 2, http://links.lww.com/MD/D506).
The developmental status of the pelvic acetabulum was

evaluated according to the measured Sharp’s angles. The
performance of the AI model in measuring Sharp’s angle was
judged by the diagnostic efficacy of DDH. Thus, the DDH
diagnostic sensitivity, specificity, and accuracy of the AI model
and orthopedic surgeons were compared (Table 2; Supplementa-
ry Table 3, http://links.lww.com/MD/D507). On the right side,
the diagnostic sensitivities for DDH of the AI model and surgeons
B, C, and D were 62.2, 78.4, 67.6, and 64.9%, respectively, and
all shared the same specificity of 78.1%. The corresponding
diagnostic accuracies were 74.3, 72.3, 69.3, and 70.3, showing
no significant difference.
On the left side, the diagnostic sensitivities for DDH of the AI

model and surgeons B, C, and D were 83.3, 83.3, 72.2, and
77.8%, respectively, with specificities of 81.9, 86.7, 85.5, and
88.0%, and accuracies of 79.2, 82.2, 80.2, and 84.2%. Thus,
according to these evaluation parameters, the diagnostic ability

http://links.lww.com/MD/D505
http://links.lww.com/MD/D505
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Figure 5. Bar graph of the time consumed by the AI method and surgeons for measuring Sharp’s acetabular angles for each X-ray image.
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of the AI model was equivalent to that of the orthopedic surgeons
in diagnosing DDH based on Sharp’s angles.
The Sharp’s angle-based DDH diagnostic consistency between

the AI method and the surgeons and the final diagnosis results
was studied (Table 4, Supplementary Table 3, http://links.lww.
com/MD/D507). The kappa test indicated that the AI method
and surgeons all shared a moderate diagnostic consistency with
the final diagnosis results, with no significant difference among
them. Thus, the consistency of Sharp’s angle-based evaluation of
the acetabulum by the AI method suggests that it could have an
important role in assisting the diagnosis of DDH.
4. Discussion

The deep neural network model is currently used in image
research for image classification, object detection, and semantic
Table 2

DDH diagnostic accuracy of the AI method and surgeons, n (%)
∗
.

Right

Inaccurate Accurate

AI 26 (25.74) 75 (74.26
Dr. B 28 (27.72) 73 (72.28
Dr. C 31 (30.69 70 (69.31
Dr. D 30 (29.70) 71 (70.30
x2 0.717 0.873
P 0.869 0.832
∗
The AI model and each surgeon measured 101 x-ray images each.

Table 3

DDH diagnostic performance of the AI method and 3 surgeons.

Sensitivity Specificity P

Right AI 0.622 0.781 0.6
Dr. B 0.784 0.781 0.6
Dr. C 0.676 0.781 0.6
Dr. D 0.649 0.781 0.6

Left AI 0.833 0.819 0.5
Dr. B 0.833 0.867 0.5
Dr. C 0.722 0.855 0.5
Dr. D 0.778 0.880 0.5

NLR = negative likelihood ratio, NPV = negative predictive value, PLR = positive likelihood ratio, PPV

6

segmentation. Researchers should pragmatically select what is
most appropriate for the clinical application. For the present
study, we considered that a classification judgment was required
with regard to DDH diagnosis. However, surgeons do not
intuitively accept a classification judgment achieved via the black
box approach of an artificial neural network.[20] Therefore, we
determined 4 sites that were essential for measuring Sharp’s
angle. The present model accurately locates the 4 key points,
which are on both sides of the outer edge of the acetabulum and
the lower edge of the teardrop. Sharp’s angles were then drawn
from these points. Thus, the AI model and the traditional manual
method used by surgeons share the same measurement
procedures for Sharp’s angle. Mask R-CNN was mainly used
for semantic segmentation and to site the key points on the
human body. For the first time, key point positioning was applied
to medical x-ray images to calculate meaningful medical
Left

Inaccurate Accurate

) 21 (20.79) 80 (79.21)
) 18 (17.82) 83 (82.18)
) 19 (18.81) 81 (80.19)
) 16 (15.84) 85 (84.16)

PV NPV PLR NLR Accuracy

22 0.781 2.842 0.484 0.743
74 0.862 3.583 0.277 0.723
41 0.806 3.089 0.415 0.693
32 0.794 2.965 0.450 0.703
00 0.958 4.611 0.203 0.792
77 0.960 6.288 0.192 0.822
20 0.934 4.995 0.325 0.802
83 0.948 6.456 0.253 0.842

= positive predictive value.

http://links.lww.com/MD/D507
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Table 4

Diagnostic consistency for DDH between diagnosis from AI method or surgeons and the confirmed diagnosis results, n
∗
.

Right Left

Normal NDO DDH Kappa Normal NDO DDH Kappa

AI Normal 50 0 14 0.415 68 0 3 0.470
NDO 1 6 0 0 5 1
DDH 13 2 15 15 2 7

Dr. B Normal 50 0 8 0.550 72 0 3 0.538
NDO 1 6 0 0 5 1
DDH 13 2 21 11 2 7

Dr. C Normal 50 0 12 0.459 71 0 5 0.445
NDO 0 6 0 0 5 1
DDH 14 2 17 12 2 5

Dr. D Normal 50 0 13 0.436 73 0 4 0.519
NDO 0 6 0 0 5 1
DDH 14 2 16 10 2 6

∗
All comparisons on each side for each evaluator, P= .000.

NDO = needs dynamic observation.
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diagnostic angles based on those detected sites. In addition, there
was no significant difference between the measurements of the AI
model and the surgeons.
When fine-tuning the proposed AI model, we found that the

initial performance was not ideal. This may be because too few
key points caused an overfit of the model capacity. When we
increased the number of key points and categories appropri-
ately, the performance of the model significantly improved. It
was also determined that the addition of a parallel branch for
key point detection to the classification/border prediction/mask
prediction branch of the standard Mask R-CNN did not
impose a significant additional burden on the training of the
model.
Doctors in China have very heavy workloads. Their stressful

working conditions not only threaten their physical and mental
health, but negatively influence the quality and efficiency of
medical services and patient safety.[21] The AI model proposed in
the present study was able to measure Sharp’s angle 74 times
faster than the physicians could (Fig. 5). This suggests that the AI
method could relieve the heavy daily workloads of orthopedic
surgeons by improving their work efficiency.
In addition, the diagnostic accuracy of DDH based on the

measured Sharp’s angle by the AI model was comparable to that
of the surgeons (Tables 2 and 3). The AI model could be applied
in primary care hospitals, which provide 80% of the clinical care
services in most countries,[22] even while the number of doctors
and the available technology remain insufficient. In China for
example, only 17.6% of the medical undergraduates and above
become doctors in township hospitals.[23] Application of the AI
model in grassroots medical facilities will help differentiate those
patients with an abnormal Sharp’s angle, and could thus improve
the accuracy and efficiency of diagnosis and treatment. As
application of the AI model improves the efficiency of doctors’
daily work, the egalitarianism of medical care will improve, and
the shortage of doctors and technology may be compensated to
some extent.
In clinical practice, in almost 40% of young and middle-aged

patients hip pain is caused by dysplasia. Yet, dysplasia due to
minor poor acetabular development is often not serious. As
observed on pelvis x-ray images, Sharp’s angle is only slightly
wider than normal,[24,25] and these patients are very susceptible
7

to misdiagnosis. Our present results showed that the diagnostic
accuracy of DDH based Sharp angle as measured by the AI model
was equivalent to that of the surgeons. In addition, it took much
less time for the AI model to perform the measurement, making
batch screening possible. By aiding diagnosis of DDH at the early
stage, this AI method can contribute to better clinical decisions
and treatment strategies, and improve the prognosis before
cartilage degeneration occurs.
The overall accuracy of the automated auxiliary detection

method for DDH is 76.73%. A final clinical diagnosis requires
multiple indicators. This method can contribute to an accurate
diagnosis, but there are many challenges to its ultimate
application in the clinic.[20] In the future, a CNN model which
measures the center-edge angle and the acetabular index will be
constructed with the existing data. CT and magnetic resonance
imaging (MRI) data can be used to train the CNN model; CT
images can better exhibit the acetabular dysplasia[26,27] and MRI
depict joint changes in the cartilage.[28] The multi-modality data
(x-ray, CT, and MRI data) of the trained CNN model will more
accurately assist the diagnosis of DDH.
5. Conclusion

This study proposed a new method for auxiliary diagnosis of
DDH. The method utilized deep neural network AI to detect key
points automatically on pelvic x-ray images at the lower edge of
the teardrop and the outer edge of the acetabulum. These were
utilized for automated calculation of the acetabular Sharp’s
angle. We improved the Mask R-CNN model as needed for
detection of the key points on medical images. The sensitivity,
specificity, and accuracy of this method for auxiliary diagnosis of
DDH are similar to that of surgeons, while it is much more time
efficient.
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